NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 27, 2024.

Search: Author = A.H.Ahmed

Found 13 matches.

Back to query form



2023AB23      Appl.Radiat.Isot. 202, 111043 (2023)

H.M.Abdullah, A.H.Ahmed

Empirical formula for (n, f) reaction cross sections of Uranium isotopes at 1-20 MeV neutrons

NUCLEAR REACTIONS 232,233,234,235,236,237,238U(n, F), E<20 MeV; analyzed EXFOR library data; deduced empirical formula using the EMPIRE 3.2.3 and TALYS 1.95 computer codes for Uranium isotopes up to the third fission plateau.

doi: 10.1016/j.apradiso.2023.111043
Citations: PlumX Metrics


2022AB14      Int.J.Mod.Phys. E31, 2250049 (2022)

H.M.Abdullah, A.H.Ahmed

Empirical formulae for (n, p) reaction cross-sections at 14-15 MeV neutrons

NUCLEAR REACTIONS 18O, 19F, 24,25,26Mg, 27Al, 28,29Si, 31P, 32,34S, 35,37Cl, 39,41K, 40Ca, 44Ca, 45Sc, 46,47,48Ti, 51V, 50Cr, 52,53,54Cr, 55Mn, 54Fe, 56,57,58Fe, 59Co, 58Ni, 60,61Ni, 63,65Cu, 64Zn, 66,67,68Zn, 71Ga, 70Ge, 72,73,74Ge, 75As, 74Se, 76,77,78Se, 80Se, 81Br, 82Kr, 87Rb, 84,86,88Sr, 89Y, 90,91,92Zr, 94Zr, 94,95,96,97Mo, 96Ru, 100Ru, 103Rh, 104,105,106Pd, 109Ag, 106Cd, 110,111,112,113,114Cd, 115In, 112Sn, 116,117,118Sn, 122Sn, 122,124Te, 130Te, 127I, 131Xe, 133Cs, 132Ba, 136Ba, 139La, 140Ce, 141Pr, 144,146Nd, 144Sm, 153Eu, 159Tb, 156Dy, 160Dy, 167Er, 176Yb, 179Hf, 181Ta, 183W, 186W, 187Re, 188,189Os, 191,193Ir, 197Au, 199,201Hg, 203,205Tl(n, p), E=14-15 MeV; analyzed EXFOR library data; deduced New empirical formulae.

doi: 10.1142/S0218301322500495
Citations: PlumX Metrics


2022AB20      Appl.Radiat.Isot. 189, 110396 (2022)

H.M.Abdullah, A.H.Ahmed

Semi-empirical formula for (n, α) reaction cross sections at 14-15 MeV neutrons

NUCLEAR REACTIONS 9Be, 11B, 12,13C, 14N, 16,17,18O, 20Ne, 23Na, 26Mg, 29,30Si, 31P, 34S, 35,37Cl, 40Ar, 39,41K, 40ca, 44Ca, 45Sc, 48Ti, 51V, 54Cr, 55Mn, 54Fe, 58Fe, 59Co, 58Ni, 62,64Ni, 63,65Cu, 64Zn, 68Zn, 69,71Ga, 72,74,76Ge, 75AS, 78,80Se, 79,81Br, 86Kr, 85,87Rb, 89Y, 90,92,94,96Zr, 93Nb, 92Mo, 100Mo, 102,104Ru, 103Rh, 106,108,110Pd, 107,109Ag, 106Cd, 112Cd, 116Cd, 113,115In, 112Sn, 118,120,122Sn, 124,126,128,130Te, 127I, 133Cs, 138Ba, 138,139La, 140,142Ce, 141Pr, 142,143,144,145,146Nd, 144Sm, 150,152Sm, 151,153Eu, 156,158,160Gd, 159Tb, 156Dy, 162,164Dy, 165Ho, 168,170Er, 169Tm, 172,174,176Yb, 175,176Lu, 178,180Hf, 181Ta, 183,184W, 186W, 185,187Re, 190,192Os, 191,193Ir, 194,196Pt, 197Au, 200,202Hg, 203,205Tl, 206,208Pb, 209Bi(n, α), E=14-15 MeV; analyzed available EXFOE data; calculated σ using EMPIRE 3.2.3 and TALYS 1.95 nuclear model codes; deduced formula.

doi: 10.1016/j.apradiso.2022.110396
Citations: PlumX Metrics


2022AK03      Nucl.Phys. A1021, 122419 (2022)

D.T.Akrawy, Dorin N.Poenaru, A.H.Ahmed, L.Sihver

α-decay half-lives new semi-empirical relationship including asymmetry, angular momentum and shell effects

NUCLEAR STRUCTURE N=20-180; calculated α-decay T1/2 using a modified version of the semi-empirical formula SemFIS. Comparison with available data.

doi: 10.1016/j.nuclphysa.2022.122419
Citations: PlumX Metrics


2022AK06      Eur.Phys.J. A 58, 145 (2022)

D.T.Akrawy, A.I.Budaca, G.Saxena, A.H.Ahmed

Generalization of the screened universal α-decay law by asymmetry and angular momentum

RADIOACTIVITY 106,108Te, 112Xe, 114Ba, 146,148Sm, 148,150,152Gd, 150,152,154Dy, 152,154Er, 154,156Yb, 156,158,160Hf, 158,160,162W, 166W, 162Os, 166Os, 170Os, 174Os, 178,180,182,184Pt, 188,190Pt, 174,176Hg, 180,182,184Hg, 188Hg, 188,190Pb, 210Pb, 190,192,194,196,198,200,202,204,206,208,210,212,214,216,218Po, 194,196,198,200,202Rn, 206,208,210,212Rn, 218,220,222Rn, 206,208,210,212,214Ra, 220,222,224,226Ra, 210Th, 216,218Th, 222,224,226,228,230,232Th, 224,226,228,230,232,234,236,238U, 230,232,234,236,238,240,242,244Pu, 238,240,242,244,246,248Cm, 240Cf, 244,246,248,250,252,254Cf, 248,250,252,254,256Fm, 252No, 256No, 256,258Rf, 260,262Sg, 264,266Hs, 270Hs, 270Ds, 286,288Fl, 290,292Lv, 294Og, 105,107Te, 109Xe, 147Sm, 151Gd, 151,153Dy, 153,155Er, 155,157Yb, 157Hf, 159W, 165W, 161Os, 167Os, 173Os, 167,169,171,173,175,177Pt, 183Pt, 173,175,177,179Hg, 183,185Hg, 191Pb, 187,189,191Po, 195,197,199,201Po, 205,207,209,211,213Po, 195,197,199,201,203Rn, 207,209,211,213,215Rn, 219,221Rn, 203,205Ra, 209,211,213,215,217,219,221Ra, 211,213,215,217,219,221,223,225,227Th, 217,219U, 223,225U, 235U, 239,241Pu, 241,243,245,247Cm, 249,251Cf, 251,253,255,257Fm, 263Rf, 259,261Sg, 269,271Sg, 265,267Hs, 273Hs, 267Ds, 269,271,273Ds, 277Ds, 281Ds, 281Cn, 285Cn, 287,288,289Fl, 291,293Lv, 111I, 147Eu, 149,151Tb, 153Tm, 169Ir, 177Ir, 173Au, 181,183,185Au, 177,179Tl, 187,189Bi, 193,195Bi, 211,213Bi, 197,199,201,203,205,207,209,211,213,215,217,219At, 201,203,205,207,209,211,213,215,217,219,221,223Fr, 209,211,213,215,217,219,221,223,225,227Ac, 213,215,217,219Pa, 225,227Pa, 231Pa, 235,237Np, 239,241,243Am, 243,245Bk, 249Bk, 243,245Es, 255,257Lr, 257,259Db, 263Db, 261Bh, 267Bh, 275Mt, 279Rg, 283,285Nh, 287,289Mc, 293Ts, 110,112I, 114Cs, 148Eu, 152,154Ho, 154,156Tm, 158Lu, 162Ta, 160,162Re, 166Ir, 170,172,174Au, 182Au, 182Tl, 212,213,214Bi, 196,198,200,202,204,206,208,210,212,214,216,218At, 200,202,204,206,208,210,212,214,216,218,220Fr, 206,208,210,212,214,216,218,220,222,224Ac, 212Pa, 216Pa, 226Pa, 230Pa, 254Es, 256Md, 256,258Db, 260Bh, 264,266Bh, 270,272,274Bh, 268Mt, 274,276,278Mt, 272,274Rg, 278,280Rg, 278Nh, 284,286Nh, 288,290Mc, 294Ts(α); calculated T1/2. Comparison with available data.

doi: 10.1140/epja/s10050-022-00789-5
Citations: PlumX Metrics


2022GH09      Eur.Phys.J. A 58, 179 (2022)

R.Gharaei, S.Mohammadi, D.T.Akrawy, A.H.Ahmed

Calculation of α-decay half-lives for isotopes around N = Z using different proximity-type potentials

RADIOACTIVITY 105,106,107,108,109,110Te, 108,109,110,111,112,113I, 109,110,111,112,113Xe, 112,114Cs, 114Ba(α); calculated T1/2 within the framework of 16 different versions of proximity potentials. Comparison with available data.

doi: 10.1140/epja/s10050-022-00820-9
Citations: PlumX Metrics


2020AK05      Int.J.Mod.Phys. E29, 2050052 (2020)

D.T.Akrawy, A.H.Ahmed, E.Tel, A.Aydin, L.Sihver

New empirical formula for calculating (n, p) reaction cross-sections at 14.5MeV neutrons

NUCLEAR STRUCTURE Z=20-90; analyzed available data; deduced formula.

doi: 10.1142/S0218301320500524
Citations: PlumX Metrics


2020HO08      Int.J.Mod.Phys. E29, 2050008 (2020)

S.S.Hosseini, H.Hassanabadi, D.T.Akrawy, A.H.Ahmed

Theoretical studies on Alpha decay half-lives of Astatine isotopes

RADIOACTIVITY 191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219At(α); calculated Q-values, T1/2. Comparison with available data.

doi: 10.1142/S0218301320500081
Citations: PlumX Metrics


2020SA23      Phys.Rev. C 101, 064610 (2020)

K.P.Santhosh, D..Akrawy, H.Hassanabadi, Al.H.Ahmed, T.A.Jose

α-decay half-lives of lead isotopes within a modified generalized liquid drop model

RADIOACTIVITY 178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220Pb(α); calculated half-lives using modified generalized liquid drop model (MGLDM) with Akrawy, Royer, AKRE, and modified RenB formulas, and experimental Q(α) values. Comparison with available experimental half-lives, and with predicted half-lives in Coulomb and proximity potential model.

doi: 10.1103/PhysRevC.101.064610
Citations: PlumX Metrics


2019AK08      Phys.Rev. C 100, 044618 (2019)

D.T.Akrawy, A.H.Ahmed

α-decay systematics for superheavy nuclei

RADIOACTIVITY 255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270Db, 259,260,261,262,263,264,265,266,267,268,269,270,271Sg, 260,261,262,263,264,265,266,267,268,269,270,271,272,273,274Bh, 264,265,266,267,268,269,270,271,272,273,274,275Hs, 265,266,267,268,269,270,271,272,273,274,275,276,277,278Mt, 267,268,269,270,271,272,273,274,275,276,277,278,279,280,281Ds, 272,273,274,275,276,277,278,279,280,281,282Rg, 276,277,278,279,280,281,282,283,284,285Cn, 278,279,280,281,282,283,284,285,286,287,288Nh, 283,284,285,286,287,288,289,290,291,292Fl, 286,287,288,289,290,291,292,293,294,295Mc, 287,288,289,290,291,292,293,294,295,296Lv, 291,292,293,294,295,296,297,298,299,300Ts, 291,292,293,294,295,296,297,298,299,300Og, 296,297,298,299,300,301,302,303,304,305119, 295,296,297,298,299,300,301,302,303,304120(α); calculated half-lives using six empirical formulas: the scaling law of Brown (SLB), the modified scaling law Brown formula (MSLB), the Yibin et al. formula (YQZR), the modified Yibin et al. formula (MYQZR), the Viola-Seaborg formula (VS), and the modified Viola-Seaborg formula (MVS), with the readjustment of the formulas using new coefficients deduced from experimental α-decay half-lives of 356 nuclei, and compared with available experimental values; deduced that the modified YQZR formula (MYQZR) agrees better with the experimental data.

doi: 10.1103/PhysRevC.100.044618
Citations: PlumX Metrics


2018AH04      Int.J.Mod.Phys. E27, 1850079 (2018)

A.H.Ahmed

Systematics of (n, p) reaction cross-sections for light element target nuclei at 14.5 MeV neutrons

COMPILATION A=19-101; analyzed available data for σ of (n, p) reactions; deduced empirical formula. Comparison with TENDL calculated values.

doi: 10.1142/S0218301318500799
Citations: PlumX Metrics


2018AK07      Int.J.Mod.Phys. E27, 1850068 (2018)

D.T.Akrawy, A.H.Ahmed

New empirical formula for α-decay calculations

doi: 10.1142/S0218301318500684
Citations: PlumX Metrics


2007AH07      Nucl.Instrum.Methods Phys.Res. A582, 287 (2007)

A.H.Ahmed, H.M.Youhana

Empirical formulae to calculate n-yields from (α, n) reactions for 9Be, 19F, 23Na, and 27Al light element thick targets

NUCLEAR REACTIONS 9Be, 19F, 23Na, 27Al(α, n), E < 10 MeV; calculated neutron yields. Compared results to available data.

doi: 10.1016/j.nima.2007.08.122
Citations: PlumX Metrics


Back to query form