NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 27, 2024.

Search: Author = V.Thakur

Found 18 matches.

Back to query form



2024KU03      Eur.Phys.J. A 60, 17 (2024)

R.Kumar, A.Sharma, M.Kumar, S.Kumar, V.Thakur, S.K.Dhiman

Constraining equations of state for massive neutron star within relativistic mean field models

doi: 10.1140/epja/s10050-024-01237-2
Citations: PlumX Metrics


2023KU10      Phys.Rev. C 107, 055801 (2023)

M.Kumar, S.Kumar, V.Thakur, R.Kumar, B.K.Agrawal, S.K.Dhiman

CREX- and PREX-II-motivated relativistic interactions and their implications for the bulk properties of nuclear matter and neutron stars

NUCLEAR STRUCTURE 16,24O, 40,48Ca, 56,68,78Ni, 88Sr, 90Zr, 100,116,132Sn, 144Sm, 208Pb; calculated binding energy, charge radii, neutron skin thickness. Calculations using relativistic interactions BSRV-CREX, BSRV-PREX, and BSRV-CPREX for the relativistic mean-field model tuned in accordance with skin thickness experimental results from CREX and PREX-II. Obtained symmetry energy parameters, bulk nuclear matter properties, maximum gravitational mass and radius of neutron star.

doi: 10.1103/PhysRevC.107.055801
Citations: PlumX Metrics


2023KU11      Phys.Rev. C 107, 055805 (2023)

R.Kumar, M.Kumar, V.Thakur, S.Kumar, P.Kumar, A.Sharma, B.K.Agrawal, S.K.Dhiman

Observational constraint from the heaviest pulsar PSR J0952-0607 on the equation of state of dense matter in relativistic mean field model

NUCLEAR STRUCTURE 48Ca, 208Pb; calculated neutron skin thickness. Calculations based on HPU1, HPU2, and HPU3 parametrizations for the relativistic mean field (RMF) model, which were generated in the light of the heaviest observed neutron star for the black widow pulsar PSR J092-0607. Obtained bulk nuclear matter properties, symmetry energy parameters, neutron star properties. Comparison to CREX and PREX-II results and other calculations.

doi: 10.1103/PhysRevC.107.055805
Citations: PlumX Metrics


2023SH23      Nucl.Phys. A1040, 122762 (2023)

A.Sharma, M.Kumar, S.Kumar, V.Thakur, R.Kumar, S.K.Dhiman

New equations of state for dense nuclear matter properties

doi: 10.1016/j.nuclphysa.2023.122762
Citations: PlumX Metrics


2023TH01      Phys.Rev. C 107, 015803 (2023)

V.Thakur, R.Kumar, P.Kumar, M.Kumar, C.Mondal, K.Huang, J.Hu, B.K.Agrawal, S.K.Dhiman

Relativistic approach for the determination of nuclear and neutron star properties in consideration of PREX-II results

NUCLEAR STRUCTURE A=20-220; calculated charge rms radii, binding energy. 48Ca, 208Pb; calculated neutron skin thickness. Obtained properties of nonrotating neutron star. New parametrization of the relativistic mean-field (RMF) model obtained by fit to the available experimental data on binding energy, charge rms radii and taking into account recent PREX-II results on neutron skin thickness. Comparison to results obtained with different parametrizations - NL3, IOPB-I, FSUGarnet, Big Apple.

doi: 10.1103/PhysRevC.107.015803
Citations: PlumX Metrics


2022KU16      Nucl.Phys. A1022, 122429 (2022)

V.Kumar, P.Kumar, V.Thakur, S.Thakur, S.K.Dhiman

The microscopic studies of the even-even 12-28O, 34-60Ca, 48-80Ni, and 100-134Sn using covariant density functional theory

NUCLEAR STRUCTURE 12,14,16,18,20,22,24,26,28O, 34,36,38,40,42,44,46,48,50,52,54,56,58,60Ca, 48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78,80Ni, 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134Sn; calculated potential energy surfaces, binding and two-neutron separation energies, charge radii, neutron and proton rms radii, neutron skin thickness; deduced covariant mass data and Skyrme mass data for D1S, NL-SH, NL3, DD-ME2, DD-MEδ, DD-PC1, NL3*, SkM*, SkP, SLy4, SV-min, UNEDF0, and UNEDF1 parameterizations.

doi: 10.1016/j.nuclphysa.2022.122429
Citations: PlumX Metrics


2022KU30      Eur.Phys.J. A 58, 143 (2022)

P.Kumar, V.Thakur, S.Thakur, V.Kumar, A.Sharma, R.Kumar, S.K.Dhiman

Effect of nuclear deformation on proton bubble structure in Z=14 isotopes

NUCLEAR STRUCTURE 28,30,32,34,36,38,40,42Si; calculated potential energy surfaces (PESs), charge density distributions, proton depletion fractions, proton and neutron density distributions, proton density profile, occupation probabilities for spherically and triaxially constrained single-particle orbits by employing Covariant Density Functional Theory with DD-ME2 interaction; deduced the effect of deformation proton bubble candidates in Si isotopic chain.

doi: 10.1140/epja/s10050-022-00801-y
Citations: PlumX Metrics


2022TH04      Eur.Phys.J. A 58, 93 (2022)

S.Thakur, V.Thakur, R.Kumar, S.K.Dhiman

Structural properties of rotating hybrid compact stars with color-flavor-locked quark matter core and their tidal deformability

doi: 10.1140/epja/s10050-022-00744-4
Citations: PlumX Metrics


2022TH05      Phys.Rev. C 106, 025803 (2022)

V.Thakur, R.Kumar, P.Kumar, V.Kumar, B.K.Agrawal, S.K.Dhiman

Relativistic mean field model parametrizations in the light of GW170817, GW190814, and PSR J0740+6620

NUCLEAR STRUCTURE 16O, 40,48Ca, 56Ni, 88Sr, 90Zr, 116,132Sn, 208Pb; calculated binding energy per nucleon, charge root mean square radii. Relativistic mean field (RMF) model with three new parametrizations DOPS1, DOPS2, and DOPS3 (named after the Department of Physics Shimla).

doi: 10.1103/PhysRevC.106.025803
Citations: PlumX Metrics


2022TH07      Phys.Rev. C 106, 045806 (2022)

V.Thakur, R.Kumar, P.Kumar, V.Kumar, M.Kumar, C.Mondal, B.K.Agrawal, S.K.Dhiman

Effects of an isovector scalar meson on the equation of state of dense matter within a relativistic mean field model

NUCLEAR STRUCTURE 16,24O, 40,48Ca, 56,78Ni, 88Sr, 90Zr , 100,116,132Sn, 208Pb; analyzed experimental values of binding energy, charge radii, neutron skin thickness; deduced mass-radius relation of a neutron star, variation of dimensionless tidal deformability with respect to gravitational mass. Calculations within relativistic mean field (RMF) framework withadded freedom in the isospin channel through the δ meson.

doi: 10.1103/PhysRevC.106.045806
Citations: PlumX Metrics


2021KU06      Eur.Phys.J. A 57, 36 (2021)

P.Kumar, V.Thakur, S.Thakur, V.Kumar, S.K.Dhiman

Nuclear shape evolution and shape coexistence in Zr and Mo isotopes

NUCLEAR STRUCTURE 88,90,92,94,96,98,100,102,104,106,108,110,112,114Zr, 98,100,102,104,106,108,110,112,114,116Mo; calculated potential energy surfaces, binding energies, two-neutron separation energies, nuclear charge radii, neutron single-particle energy levels and proton occupation probabilities. Comparison with available data.

doi: 10.1140/epja/s10050-021-00346-6
Citations: PlumX Metrics


2021KU09      Phys.Scr. 96, 025301 (2021)

V.Kumar, P.Kumar, V.Thakur, S.Thakur, S.K.Dhiman

Microscopic study of shape evolution and ground-state properties of Iodine isotopes

NUCLEAR STRUCTURE 108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144I; calculated ground-state properties are the nuclear electric quadrupole moment, single-particle energy levels, the binding energy per nucleon, pairing energy, one-neutron separation energy, two-neutron separation energy, nuclear charge radius, neutron rms radius, proton rms radius, and neutron skin thickness using Hartree-Fock-Bogoliubov Model while employing the axially deformed single-particle harmonic oscillator basis for the expansion of quasiparticle wave functions.

doi: 10.1088/1402-4896/abcf66
Citations: PlumX Metrics


2021KU13      Acta Phys.Pol. B52, 401 (2021)

P.Kumar, V.Thakur, S.Thakur, V.Kumar, S.K.Dhiman

Evolution of Nuclear Shapes in Light Nuclei from Proton- to Neutron-rich Side

NUCLEAR STRUCTURE 20,22,24,26,28,30,32,34,36,38,40,42Mg, 22,24,26,28,30,32,34,36,38,40,42,44Si, 26,28,30,32,34,36,38,40,42,44,46,48,50,52,54,56S, 28,30,32,34,36,38,40,42,44,46,48,50,52,54,56,58Ar; calculated binding energies, quadrupole deformation parameter, charge radii, and isotope shifts using the relativistic Hartree-Bogoliubov (RHB) model with density-dependent meson-exchange interaction and separable pairing. Comparison with available data.

doi: 10.5506/aphyspolb.52.401
Citations: PlumX Metrics


2021KU17      Int.J.Mod.Phys. E30, 2150049 (2021)

V.Kumar, P.Kumar, V.Thakur, S.Thakur, S.K.Dhiman

Microscopic study of shape evolution and some important ground state properties of 190-210Au isotopes

NUCLEAR STRUCTURE 190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210Au; calculated shape evolution, quadrupole deformation parameter, nuclear electric quadrupole moment, single-particle energy levels, the binding energy per nucleon, nuclear charge radius, neutron rms radius, proton rms radius and neutron skin thickness within the framework of the Hartree-Fock-Bogoliubov Model.

doi: 10.1142/S021830132150049X
Citations: PlumX Metrics


2021TH08      Nucl.Phys. A1014, 122254 (2021)

S.Thakur, P.Kumar, V.Thakur, V.Kumar, S.K.Dhiman

Shape transitions and shell structure study in zirconium, molybdenum and ruthenium

NUCLEAR STRUCTURE 78,80,82,84,86,88,90,92,94,96,98,100,102,104,106,108,110,112,114,116,118,120,122,124,126Zr, 82,84,86,88,90,92,94,96,98,100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130Mo, 90,92,94,96,98,100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130Ru; calculated potential energy curves, shell closure parameters, two neutron separation energies, root mean square radii, neutron skin thickness using density dependent meson exchange model DD-ME2 and density dependent point coupling models DD-PC1 and DD-PCX.

doi: 10.1016/j.nuclphysa.2021.122254
Citations: PlumX Metrics


2021TH12      Acta Phys.Pol. B52, 1433 (2021)

S.Thakur, P.Kumar, V.Thakur, V.Kumar, S.K.Dhiman

Nuclear Shape Evolution in Palladium Isotopes

NUCLEAR STRUCTURE 86,88,90,92,94,96,98,100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134Pd; calculated potential energy curves, binding energies, quadrupole deformation parameters, charge radii, two-neutron separation energies by employing density-dependent point-coupling parameter sets DD-PC1 and DD-PCX with separable pairing interaction; deduced prolate-oblate shape coexistence in 108Pd.

doi: 10.5506/APhysPolB.52.1433
Citations: PlumX Metrics


2020TH02      Nucl.Phys. A1002, 121981 (2020)

V.Thakur, P.Kumar, S.Thakur, S.Thakur, V.Kumar, S.K.Dhiman

Microscopic study of the shell structure evolution in isotopes of light to middle mass range nuclides

NUCLEAR STRUCTURE 24,26,28,30,32,34,36,38,40,42,44Si, 28,30,32,34,36,38,40,42,44,46,48S, 32,34,36,38,40,42,44,46,48,50,52Ar, 38,40,42,44,46,48,50,52,54,56,58Ca; analyzed evolution of shell structures in the even-even isotopes of silicon, sulphur, argon and calcium; calculated binding energy per nucleon using RHB theory.

doi: 10.1016/j.nuclphysa.2020.121981
Citations: PlumX Metrics


2019TH06      Nucl.Phys. A992, 121623 (2019)

V.Thakur, S.K.Dhiman

A study of charge radii and neutron skin thickness near nuclear drip lines

doi: 10.1016/j.nuclphysa.2019.121623
Citations: PlumX Metrics


Back to query form