NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of March 21, 2024.

Search: Author = A.I.Sanzhur

Found 31 matches.

Back to query form



2024MA02      Eur.Phys.J. A 60, 6 (2024)

A.G.Magner, A.I.Sanzhur, S.N.Fedotkin, A.I.Levon, U.V.Grygoriev, S.Shlomo

Pairing correlations within the micro-macroscopic approach for the level density

NUCLEAR STRUCTURE 40,48Ca, 52,54Fe, 56Ni, 115Sn, 144Sm, 208Pb; calculated level densities for low-energy states within the microscopic-macroscopic approach (MMA). Comparison with available data.

doi: 10.1140/epja/s10050-023-01222-1
Citations: PlumX Metrics


2023MA40      Iader.Fiz.Enerh. 24, 175 (2023)

A.G.Magner, A.I.Sanzhur, S.N.Fedotkin, A.I.Levon, U.V.Grygoriev, S.Shlomo

Nuclear level density in the statistical semiclassical micro-macroscopic approach

NUCLEAR STRUCTURE 140,142,145Nd, 144,150Sm, 166Ho, 208Pb, 230Th, 240Pu; analyzed available data; deduced level density parameters using Least Mean-Square (LMS) fit.

doi: 10.15407/jnpae2023.03.175
Citations: PlumX Metrics


2022MA14      Nucl.Phys. A1021, 122423 (2022)

A.G.Magner, A.I.Sanzhur, S.N.Fedotkin, A.I.Levon, S.Shlomo

Level density within a micro-macroscopic approach

NUCLEAR STRUCTURE 240Pu, 150Sm, 166Ho; analyzed available data; deduced statistical level density for nucleonic system with a given energy E, particle number A and other integrals of motion in the micro-macroscopic approximation beyond the standard saddle-point method of the Fermi gas model.

doi: 10.1016/j.nuclphysa.2022.122423
Citations: PlumX Metrics


2022SA40      Iader.Fiz.Enerh. 23, 79 (2022)

A.I.Sanzhur

Van der Waals equation of state for asymmetric nuclear matter

doi: 10.15407/jnpae2022.02.079
Citations: PlumX Metrics


2021MA67      Phys.Rev. C 104, 044319 (2021)

A.G.Magner, A.I.Sanzhur, S.N.Fedotkin, A.I.Levon, S.Shlomo

Semiclassical shell-structure micro-macroscopic approach for the level density

NUCLEAR STRUCTURE 144,148Sm, 166Ho, 208Pb, 230Th; calculated level densities for low-energy states with different approximations, maximal mean errors in the statistical distribution of states; derived statistical level density as function of the entropy within the micro-macroscopic approximation (MMA) using the mixed micro- and grand-canonical ensembles beyond the standard saddle point method of the Fermi gas model, using mean-field semiclassical periodic-orbit theory. Comparison with experimental densities.

doi: 10.1103/PhysRevC.104.044319
Citations: PlumX Metrics


2021MA79      Int.J.Mod.Phys. E30, 2150092 (2021)

A.G.Magner, A.I.Sanzhur, S.N.Fedotkin, A.I.Levon, S.Shlomo

Shell-structure and asymmetry effects in level densities

NUCLEAR STRUCTURE 176,178,180,182,184,186,188,190,192,194,196,198,200Pt; analyzed available data; deduced level densities within the semiclassical extended Thomas-Fermi and periodic-orbit theory beyond the Fermi-gas saddle-point method.

doi: 10.1142/S0218301321500920
Citations: PlumX Metrics


2018KO18      Phys.Rev. C 97, 064302 (2018)

V.M.Kolomietz, A.I.Sanzhur, S.Shlomo

Self-consistent mean-field approach to the statistical level density in spherical nuclei

NUCLEAR STRUCTURE 40,48Ca, 90Zr, 120Sn, 208Pb; calculated proton and neutron particle density parameters, statistical level density parameters. 208Pb; calculated neutron single-particle level density, number of neutron states, nuclear mean field and reduced nuclear mean field, neutron momentum-dependent and frequency-dependent effective mass, temperature dependence of S(n), and temperature dependence of neutron excitation energy. 160Gd; calculated temperature dependence of inverse statistical level density parameter. Self-consistent mean-field approach within the extended Thomas-Fermi approximation with Skryme forces SkM* and KDE0v1.

doi: 10.1103/PhysRevC.97.064302
Citations: PlumX Metrics


2017KO19      Phys.Rev. C 95, 054305 (2017)

V.M.Kolomietz, S.V.Lukyanov, A.I.Sanzhur, S.Shlomo

Equation of state and radii of finite nuclei in the presence of a diffuse surface layer

NUCLEAR STRUCTURE 208Pb; calculated equation of state and partial pressure. A=10-220; calculated equimolar nuclear radius versus A. A=20-32, Z=11; calculated rms radius of the proton distribution versus A. A=20-32, Z=11; A=111-125, Z=50; A=204-210, Z=82; calculated isovector shift of nuclear rms radius versus A. Comparison with experimental data. Gibbs-Tolman-Rowlinson-Widom (GTW) approach for nuclear surfaces and nuclear radii.

doi: 10.1103/PhysRevC.95.054305
Citations: PlumX Metrics


2016KO14      Int.J.Mod.Phys. E25, 1650016 (2016)

V.M.Kolomietz, A.I.Sanzhur, B.V.Reznychenko

Surface layer effect on nuclear deformation energy

NUCLEAR STRUCTURE 240Pu; calculated deformation energies, surface tension coefficients for different Skyrme forces, surface layer parameters. Comparison with available data.

doi: 10.1142/S0218301316500166
Citations: PlumX Metrics


2013KO04      Int.J.Mod.Phys. E22, 1350003 (2013)

V.M.Kolomietz, A.I.Sanzhur

Thin structure of β-stability line and symmetry energy

doi: 10.1142/S0218301313500031
Citations: PlumX Metrics


2013KO30      Phys.Rev. C 88, 044316 (2013)

V.M.Kolomietz, A.I.Sanzhur

Gibbs-Tolman approach to the curved interface effects in asymmetric nuclei

NUCLEAR STRUCTURE 120Sn, 208Pb; calculated surface energy and surface contribution to the symmetry energy, surface tension vs dividing radius following Gibbs-Tolman concept. N=20-150; calculated β stability curve and compared with experimental data.

doi: 10.1103/PhysRevC.88.044316
Citations: PlumX Metrics


2012KO09      Phys.Rev. C 85, 034309 (2012)

V.M.Kolomietz, S.V.Lukyanov, A.I.Sanzhur

Nucleon distribution in nuclei beyond the β-stability line

NUCLEAR STRUCTURE 17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33Na, 110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130Sn, 198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218Pb; calculated rms radii, rms radius of neutron and proton distributions, isovector shift of nuclear rms radii, bulk density, neutron skin. Direct variational method, extended Thomas-Fermi approximation. Comparison with experimental data.

doi: 10.1103/PhysRevC.85.034309
Citations: PlumX Metrics


2012KO28      Phys.Rev. C 86, 024304 (2012)

V.M.Kolomietz, S.V.Lukyanov, A.I.Sanzhur

Curved and diffuse interface effects on the nuclear surface tension

doi: 10.1103/PhysRevC.86.024304
Citations: PlumX Metrics


2011KO56      Iader.Fiz.Enerh. 12, 16 (2011); Nuc.phys.atom.energ. 12, 16 (2011)

V.M.Kolomietz, A.I.Sanzhur

Shell oscillations in symmetry energy


2010KO06      Phys.Rev. C 81, 024324 (2010)

V.M.Kolomietz, A.I.Sanzhur

New derivation of the symmetry energy for nuclei beyond the β-stability line

NUCLEAR STRUCTURE A=8-240; calculated asymmetry parameter, Coulomb energy coefficient, symmetry energy coefficient as function of mass number using direct derivation of the symmetry energy from the shift of neutron-proton chemical potentials. A=100, 120, 160; calculated difference between neutron and proton chemical potentials as a function of the asymmetry parameter. Comparison with experimental data.

doi: 10.1103/PhysRevC.81.024324
Citations: PlumX Metrics


2010KO42      Iader.Fiz.Enerh. 11, 335 (2010); Nuc.phys.atom.energ. 11, 335 (2010)

V.M.Kolomietz, S.V.Lukyanov, A.I.Sanzhur

Giant neutron halo in nuclei beyond beta-stability line

NUCLEAR STRUCTURE 23Na, 40Ca, 91Zr, 208Pb; calculated nucleon distribution radii, neutron skin. Extended Thomas-Fermi approximation.


2009MA42      Int.J.Mod.Phys. E18, 885 (2009)

A.G.Magner, A.I.Sanzhur, A.M.Gzhebinsky

Asymmetry and spin-orbit effects in binding energy in the effective nuclear surface approximation

doi: 10.1142/S0218301309013002
Citations: PlumX Metrics


2008KO32      Eur.Phys.J. A 38, 345 (2008)

V.M.Kolomietz, A.I.Sanzhur

Equation of state and symmetry energy within the stability valley

doi: 10.1140/epja/i2008-10679-1
Citations: PlumX Metrics


2007KO78      Iader.Fiz.Enerh. 8 no.2, 7 (2007)

V.M.Kolomietz, A.I.Sanzhur

Bulk and surface symmetry energy for the nuclei far from the valley of stability

NUCLEAR STRUCTURE 208Pb; calculated neutron and proton densities, neutron skin. A=70-210; calculated neutron skin. Direct variational method, extended Thomas-Fermi approximation. Comparison with experimental data.

doi: 10.15407/jnpae
Citations: PlumX Metrics


2003AG04      Phys.Rev. C 67, 034314 (2003)

B.K.Agrawal, S.Shlomo, A.I.Sanzhur

Self-consistent Hartree-Fock based random phase approximation and the spurious state mixing

NUCLEAR STRUCTURE 80Zr; calculated isoscalar giant resonance strength functions, transition densities, spurious state mixing effects. Self-consistent Hartree-Fock, continuum RPA.

doi: 10.1103/PhysRevC.67.034314
Citations: PlumX Metrics


2003KO37      Phys.Rev. C 68, 014614 (2003)

V.M.Kolomietz, A.I.Sanzhur, S.Shlomo

Non-Markovian effects on the dynamics of bubble growth in hot asymmetric nuclear matter

doi: 10.1103/PhysRevC.68.014614
Citations: PlumX Metrics


2003SH30      Nucl.Phys. A719, 225c (2003)

S.Shlomo, A.I.Sanzhur, B.K.Agrawal

Isoscalar giant monopole and dipole resonances and the nuclear matter incompressibility coefficient

NUCLEAR REACTIONS 116Sn(α, α'), E=240 MeV; calculated isoscalar GDR strength distribution, excitation σ(E). RPA approach, comparison with data.

doi: 10.1016/S0375-9474(03)00923-0
Citations: PlumX Metrics


2002SH12      Phys.Rev. C65, 044310 (2002)

S.Shlomo, A.I.Sanzhur

Isoscalar Giant Dipole Resonance and Nuclear Matter Incompressibility Coefficient

NUCLEAR STRUCTURE 116Sn, 208Pb; calculated isoscalar GDR strength functions. Removal of contributions from spurious state mixing discussed. Hartree-Fock RPA approach.

doi: 10.1103/PhysRevC.65.044310
Citations: PlumX Metrics


2002SH45      Acta Phys.Hung.N.S. 16, 303 (2002)

S.Shlomo, A.I.Sanzhur

Nuclear Equation of State and Compression Modes

NUCLEAR STRUCTURE 116Sn, 208Pb; calculated GDR strength functions, equation of state. Self-consistent RPA.

doi: 10.1556/APH.16.2002.1-4.33
Citations: PlumX Metrics


2001KO47      Phys.Rev. C64, 024315 (2001)

V.M.Kolomietz, A.I.Sanzhur, S.Shlomo, S.A.Firin

Equation of State and Phase Transitions in Asymmetric Nuclear Matter

doi: 10.1103/PhysRevC.64.024315
Citations: PlumX Metrics


1996BO05      Phys.Rev. C53, 855 (1996)

Ye.A.Bogila, V.M.Kolomietz, A.I.Sanzhur, S.Shlomo

Preequilibrium Decay in the Exciton Model for Nuclear Potential with a Finite Depth

NUCLEAR STRUCTURE 40Ca; calculated transition, total decay rates for given exciton state, preequilibrium nucleon emission particle spectra. Exciton model, particle-hole level density.

doi: 10.1103/PhysRevC.53.855
Citations: PlumX Metrics


1996BO13      Yad.Fiz. 59, No 5, 808 (1996); Phys.Atomic Nuclei 59, 770 (1996)

Ye.A.Bogila, V.M.Kolomietz, A.I.Sanzhur

Energy Dependence of Transition Rates in the Exciton Model

NUCLEAR REACTIONS, ICPND 111Cd(p, n), (p, 2n), (p, 3n), E ≈ threshold-50 MeV; analyzed σ(E). Exciton model, perturbation theory based intermediate state transition rates.


1995BO25      Phys.Rev.Lett. 75, 2284 (1995)

Ye.A.Bogila, V.M.Kolomietz, A.I.Sanzhur, S.Shlomo

Angular Momentum Dependence of Transition Rates in the Exciton Model

NUCLEAR REACTIONS, ICPND 111Cd(p, 2n), E ≈ 15-50 MeV; calculated isomeric ratio vs E. Exciton model with angular momentum dependent transition rates.

doi: 10.1103/PhysRevLett.75.2284
Citations: PlumX Metrics


1995SH34      Z.Phys. A353, 27 (1995)

S.Shlomo, Ye.A.Bogila, V.M.Kolomietz, A.I.Sanzhur

Fixed Exciton Number Level Density for a Finite Potential Well

NUCLEAR STRUCTURE 40Ca, 208Pb; calculated low number excitons associated level density function relative to that of Ericson-Strutinsky vs E; deduced potential well depth, surface thickness finiteness role.

doi: 10.1007/BF01297723
Citations: PlumX Metrics


1993BO37      Z.Phys. A347, 49 (1993)

Y.A.Bogila, V.M.Kolomietz, A.I.Sanzhur

Relaxation Time of Nonequilibrium Nuclear System

NUCLEAR STRUCTURE A=90; calculated nonequilibrium state relaxation time. Exciton model, equilibrium transition rates used.

doi: 10.1007/BF01301276
Citations: PlumX Metrics


1989KO35      Izv.Akad.Nauk SSSR, Ser.Fiz. 53, 69 (1989); Bull.Acad.Sci.USSR, Phys.Ser. 53, No.1, 67 (1989)

V.M.Kolomiets, V.N.Kondratev, A.I.Sanzhur

Induced Nuclear 0+ → 0+ Transitions

NUCLEAR STRUCTURE 16O, 40Ca, 72Ge, 90Zr; calculated 0+ level energy, T1/2, B(λ). External field induced transitions.


Back to query form