NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 27, 2024.

Search: Author = P.Kumar

Found 33 matches.

Back to query form



2023KU11      Phys.Rev. C 107, 055805 (2023)

R.Kumar, M.Kumar, V.Thakur, S.Kumar, P.Kumar, A.Sharma, B.K.Agrawal, S.K.Dhiman

Observational constraint from the heaviest pulsar PSR J0952-0607 on the equation of state of dense matter in relativistic mean field model

NUCLEAR STRUCTURE 48Ca, 208Pb; calculated neutron skin thickness. Calculations based on HPU1, HPU2, and HPU3 parametrizations for the relativistic mean field (RMF) model, which were generated in the light of the heaviest observed neutron star for the black widow pulsar PSR J092-0607. Obtained bulk nuclear matter properties, symmetry energy parameters, neutron star properties. Comparison to CREX and PREX-II results and other calculations.

doi: 10.1103/PhysRevC.107.055805
Citations: PlumX Metrics


2023TH01      Phys.Rev. C 107, 015803 (2023)

V.Thakur, R.Kumar, P.Kumar, M.Kumar, C.Mondal, K.Huang, J.Hu, B.K.Agrawal, S.K.Dhiman

Relativistic approach for the determination of nuclear and neutron star properties in consideration of PREX-II results

NUCLEAR STRUCTURE A=20-220; calculated charge rms radii, binding energy. 48Ca, 208Pb; calculated neutron skin thickness. Obtained properties of nonrotating neutron star. New parametrization of the relativistic mean-field (RMF) model obtained by fit to the available experimental data on binding energy, charge rms radii and taking into account recent PREX-II results on neutron skin thickness. Comparison to results obtained with different parametrizations - NL3, IOPB-I, FSUGarnet, Big Apple.

doi: 10.1103/PhysRevC.107.015803
Citations: PlumX Metrics


2022KU16      Nucl.Phys. A1022, 122429 (2022)

V.Kumar, P.Kumar, V.Thakur, S.Thakur, S.K.Dhiman

The microscopic studies of the even-even 12-28O, 34-60Ca, 48-80Ni, and 100-134Sn using covariant density functional theory

NUCLEAR STRUCTURE 12,14,16,18,20,22,24,26,28O, 34,36,38,40,42,44,46,48,50,52,54,56,58,60Ca, 48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78,80Ni, 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134Sn; calculated potential energy surfaces, binding and two-neutron separation energies, charge radii, neutron and proton rms radii, neutron skin thickness; deduced covariant mass data and Skyrme mass data for D1S, NL-SH, NL3, DD-ME2, DD-MEδ, DD-PC1, NL3*, SkM*, SkP, SLy4, SV-min, UNEDF0, and UNEDF1 parameterizations.

doi: 10.1016/j.nuclphysa.2022.122429
Citations: PlumX Metrics


2022KU21      Nucl.Phys. A1025, 122479 (2022)

P.Kumar, R.Gautam, S.Aydin, A.Ozfidan

Four pseudo-mirror nuclei in the left-lower part of the nuclear chart

NUCLEAR STRUCTURE 64Fe, 70Zn, 60Cr, 74Ge; analyzed available data; deduced four new pseudo-mirror nuclei, the symmetry in their ground state energy band and kinematic moment of inertia.

doi: 10.1016/j.nuclphysa.2022.122479
Citations: PlumX Metrics


2022KU30      Eur.Phys.J. A 58, 143 (2022)

P.Kumar, V.Thakur, S.Thakur, V.Kumar, A.Sharma, R.Kumar, S.K.Dhiman

Effect of nuclear deformation on proton bubble structure in Z=14 isotopes

NUCLEAR STRUCTURE 28,30,32,34,36,38,40,42Si; calculated potential energy surfaces (PESs), charge density distributions, proton depletion fractions, proton and neutron density distributions, proton density profile, occupation probabilities for spherically and triaxially constrained single-particle orbits by employing Covariant Density Functional Theory with DD-ME2 interaction; deduced the effect of deformation proton bubble candidates in Si isotopic chain.

doi: 10.1140/epja/s10050-022-00801-y
Citations: PlumX Metrics


2022KU34      J.Radioanal.Nucl.Chem. 331, 3757 (2022)

P.Kumar, S.L.Goyal

Analysis of excitation functions of (p, n) reactions for the stable isotopes of zinc and copper up to 40 MeV

NUCLEAR REACTIONS 63,65Cu, 66,67,68Zn(p, n), E<40 MeV; calculated σ using the TALYS-1.95 computer code. Comparison with available data.

doi: 10.1007/s10967-022-08439-2
Citations: PlumX Metrics


2022TH05      Phys.Rev. C 106, 025803 (2022)

V.Thakur, R.Kumar, P.Kumar, V.Kumar, B.K.Agrawal, S.K.Dhiman

Relativistic mean field model parametrizations in the light of GW170817, GW190814, and PSR J0740+6620

NUCLEAR STRUCTURE 16O, 40,48Ca, 56Ni, 88Sr, 90Zr, 116,132Sn, 208Pb; calculated binding energy per nucleon, charge root mean square radii. Relativistic mean field (RMF) model with three new parametrizations DOPS1, DOPS2, and DOPS3 (named after the Department of Physics Shimla).

doi: 10.1103/PhysRevC.106.025803
Citations: PlumX Metrics


2022TH07      Phys.Rev. C 106, 045806 (2022)

V.Thakur, R.Kumar, P.Kumar, V.Kumar, M.Kumar, C.Mondal, B.K.Agrawal, S.K.Dhiman

Effects of an isovector scalar meson on the equation of state of dense matter within a relativistic mean field model

NUCLEAR STRUCTURE 16,24O, 40,48Ca, 56,78Ni, 88Sr, 90Zr , 100,116,132Sn, 208Pb; analyzed experimental values of binding energy, charge radii, neutron skin thickness; deduced mass-radius relation of a neutron star, variation of dimensionless tidal deformability with respect to gravitational mass. Calculations within relativistic mean field (RMF) framework withadded freedom in the isospin channel through the δ meson.

doi: 10.1103/PhysRevC.106.045806
Citations: PlumX Metrics


2021KU06      Eur.Phys.J. A 57, 36 (2021)

P.Kumar, V.Thakur, S.Thakur, V.Kumar, S.K.Dhiman

Nuclear shape evolution and shape coexistence in Zr and Mo isotopes

NUCLEAR STRUCTURE 88,90,92,94,96,98,100,102,104,106,108,110,112,114Zr, 98,100,102,104,106,108,110,112,114,116Mo; calculated potential energy surfaces, binding energies, two-neutron separation energies, nuclear charge radii, neutron single-particle energy levels and proton occupation probabilities. Comparison with available data.

doi: 10.1140/epja/s10050-021-00346-6
Citations: PlumX Metrics


2021KU09      Phys.Scr. 96, 025301 (2021)

V.Kumar, P.Kumar, V.Thakur, S.Thakur, S.K.Dhiman

Microscopic study of shape evolution and ground-state properties of Iodine isotopes

NUCLEAR STRUCTURE 108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144I; calculated ground-state properties are the nuclear electric quadrupole moment, single-particle energy levels, the binding energy per nucleon, pairing energy, one-neutron separation energy, two-neutron separation energy, nuclear charge radius, neutron rms radius, proton rms radius, and neutron skin thickness using Hartree-Fock-Bogoliubov Model while employing the axially deformed single-particle harmonic oscillator basis for the expansion of quasiparticle wave functions.

doi: 10.1088/1402-4896/abcf66
Citations: PlumX Metrics


2021KU13      Acta Phys.Pol. B52, 401 (2021)

P.Kumar, V.Thakur, S.Thakur, V.Kumar, S.K.Dhiman

Evolution of Nuclear Shapes in Light Nuclei from Proton- to Neutron-rich Side

NUCLEAR STRUCTURE 20,22,24,26,28,30,32,34,36,38,40,42Mg, 22,24,26,28,30,32,34,36,38,40,42,44Si, 26,28,30,32,34,36,38,40,42,44,46,48,50,52,54,56S, 28,30,32,34,36,38,40,42,44,46,48,50,52,54,56,58Ar; calculated binding energies, quadrupole deformation parameter, charge radii, and isotope shifts using the relativistic Hartree-Bogoliubov (RHB) model with density-dependent meson-exchange interaction and separable pairing. Comparison with available data.

doi: 10.5506/aphyspolb.52.401
Citations: PlumX Metrics


2021KU17      Int.J.Mod.Phys. E30, 2150049 (2021)

V.Kumar, P.Kumar, V.Thakur, S.Thakur, S.K.Dhiman

Microscopic study of shape evolution and some important ground state properties of 190-210Au isotopes

NUCLEAR STRUCTURE 190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210Au; calculated shape evolution, quadrupole deformation parameter, nuclear electric quadrupole moment, single-particle energy levels, the binding energy per nucleon, nuclear charge radius, neutron rms radius, proton rms radius and neutron skin thickness within the framework of the Hartree-Fock-Bogoliubov Model.

doi: 10.1142/S021830132150049X
Citations: PlumX Metrics


2021KU23      Nucl.Phys. A1014, 122279 (2021)

P.Kumar, S.Aydin

Pseudo-mirror nuclei in A∼80 mass region

NUCLEAR STRUCTURE 72Ge, 84Se, 76Se, 80Kr, 74Se, 82Sr, 76Kr, 80Sr; analyzed available data on ground-state energy spectra, kinematic moment of inertia, and reduced transition probability B(E2); deduced pseudo-mirror nuclei parameters.

doi: 10.1016/j.nuclphysa.2021.122279
Citations: PlumX Metrics


2021TH08      Nucl.Phys. A1014, 122254 (2021)

S.Thakur, P.Kumar, V.Thakur, V.Kumar, S.K.Dhiman

Shape transitions and shell structure study in zirconium, molybdenum and ruthenium

NUCLEAR STRUCTURE 78,80,82,84,86,88,90,92,94,96,98,100,102,104,106,108,110,112,114,116,118,120,122,124,126Zr, 82,84,86,88,90,92,94,96,98,100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130Mo, 90,92,94,96,98,100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130Ru; calculated potential energy curves, shell closure parameters, two neutron separation energies, root mean square radii, neutron skin thickness using density dependent meson exchange model DD-ME2 and density dependent point coupling models DD-PC1 and DD-PCX.

doi: 10.1016/j.nuclphysa.2021.122254
Citations: PlumX Metrics


2021TH12      Acta Phys.Pol. B52, 1433 (2021)

S.Thakur, P.Kumar, V.Thakur, V.Kumar, S.K.Dhiman

Nuclear Shape Evolution in Palladium Isotopes

NUCLEAR STRUCTURE 86,88,90,92,94,96,98,100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134Pd; calculated potential energy curves, binding energies, quadrupole deformation parameters, charge radii, two-neutron separation energies by employing density-dependent point-coupling parameter sets DD-PC1 and DD-PCX with separable pairing interaction; deduced prolate-oblate shape coexistence in 108Pd.

doi: 10.5506/APhysPolB.52.1433
Citations: PlumX Metrics


2020JH02      Nucl.Phys. A1004, 122038 (2020)

K.Jha, P.Kumar, S.Sarkar, P.K.Raina, S.Aydin

A way forward towards the improvement of tensor force in pf-shell

NUCLEAR STRUCTURE 40,42,44,46,48,50,52,54Ca, 56,57Ni; analyzed available data; deduced level energies, J, π, core softness, yrast bands using GXPF1B effective interaction.

doi: 10.1016/j.nuclphysa.2020.122038
Citations: PlumX Metrics


2020KU16      Nucl.Phys. A1001, 121935 (2020)

P.Kumar, S.K.Dhiman

Microscopic study of shape evolution and ground state properties in even-even Cd isotopes using covariant density functional theory

doi: 10.1016/j.nuclphysa.2020.121935
Citations: PlumX Metrics


2020SA03      Phys.Rev. C 101, 014307 (2020)

S.Sarkar, P.Kumar, K.Jha, P.K.Raina

Sensitivity of nuclear matrix elements of 0νββ of 48Ca to different components of the two-nucleon interaction

RADIOACTIVITY 48Ca(2β-); calculated nuclear matrix elements (NMEs) for light neutrino-exchange mechanism of 0νββ with central (C), spin-orbit (SO), and tensor force (T) components in the shell-model framework using GXPF1A interaction and the GX1R, a modified fp model-space interaction.

NUCLEAR STRUCTURE 46,48Ca, 48Ti; calculated levels, J, π using shell-model with GXPF1A and GX1R interactions. Comparison with experimental data.

doi: 10.1103/PhysRevC.101.014307
Citations: PlumX Metrics


2020SA32      Phys.Rev. C 102, 024615 (2020)

R.N.Sahoo, M.Kaushik, A.Sood, A.Sharma, S.Thakur, Pa.Kumar, M.M.Shaikh, R.Biswas, A.Yadav, M.K.Sharma, J.Gehlot, S.Nath, N.Madhavan, R.G.Pillay, E.M.Kozulin, G.N.Knyazheva, K.V.Novikov, P.P.Singh

Role of neutron transfer in sub-barrier fusion

NUCLEAR REACTIONS 130Te(35Cl, X), E(cm)=94.0, 95.6, 97.2, 98.8, 100.3, 101.9, 103.5, 105.0 MeV; measured evaporation residues (ERs), ΔE-time spectra, fusion σ(E) using recoil mass separator HIRA at IUAC-New Delhi accelerator facility. Comparison with experimental fusion σ(E) data for 130Te(37Cl, X), and other systems. Coupled-channels analysis using CCFULL code.

doi: 10.1103/PhysRevC.102.024615
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetD6389.


2020SO05      Acta Phys.Pol. B51, 775 (2020)

A.Sood, P.Kumar, R.N.Sahoo, P.P.Singh, A.Yadav, V.R.Sharma, M.K.Sharma, R.Kumar, R.P.Singh, S.Muralithar, B.P.Singh, R.K.Bhowmik

Evidence of Narrow Range High Spin Population in Incomplete Fusion

doi: 10.5506/APhysPolB.51.775
Citations: PlumX Metrics


2020TH02      Nucl.Phys. A1002, 121981 (2020)

V.Thakur, P.Kumar, S.Thakur, S.Thakur, V.Kumar, S.K.Dhiman

Microscopic study of the shell structure evolution in isotopes of light to middle mass range nuclides

NUCLEAR STRUCTURE 24,26,28,30,32,34,36,38,40,42,44Si, 28,30,32,34,36,38,40,42,44,46,48S, 32,34,36,38,40,42,44,46,48,50,52Ar, 38,40,42,44,46,48,50,52,54,56,58Ca; analyzed evolution of shell structures in the even-even isotopes of silicon, sulphur, argon and calcium; calculated binding energy per nucleon using RHB theory.

doi: 10.1016/j.nuclphysa.2020.121981
Citations: PlumX Metrics


2019KU02      Nucl.Phys. A983, 210 (2019)

P.Kumar, K.Jha, P.K.Raina, Pushpendra P.Singh

Quasi shell gap at 23F

NUCLEAR STRUCTURE 17,23,25,29F; calculated USDB (Universal sd-Shell B) central-even, central-odd, lS, ALS and tensor Single Particle Energies (ESPE), variation of proton ESPEs with neutron number using different potentials, proton transfer spectroscopic factors; compared with data; calculated IPM configurations and their contributions, proton and neutron occupation numbers of neutron and proton orbitals; compared with data.

doi: 10.1016/j.nuclphysa.2018.11.022
Citations: PlumX Metrics


2019KU14      Phys.Rev. C 100, 024328 (2019)

P.Kumar, S.Sarkar, P.P.Singh, P.K.Raina

Proton-neutron force and proton single-particle strength in Sc, F, and Li isotopes

NUCLEAR STRUCTURE Z=3, N=2-8; Z=9, N=8-20; Z=21, N=20-40; calculated effective single-particle energies (ESPEs) of 0p proton orbitals in Li, 0d1s proton orbitals in F, and 0f1p proton orbitals in Sc isotopes, contribution of central, spin-orbit, and tensor forces of proton-neutron interaction to proton single-particle energy gaps. 9Li, 23,25F, 49,53,55Sc; calculated levels, J, π, proton transfer spectroscopic factors. Shell model calculations with CKHeN interaction. Comparison with experimental data.

doi: 10.1103/PhysRevC.100.024328
Citations: PlumX Metrics


2019SA15      Nucl.Phys. A983, 145 (2019)

R.N.Sahoo, M.Kaushik, A.Sood, P.Kumar, V.R.Sharma, A.Yadav, P.P.Singh, M.K.Sharma, R.Kumar, B.P.Singh, S.Aydin, R.Prasad

Insights into the low energy incomplete fusion

NUCLEAR REACTIONS 169Tm(12C, x), E(cm)=52.98 - 89.25 MeV; measured Eγ, Iγ(t); deduced production σ of evaporation residues. 169Tm(12C, x), E=52.98 - 89.25 MeV;160Gd(12C, x), Ei(cm)=83.7 MeV;103Rh(16O, x), 159Tb(16O, x), E not given; calculated ER production σ using PACE4 and with different level density parameters and using CCFULL; deduced potential parameters, radius parameter from the fit to the data, variation of incomplete fusion fraction with neutron skin thickness and with angular momentum.

doi: 10.1016/j.nuclphysa.2018.12.013
Citations: PlumX Metrics


2019SA17      Phys.Rev. C 99, 024607 (2019)

R.N.Sahoo, M.Kaushik, A.Sood, P.Kumar, A.Sharma, S.Thakur, P.P.Singh, P.K.Raina, M.M.Shaikh, R.Biswas, A.Yadav, J.Gehlot, S.Nath, N.Madhavan, V.Srivastava, M.K.Sharma, B.P.Singh, R.Prasad, A.Rani, A.Banerjee, U.Gupta, N.K.Deb, B.J.Roy

Sub-barrier fusion in the 37Cl + 130Te system

NUCLEAR REACTIONS 130Te(37Cl, X), E=121-155 MeV; measured reaction products, evaporation residues, time of flight of evaporation residue, fusion σ(E) using the HIRA recoil mass spectrometer at the 15UD Pelletron accelerator of IUAC-New Delhi; deduced fusion barrier distributions, astrophysical S factor, logarithmic derivative L(E) factor. Comparison with coupled-channels code calculations using CCFULL code. Systematics of reduced fusion excitation functions of 37Cl projectiles on 58,60,62,64Ni, 130Te targets at sub-barrier energies.

doi: 10.1103/PhysRevC.99.024607
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetD6360.


2019SO21      Acta Phys.Pol. B50, 291 (2019)

A.Sood, P.Kumar, R.N.Sahoo, P.P.Singh, A.Yadav, V.R.Sharma, M.K.Sharma, D.P.Singh, U.Gupta, S.Aydin, R.Kumar, B.P.Singh, R.Prasad

Entrance Channel Effects on Fission Fragment Mass Distribution in 12C + 169Tm System

NUCLEAR REACTIONS 169Tm(12C, X), E= 77.18, 83.22, 89.25 MeV; measured Eγ, Iγ(t); deduced production σ of evaporation residues, isotopic yieldsmass distribution of fission fragments.

doi: 10.5506/aphyspolb.50.291
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetD6310.


2018SA38      Acta Phys.Pol. B49, 585 (2018)

R.N.Sahoo, M.Kaushik, A.Sood, P.Kumar, V.R.Sharma, A.Yadav, M.Shuaib, D.P.Singh, P.P.Singh, U.Gupta, M.K.Sharma, R.Kumar, B.P.Singh, S.Aydin, H.J.Wollersheim, R.Prasad

Entrance Channel Effect on Incomplete Fusion

NUCLEAR REACTIONS 169Tm(12C, x), E=5-7.5 MeV/nucleon; measured evaporation residues (ER) Eγ, Iγ(time); deduced 177Re σER; calculated σER using statistical model code PACE-IV with different level density parameter; calculated total (summed over all ERs) σT, complete and incomplete fusion σCF, σICF. 103Rh, 115In, 159Tb, 169Tm, 197Au(12C, x), E not given;103Rh, 159Tb, 169Tm(16O, x), E not given; measured reaction products Eγ, Iγ; deduced incomplete fusion fraction vs mass asymmetry (relative projectile-target velocity close to 0.05c vs asymmetry).

doi: 10.5506/aphyspolb.49.585
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetD6326.


2017SO12      Phys.Rev. C 96, 014620 (2017)

A.Sood, P.P.Singh, R.N.Sahoo, P.Kumar, A.Yadav, V.R.Sharma, Mohd.Shuaib, M.K.Sharma, D.P.Singh, U.Gupta, R.Kumar, S.Aydin, B.P.Singh, H.J.Wollersheim, R.Prasad

Fission-like events in the 12C + 169Tm system at low excitation energies

NUCLEAR REACTIONS 169Tm(12C, X)74mBr/74Kr/75Br/75Ge/75Kr/76Kr/77Kr/78As/79Rb/81Sr/84Br/85Zr/86Y/87Zr/89Rb/93Y/94Ru/95Ru/97Nb/98mNb/101Tc/102mTc/104Tc/104Ag/105Tc/105In/175Re/176Re/177Re/178Re/177W/173Ta/174Ta/175Ta/176Ta/171Lu, E=77.81, 83.22, 89.25 MeV; measured Eγ, Iγ, recoil-catcher activation technique, half-life of 74Kr decay, production σ(E) of fission products and evaporation residues, charge and mass distribution of fission fragments at the pelletron accelerator facility of IUAC-New Delhi; deduced fission as one of the competing modes of deexcitation of complete and/or incomplete fusion composites at low excitation energies. Comparison with calculations using PACE code. 181Ta(16O, X), E*=67.04 MeV; 159Tb(16O, X), E*=57.1 MeV; 169Tm(16O, X), E*=61.06 MeV; 232Th(7Li, X), E*=41.7 MeV; 232Th(11B, X), E*=55.7 MeV; 238U(11B, X), E*=67.4 MeV; 238U(22Ne, X), E*=64.5 MeV; 208Pb(20Ne, X), E*=46.4 MeV; analyzed previous experimental data for isotopic yield distributions.

doi: 10.1103/PhysRevC.96.014620
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetD6310.


2016TR09      Eur.Phys.J. A 52, 289 (2016)

S.Tripathy, T.Bhattacharyya, P.Garg, P.Kumar, R.Sahoo, J.Cleymans

Nuclear modification factor using Tsallis non-extensive statistics

doi: 10.1140/epja/i2016-16289-4
Citations: PlumX Metrics


2015CH49      Pramana 85, 525 (2015)

P.Chellapandi, P.R.Vasudeva Rao, P.Kumar

Fast reactor programme in India

doi: 10.1007/s12043-015-1069-6
Citations: PlumX Metrics


2012LU05      Phys.Rev. C 85, 024315 (2012)

P.Ludwig, T.Faestermann, G.Korschinek, G.Rugel, I.Dillmann, L.Fimiani, S.Bishop, P.Kumar

Search for superheavy elements with 292 ≤ A ≤ 310 in nature with accelerator mass spectrometry

ATOMIC MASSES A=292-295, 297-302, 304, 306, 308, 310; measured abundance of SHE in natural platinum, osmium, lead fluoride, using energy loss, and time of flight information. Accelerator mass spectrometry (AMS) technique. No evidence found for the existence of superheavy elements (SHE), upper limits established.

doi: 10.1103/PhysRevC.85.024315
Citations: PlumX Metrics


2008JH01      Phys.Scr. 77, 015304 (2008)

L.K.Jha, S.Kumar, O.P.Roy, P.Kumar

Single and double ionization of Kr and Xe by electron impact

ATOMIC PHYSICS Kr(e, X), E=18-466 eV; Xe(e, X), E=18-360 eV; calculated single and double ionization cross sections in the binary encounter approximation. Comparison with experimental results.

doi: 10.1088/0031-8949/77/01/015304
Citations: PlumX Metrics


2007SI28      Phys.Rev. C 76, 044610 (2007); Erratum Phys.Rev. C 80, 019909 (2009)

H.Singh, A.Kumar, B.R.Behera, I.M.Govil, K.S.Golda, P.Kumar, A.Jhingan, R.P.Singh, P.Sugathan, M.B.Chatterjee, S.K.Datta, Ranjeet, S.Pal, G.Viesti

Entrance channel effects in fission of 197Tl

NUCLEAR REACTIONS 181Ta(16O, F), E=105, 110, 115 MeV; 178Hf(19F, F), E=108, 113, 118 MeV; measured neutron spectra, neutron multiplicities, angular momentum, dissipation strengths as function of excitation energies. 197Tl; deduced compound nucleus fission channels.

doi: 10.1103/PhysRevC.76.044610
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetD6071.


Back to query form