ADOPTED LEVELS, GAMMAS for 45Ti

Author: T. W. Burrows |  Citation: Nucl. Data Sheets 109, 171 (2008) |  Cutoff date: 30-Oct-2007 

 Full ENSDF file | Adopted Levels (PDF version) 


Q(β-)=-7129 keV 8S(n)= 9531.9 keV 12S(p)= 8482.1 keV 20Q(α)= -6296.1 keV 9
Reference: 2012WA38

References:
  A  45V β+ decay  B  (HI,xnγ)
  C  24Mg(24Mg,2pnγ) E=83 MeV  D  30Si(18O,3nγ)
  E  42Ca(α,nγ)  F  44Ca(pol p,π-), 45Sc(p,n)
  G  45Sc(p,n),(p,nγ)  H  45Sc(3He,t) E=24.6 MeV IAR
  I  46Ti(p,d),(d,t),(3He,α)  J  44Ti(n,γ) E=TH

General Comments:

Gammas: See (HI,xnγ) and (α,nγ) for unplaced gammas

Q-value: Note: Current evaluation has used the following Q record -7126 17 9528.6 128478.6 20-6292.9 10 2003Au03










E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
      0.0ABCDEFGHI  7/2- 184.8 m 5 
% ε = 100
     
     36.53 15  BCDE G I  3/2- 3.0 µs 2      36.69 21 
  100
(E2)
      0.0
7/2-
     39.39 23 ABCDE G    5/2- 11.29 ns 9      40.15 30 
  100
(M1(+E2))
      0.0
7/2-
    329.30 15  BCDE G I  3/2+ 1.099 ns 13     289.5 3 
   292.77 5 
    0.55 25 
  100.00 25 
(E1,M2)
E1(+M2)
     39.39
     36.53
5/2-
3/2-
    743.88 17  BCDE G    5/2+ 10.5 ps 17     414.36 18 
   703.9 11 
   707.47 16 
   744
  100.0 16 
    2.8 6 
    7.8 14 
    0.22 11 
M1+E2
(E1)
(E1+M2)
(E1,M2)
    329.30
     39.39
     36.53
      0.0
3/2+
5/2-
3/2-
7/2-
   1226.50 15  BCDE G    7/2+ 2.8 ps 6     482.61 14 
   897.27 12 
  1188.03 35 
  1225.94 21 
   98.1 32 
  100.0 57 
   17.6 25 
   13.8 38 
M1+E2
E2(+M3)
(E1(+M2))
(E1+M2)
    743.88
    329.30
     39.39
      0.0
5/2+
3/2+
5/2-
7/2-
   1353.49 18   CDE G I  9/2- 0.103 ps 9    1314.0 10 
  1353.6 2 
    7.8 8 
  100.0 8 
(E2)
M1+E2
     39.39
      0.0
5/2-
7/2-
   1468.24 14  BCDE G I  11/2- 0.48 ps 7     114
  1468.14 15 
    1
  100
(M1)
E2(+M3)
   1353.49
      0.0
9/2-
7/2-
   1521.7 6     E G    3/2- TO 9/2- 48 fs 11    1484 1 ?
  1484 1 ?
  1521 1 
    1.0E2 5 
    1.0E2 5 
    7E1 5 
D,E2
D,E2
D,E2
     39.39
     36.53
      0.0
5/2-
3/2-
7/2-
   1565.4 7     E   I  1/2+ > 2.8 ps   1236 1 
  1528 1 
  100.0 23 
   14.9 23 
D,E2
(E1)
    329.30
     36.53
3/2+
3/2-
   1799.0 15     E G I  (1/2- TO 7/2-) 0.32 ps +22-8    1761 2 ?
  1761 2 ?
  100
  100
D,E2
D,E2
     39.39
     36.53
5/2-
3/2-
   1881.76 19  BCDE G    9/2+ 0.68 ps +6-5     655.2 2 
  1137.8 2 
   35.6 5 
  100.0 14 
M1+E2
E2(+M3)
   1226.50
    743.88
7/2+
5/2+
   1958.2 4     E G I  3/2+ 0.83 ps 14    1214.3 3 
  1920 1 
  100 5 
   18 5 
M1+E2
(E1,M2)
    743.88
     39.39
5/2+
5/2-
   2014.7 6     E G    3/2- TO 9/2- 32 fs 9    1976 1 ?
  1976 1 ?
  2016 1 
  100.0 19 
  100.0 19 
   88.7 19 
D,E2
D,E2
D,E2
     39.39
     36.53
      0.0
5/2-
3/2-
7/2-
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
   2258.2 6     E G I  5/2+ 0.194 ps 35     301 1 
   691.0 15 
  1514 1 
  1929 1 
    6 4 
    4 3 
   74 8 
  100 8 
(E2)
(E2)
M1+E2
M1+E2
   1958.2
   1565.4
    743.88
    329.30
3/2+
1/2+
5/2+
3/2+
   2432.1 15       G    3/2 TO 11/2     2394 3 ?
  2394 3 ?
  2432 2 
   25 13 
   25 13 
  100 13 



     36.53
     39.39
      0.0
3/2-
5/2-
7/2-
   2474.58 21   CDE      11/2+ 0.39 ps 6     592.5 2 
  1248.2 2 
   33.6 5 
  100.0 10 
M1+E2
E2(+M3)
   1881.76
   1226.50
9/2+
7/2+
   2500 20         I  5/2-,7/2-        
   2531.4 12     E      1/2,3/2,5/2(+)      966 1 
  100

   1565.4
1/2+
   2656.66 18  BCDE      13/2- < 0.17 ps   1188.61 20 
  1303.5 3 
  100.0 14 
    8.4 4 
M1+E2
(E2)
   1468.24
   1353.49
11/2-
9/2-
   2849.4 12     E      1/2,3/2,5/2(+)     1284 1 
  100

   1565.4
1/2+
   2890 20         I  (3/2+,5/2+)        
   2911.6 6     E      7/2+ 0.36 ps 8     954 1 
  1030 1 
  2167 1 
   50 20 
   67 13 
  100 22 
(E2)
M1+E2
M1+E2
   1958.2
   1881.76
    743.88
3/2+
9/2+
5/2+
   2932.9 9    D       (13/2+)      458
 

   2474.58
11/2+
   3000 20         I  (3/2+,5/2+)        
   3015.37 18  BCDE      15/2- 0.55 ps 14     358.97 15 
  1546.90 15 
   25.4 19 
  100 7 
M1+E2
(E2)
   2656.66
   1468.24
13/2-
11/2-
   3080 20         I  (3/2+,5/2+)        
   3156.0 11     E          2412 1 
  100

    743.88
5/2+
   3200 20         I         
   3400 20         I  (3/2+,5/2+)        
   3447.31 23   CD       13/2+ 0.180 ps 21     972.6 2 
  1565.7 2 
   72.2 16 
  100.0 11 
D,E2
(E2)
   2474.58
   1881.76
11/2+
9/2+
   3540 20         I  3/2+,5/2+        
   3601.87 21  BCD       17/2- 0.90 ps 7     586.41 15 
   945.1 2 
  100 5 
   13.2 3 
M1+E2
E2
   3015.37
   2656.66
15/2-
13/2-
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
   3830 20         I  1/2+        
   3922.45 25   CD       15/2+ 0.312 ps 21     475.2 2 
  1447.8 2 
   20.3 6 
  100.0 6 
(M1)
(E2)
   3447.31
   2474.58
13/2+
11/2+
   3937.6 11     E      (11/2 TO 15/2)     1463 1 
  100

   2474.58
11/2+
   4344.9 3   CD F     19/2- 0.104 ps 14     742.8 2 
  1330.1 3 
  100.0 13 
    1.43 13 
M1
(E2)
   3601.87
   3015.37
17/2-
15/2-
   4723 7        HI  (7/2)-        
   4810 20         I  3/2+,5/2+        
   4855.2 9    D       (17/2+) 0.35 ps 5     933
  1922
 
 
D,E2

   3922.45
   2932.9
15/2+
(13/2+)
   5030 20         I  (3/2+,5/2+)        
   5180 20         I  1/2-,3/2-        
   5239.9 3   CD       (17/2+) 0.07 ps 6    1317.5 2 
  1792.5 2 
   53.6 12 
  100.0 14 

[E2]
   3922.45
   3447.31
15/2+
13/2+
   5330 20         I  3/2+,5/2+        
   5540 20         I         
   5640.9 4   CD       19/2+ 0.19 ps 6     401.3 3 
  1717.7 5 
   14.0 6 
  100 2 
(M1)
(E2)
   5239.9
   3922.45
(17/2+)
15/2+
   5760 20         I  1/2+        
   6006.7 9    D           2084
 

   3922.45
15/2+
   6163.0 5  BCD F     23/2- 0.35 ps 4    1818.0 4 
  100
E2
   4344.9
19/2-
   6459.9 8    D       (21/2+)      453
   819
 
 


   6006.7
   5640.9

19/2+
   6757.9 7    D       (21/2+)     1117
  1518
 
 


   5640.9
   5239.9
19/2+
(17/2+)
   7143.4 6  BCD F     27/2- 10.4 ps 14     980.45 25 
  100
E2
   6163.0
23/2-
   7342.0 8    D       (23/2+)      584
  1701
 
 


   6757.9
   5640.9
(21/2+)
19/2+
   7830.7 8    D           1073
  2190
 
 


   6757.9
   5640.9
(21/2+)
19/2+
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
   8289.2 8    D       (25/2+)      459
   947
  1829
 
 
 



   7830.7
   7342.0
   6459.9

(23/2+)
(21/2+)
   9643.5 12    D       < 0.07 ps   2500
  100
D,E2
   7143.4
27/2-
  10153.5 12    D       (25/2-) < 0.07 ps   3010
  100
(D)
   7143.4
27/2-
  10795.3 13    D       (29/2+)     2506
 

   8289.2
(25/2+)
  12498.6 16    D       (29/2-) < 0.07 ps   2345
 
D,E2
  10153.5
(25/2-)
  13030.4 17    D       (33/2+)     2235
 

  10795.3
(29/2+)

E(level): From least-squares fit to Eγ assuming ΔE(γ)=1 keV when not given, except as noted. Eγ deduced from Eγ(to 40)-3.3 3 in (p,nγ) excluded from least-squares analysis

Jπ(level): From angular momentum transfer in (p,d),(d,t),(3He,α), except as noted

T1/2(level): From DSAM in (α,nγ), except as noted

Back to top

Band Transitions:

E(level)
(keV)
Jπ(level) T1/2(level)E(γ)I(γ)M(γ)Final Levels
Band 1 - band BASED ON f7/2 ORBITAL, α=-1/2
      0.0 7/2- 184.8 m 5 
% ε = 100
     
   1468.24 14  11/2- 0.48 ps 7     114
  1468.14 15 
    1
  100
(M1)
E2(+M3)
   1353.49
      0.0
9/2-
7/2-
   3015.37 18  15/2- 0.55 ps 14     358.97 15 
  1546.90 15 
   25.4 19 
  100 7 
M1+E2
(E2)
   2656.66
   1468.24
13/2-
11/2-
   4344.9 3  19/2- 0.104 ps 14     742.8 2 
  1330.1 3 
  100.0 13 
    1.43 13 
M1
(E2)
   3601.87
   3015.37
17/2-
15/2-
   6163.0 5  23/2- 0.35 ps 4    1818.0 4 
  100
E2
   4344.9
19/2-
   7143.4 6  27/2- 10.4 ps 14     980.45 25 
  100
E2
   6163.0
23/2-
E(level)
(keV)
Jπ(level) T1/2(level)E(γ)I(γ)M(γ)Final Levels
Band 2 - band BASED ON d3/2 ORBITAL, α=-1/2
    329.30 15  3/2+ 1.099 ns 13       
   1226.50 15  7/2+ 2.8 ps 6     482.61 14 
   897.27 12 
  1188.03 35 
  1225.94 21 
   98.1 32 
  100.0 57 
   17.6 25 
   13.8 38 
M1+E2
E2(+M3)
(E1(+M2))
(E1+M2)
    743.88
    329.30
     39.39
      0.0
5/2+
3/2+
5/2-
7/2-
   2474.58 21  11/2+ 0.39 ps 6     592.5 2 
  1248.2 2 
   33.6 5 
  100.0 10 
M1+E2
E2(+M3)
   1881.76
   1226.50
9/2+
7/2+
   3922.45 25  15/2+ 0.312 ps 21     475.2 2 
  1447.8 2 
   20.3 6 
  100.0 6 
(M1)
(E2)
   3447.31
   2474.58
13/2+
11/2+
   5640.9 4  19/2+ 0.19 ps 6     401.3 3 
  1717.7 5 
   14.0 6 
  100 2 
(M1)
(E2)
   5239.9
   3922.45
(17/2+)
15/2+
   7342.0 8  (23/2+)      584
  1701
 
 


   6757.9
   5640.9
(21/2+)
19/2+
E(level)
(keV)
Jπ(level) T1/2(level)E(γ)I(γ)M(γ)Final Levels
Band 3 - band BASED ON d3/2 ORBITAL, α=+1/2
    743.88 17  5/2+ 10.5 ps 17       
   1881.76 19  9/2+ 0.68 ps +6-5     655.2 2 
  1137.8 2 
   35.6 5 
  100.0 14 
M1+E2
E2(+M3)
   1226.50
    743.88
7/2+
5/2+
   3447.31 23  13/2+ 0.180 ps 21     972.6 2 
  1565.7 2 
   72.2 16 
  100.0 11 
D,E2
(E2)
   2474.58
   1881.76
11/2+
9/2+
   5239.9 3  (17/2+) 0.07 ps 6    1317.5 2 
  1792.5 2 
   53.6 12 
  100.0 14 

[E2]
   3922.45
   3447.31
15/2+
13/2+
   6757.9 7  (21/2+)     1117
  1518
 
 


   5640.9
   5239.9
19/2+
(17/2+)
E(level)
(keV)
Jπ(level) T1/2(level)E(γ)I(γ)M(γ)Final Levels
Band 4 - band BASED ON f7/2 ORBITAL, α=+1/2
   1353.49 18  9/2- 0.103 ps 9       
   2656.66 18  13/2- < 0.17 ps   1188.61 20 
  1303.5 3 
  100.0 14 
    8.4 4 
M1+E2
(E2)
   1468.24
   1353.49
11/2-
9/2-
   3601.87 21  17/2- 0.90 ps 7     586.41 15 
   945.1 2 
  100 5 
   13.2 3 
M1+E2
E2
   3015.37
   2656.66
15/2-
13/2-
E(level)
(keV)
Jπ(level) T1/2(level)E(γ)I(γ)M(γ)Final Levels
Band 5 - Kπ=1/2+ band
   1565.4 7  1/2+ > 2.8 ps      
   1958.2 4  3/2+ 0.83 ps 14    1214.3 3 
  1920 1 
  100 5 
   18 5 
M1+E2
(E1,M2)
    743.88
     39.39
5/2+
5/2-
   2258.2 6  5/2+ 0.194 ps 35     301 1 
   691.0 15 
  1514 1 
  1929 1 
    6 4 
    4 3 
   74 8 
  100 8 
(E2)
(E2)
M1+E2
M1+E2
   1958.2
   1565.4
    743.88
    329.30
3/2+
1/2+
5/2+
3/2+
   2911.6 6  7/2+ 0.36 ps 8     954 1 
  1030 1 
  2167 1 
   50 20 
   67 13 
  100 22 
(E2)
M1+E2
M1+E2
   1958.2
   1881.76
    743.88
3/2+
9/2+
5/2+
E(level)
(keV)
Jπ(level) T1/2(level)E(γ)I(γ)M(γ)Final Levels
Band 6 - π=- γ CASCADE
  10153.5 12  (25/2-) < 0.07 ps      
  12498.6 16  (29/2-) < 0.07 ps   2345
 
D,E2
  10153.5
(25/2-)

Back to top

Additional Gamma Data:















E(level)
(keV)
Jπ(level)T1/2(level)E(γ)
(keV)
MultipolarityMixing
Ratio
Conversion
Coefficient
Additional Data
     36.53 3/2- 3.0 µs 2      36.69 21 (E2) 16.6B(E2)(W.u.)=30 24, α=16.6 5, α(K)=14.7 4, α(L)=1.73 5, α(M)=0.213 6, α(N)=0.00799 21, α(N+)=0.00799 21
     39.39 5/2- 11.29 ns 9      40.15 30 (M1(+E2))0.000 250.223B(M1)(W.u.)=0.00246 7, α=0.223 10, α(K)=0.201 9, α(L)=0.0190 9, α(M)=0.00242 11, α(N)=0.000126 5, α(N+)=0.000126 5
    329.30 3/2+ 1.099 ns 13     289.5 3 (E1,M2) 0.0036B(E1)(W.u.)<1.1E-7 5, B(M2)(W.u.)<6 3, α=0.0036 25, α(K)=0.0032 23, α(L)=0.00030 21, α(M)=4.E-5 3, α(N)=2.0E-6 15, α(N+)=2.0E-6 15
3/2+ 1.099 ns 13     292.77 5 E1(+M2)0.032 LE1.08×10-3B(E1)(W.u.)=1.927E-5 25, B(M2)(W.u.)≤1.055 14, α=1.08E-3 2, α(K)=0.000978 14, α(L)=8.76E-5 13, α(M)=1.118E-5 16, α(N)=6.01E-7 9, α(N+)=6.01E-7 9
    743.88 5/2+ 10.5 ps 17     414.36 18 M1+E2+0.40 37.27×10-4B(E2)(W.u.)=58 12, B(M1)(W.u.)=0.023 4, α=7.27E-4 22, α(K)=0.000660 20, α(L)=5.95E-5 18, α(M)=7.60E-6 23, α(N)=4.09E-7 12, α(N+)=4.09E-7 12
5/2+ 10.5 ps 17     703.9 11 (E1) 0.0001100B(E1)(W.u.)=3.7E-6 10, α=0.0001100 16, α(K)=9.96E-5 15, α(L)=8.89E-6 13, α(M)=1.137E-6 17, α(N)=6.16E-8 9, α(N+)=6.16E-8 9
5/2+ 10.5 ps 17     707.47 16 (E1+M2)+0.06 +5-41.10×10-4B(E1)(W.u.)=1.01E-5 25, B(M2)(W.u.)=0.3 +6-3, α=1.10E-4 4, α(K)=0.000100 4, α(L)=8.9E-6 3, α(M)=1.14E-6 4, α(N)=6.17E-8 20, α(N+)=6.17E-8 20
5/2+ 10.5 ps 17     744(E1,M2) 0.00026B(E1)(W.u.)<2.4E-7 14, B(M2)(W.u.)<2.0 12, α=0.00026 17, α(K)=0.00024 15, α(L)=2.1E-5 14, α(M)=2.7E-6 17, α(N)=1.5E-7 10, α(N+)=1.5E-7 10
   1226.50 7/2+ 2.8 ps 6     482.61 14 M1+E2+0.28 34.57×10-4B(E2)(W.u.)=25 8, B(M1)(W.u.)=0.028 7, α=4.57E-4 11, α(K)=0.000415 10, α(L)=3.73E-5 9, α(M)=4.77E-6 11, α(N)=2.58E-7 6, α(N+)=2.58E-7 6
7/2+ 2.8 ps 6     897.27 12 E2(+M3)0.0011 LE0.0001590B(E2)(W.u.)=16 4, B(M3)(W.u.)≤1.7×102 4, α=0.0001590 23, α(K)=0.0001442 21, α(L)=1.292E-5 18, α(M)=1.652E-6 24, α(N)=8.93E-8 13, α(N+)=8.93E-8 13
7/2+ 2.8 ps 6    1188.03 35 (E1(+M2))0.00 68.55×10-5B(E1)(W.u.)=8.7E-6 23, B(M2)(W.u.)<0.10 3, α=8.55E-5 13, α(K)=3.48E-5 6, α(L)=3.10E-6 6, α(M)=3.96E-7 7, α(N)=2.15E-8 4, α(N+)=4.72E-5 8
7/2+ 2.8 ps 6    1225.94 21 (E1+M2)-0.34 61.10×10-4B(E1)(W.u.)=5.6E-6 20, B(M2)(W.u.)=2.0 10, α=1.10E-4 2, α(K)=4.1E-5 3, α(L)=3.7E-6 3, α(M)=4.7E-7 4, α(N)=2.56E-8 18, α(N+)=6.4E-5 3
   1353.49 9/2- 0.103 ps 9    1314.0 10 (E2) 9.68×10-5B(E2)(W.u.)=10.7 15, α=9.68E-5 14, α(K)=5.87E-5 9, α(L)=5.24E-6 8, α(M)=6.71E-7 10, α(N)=3.64E-8 6, α(N+)=3.22E-5 6
9/2- 0.103 ps 9    1353.6 2 M1+E2-0.39 108.45×10-5B(E2)(W.u.)=16 7, B(M1)(W.u.)=0.069 8, α=8.45E-5 18, α(K)=4.80E-5 9, α(L)=4.28E-6 8, α(M)=5.48E-7 10, α(N)=2.98E-8 6, α(N+)=3.16E-5 9
   1468.24 11/2- 0.48 ps 7     114(M1) 0.01339B(M1)(W.u.)=0.31 5, α=0.01339, α(K)=0.01212 17, α(L)=0.001115 16, α(M)=0.0001424 20, α(N)=7.58×10-6 11, α(N+)=7.58E-6 11
11/2- 0.48 ps 7    1468.14 15 E2(+M3)0.0005 LE0.0001280B(E2)(W.u.)=18 3, B(M3)(W.u.)≤14.6 22, α=0.0001280 18, α(K)=4.65E-5 7, α(L)=4.15E-6 6, α(M)=5.30E-7 8, α(N)=2.88E-8 4, α(N+)=7.64E-5 11
   1565.4 1/2+ > 2.8 ps   1236 1 D,E2 B(E2)(W.u.)<6.4, B(M1)(W.u.)<0.0036
1/2+ > 2.8 ps   1528 1 (E1) 0.000309B(E1)(W.u.)<7.0E-6, α=0.000309 5, α(K)=2.27E-5 4, α(L)=2.02E-6 3, α(M)=2.58E-7 4, α(N)=1.404E-8 20, α(N+)=0.000284 4
   1881.76 9/2+ 0.68 ps +6-5     655.2 2 M1+E2+0.27 +12-72.27×10-4B(E2)(W.u.)=13 11, B(M1)(W.u.)=0.028 3, α=2.27E-4 11, α(K)=0.000206 10, α(L)=1.84E-5 9, α(M)=2.36E-6 12, α(N)=1.28E-7 6, α(N+)=1.28E-7 6
9/2+ 0.68 ps +6-5    1137.8 2 E2(+M3)0.00028 LE9.18×10-5B(E2)(W.u.)=33 7, B(M3)(W.u.)≤14 3, α=9.18E-5 13, α(K)=8.09E-5 12, α(L)=7.24E-6 11, α(M)=9.26E-7 13, α(N)=5.02E-8 7, α(N+)=2.68E-6 4
   1958.2 3/2+ 0.83 ps 14    1214.3 3 M1+E2 8.0×10-5α=8.0×10-5 9, α(K)=6.4E-5 7, α(L)=5.7E-6 6, α(M)=7.3E-7 8, α(N)=4.0E-8 4, α(N+)=9.7E-6 18
3/2+ 0.83 ps 14    1920 1 (E1,M2) 0.00038B(E1)(W.u.)<1.4E-5 5, B(M2)(W.u.)<18 6, α=0.00038 22, α(K)=3.0E-5 14, α(L)=2.6E-6 13, α(M)=3.4E-7 16, α(N)=1.8E-8 9, α(N+)=0.00035 24
   2258.2 5/2+ 0.194 ps 35     301 1 (E2) 0.00501α=0.00501 10, α(K)=0.00454 9, α(L)=0.000413 8, α(M)=5.26×10-5 10, α(N)=2.77E-6 6, α(N+)=2.77E-6 6
5/2+ 0.194 ps 35     691.0 15 (E2) 0.000323B(E2)(W.u.)=4.×101 4, α=0.000323 5, α(K)=0.000293 5, α(L)=2.63E-5 4, α(M)=3.36E-6 6, α(N)=1.81E-7 3, α(N+)=1.81E-7 3
5/2+ 0.194 ps 35    1514 1 M1+E2+1.4 +3-51.31×10-4B(E2)(W.u.)=10 3, B(M1)(W.u.)=0.0044 16, α=1.31E-4 7, α(K)=4.18E-5 13, α(L)=3.73E-6 12, α(M)=4.77E-7 15, α(N)=2.60E-8 8, α(N+)=8.5E-5 6
5/2+ 0.194 ps 35    1929 1 M1+E2+0.42 +6-102.58×10-4B(E2)(W.u.)=0.9 3, B(M1)(W.u.)=0.0073 16, α=2.58E-4 5, α(K)=2.54E-5 4, α(L)=2.26E-6 4, α(M)=2.90E-7 5, α(N)=1.578E-8 24, α(N+)=0.000230 5
E(level)
(keV)
Jπ(level)T1/2(level)E(γ)
(keV)
MultipolarityMixing
Ratio
Conversion
Coefficient
Additional Data
   2474.58 11/2+ 0.39 ps 6     592.5 2 M1+E2+0.09 52.69×10-4B(E2)(W.u.)=4 +5-4, B(M1)(W.u.)=0.068 11, α=2.69E-4 5, α(K)=0.000244 5, α(L)=2.19E-5 4, α(M)=2.80E-6 5, α(N)=1.52E-7 3, α(N+)=1.52E-7 3
11/2+ 0.39 ps 6    1248.2 2 E2(+M3)0.00032 LE9.00×10-5B(E2)(W.u.)=38 6, B(M3)(W.u.)≤17 3, α=9.00E-5 13, α(K)=6.57E-5 10, α(L)=5.87E-6 9, α(M)=7.51E-7 11, α(N)=4.07E-8 6, α(N+)=1.77E-5 3
   2656.66 13/2- < 0.17 ps   1188.61 20 M1+E2-2.6 58.61×10-5α=8.61×10-5 16, α(K)=7.15E-5 13, α(L)=6.39E-6 12, α(M)=8.18E-7 15, α(N)=4.44E-8 8, α(N+)=7.31E-6 18
13/2- < 0.17 ps   1303.5 3 (E2) 9.55×10-5α=9.55×10-5 14, α(K)=5.97E-5 9, α(L)=5.34E-6 8, α(M)=6.82E-7 10, α(N)=3.71E-8 6, α(N+)=2.97E-5 5
   2911.6 7/2+ 0.36 ps 8     954 1 (E2) 0.0001360B(E2)(W.u.)=48 24, α=0.0001360 20, α(K)=0.0001235 18, α(L)=1.106E-5 16, α(M)=1.414E-6 21, α(N)=7.65E-8 11, α(N+)=7.65E-8 11
7/2+ 0.36 ps 8    1030 1 M1+E2 0.000100α=0.000100 14, α(K)=9.0×10-5 12, α(L)=8.1E-6 11, α(M)=1.03E-6 14, α(N)=5.6E-8 8, α(N+)=5.6E-8 8
7/2+ 0.36 ps 8    2167 1 M1+E2 0.00038α=0.00038 4, α(K)=2.14×10-5 8, α(L)=1.90E-6 7, α(M)=2.43E-7 9, α(N)=1.33E-8 5, α(N+)=0.00036 4
   3015.37 15/2- 0.55 ps 14     358.97 15 M1+E2-2.6 30.00242α=0.00242 7, α(K)=0.00220 6, α(L)=0.000199 6, α(M)=2.54×10-5 7, α(N)=1.35E-6 4, α(N+)=1.35E-6 4
15/2- 0.55 ps 14    1546.90 15 (E2) 1.52×10-4B(E2)(W.u.)=10 3, α=1.52E-4, α(K)=4.18E-5 6, α(L)=3.73E-6 6, α(M)=4.77E-7 7, α(N)=2.59E-8 4, α(N+)=0.0001064 15
   3447.31 13/2+ 0.180 ps 21    1565.7 2 (E2) 0.0001590B(E2)(W.u.)=20.4 24, α=0.0001590 23, α(K)=4.08E-5 6, α(L)=3.64E-6 5, α(M)=4.65E-7 7, α(N)=2.53E-8 4, α(N+)=0.0001142 16
   3601.87 17/2- 0.90 ps 7     586.41 15 M1+E2-2.3 14.85×10-4α=4.85×10-4 8, α(K)=0.000440 7, α(L)=3.96E-5 7, α(M)=5.06E-6 8, α(N)=2.72E-7 5, α(N+)=2.72E-7 5
17/2- 0.90 ps 7     945.1 2 E2 0.0001390B(E2)(W.u.)=10.2 10, α=0.0001390 20, α(K)=0.0001264 18, α(L)=1.132E-5 16, α(M)=1.448E-6 21, α(N)=7.83E-8 11, α(N+)=7.83E-8 11
   3922.45 15/2+ 0.312 ps 21     475.2 2 (M1) 1.66×10-4B(M1)(W.u.)=0.111 9, α=1.66×10-4 3, α(K)=0.000391 6, α(L)=3.51E-5 5, α(M)=4.49E-6 7, α(N)=2.43E-7 4, α(N+)=2.43E-7 4
15/2+ 0.312 ps 21    1447.8 2 (E2) 1.22×10-4B(E2)(W.u.)=24.9 17, α=1.22E-4 2, α(K)=4.78E-5 7, α(L)=4.27E-6 6, α(M)=5.46E-7 8, α(N)=2.97E-8 5, α(N+)=6.94E-5 10
   4344.9 19/2- 0.104 ps 14     742.8 2 M1 0.0001660B(M1)(W.u.)=0.51 7, α=0.0001660 24, α(K)=0.0001510 22, α(L)=1.351×10-5 19, α(M)=1.729E-6 25, α(N)=9.39E-8 14, α(N+)=9.39E-8 14
19/2- 0.104 ps 14    1330.1 3 (E2) 9.91×10-5B(E2)(W.u.)=1.9 4, α=9.91E-5 14, α(K)=5.72E-5 8, α(L)=5.11E-6 8, α(M)=6.53E-7 10, α(N)=3.55E-8 5, α(N+)=3.61E-5 6
   5239.9 (17/2+) 0.07 ps 6    1792.5 2 [E2] 2.49×10-4B(E2)(W.u.)=3.×101 3, α=2.49E-4 4, α(K)=3.13E-5 5, α(L)=2.79E-6 4, α(M)=3.57E-7 5, α(N)=1.94E-8 3, α(N+)=0.000214 3
   5640.9 19/2+ 0.19 ps 6     401.3 3 (M1) 6.29×10-4B(M1)(W.u.)=0.22 7, α=6.29×10-4 9, α(K)=0.000570 8, α(L)=5.13E-5 8, α(M)=6.57E-6 10, α(N)=3.55E-7 5, α(N+)=3.55E-7 5
19/2+ 0.19 ps 6    1717.7 5 (E2) 2.18×10-4B(E2)(W.u.)=18 6, α=2.18E-4 3, α(K)=3.40E-5 5, α(L)=3.03E-6 5, α(M)=3.87E-7 6, α(N)=2.11E-8 3, α(N+)=0.000180 3
   6163.0 23/2- 0.35 ps 4    1818.0 4 E2 0.000260B(E2)(W.u.)=8.6 10, α=0.000260 4, α(K)=3.05E-5 5, α(L)=2.71E-6 4, α(M)=3.47E-7 5, α(N)=1.89E-8 3, α(N+)=0.000226 4
   7143.4 27/2- 10.4 ps 14     980.45 25 E2 0.0001270B(E2)(W.u.)=6.3 9, α=0.0001270 18, α(K)=0.0001154 17, α(L)=1.033E-5 15, α(M)=1.321E-6 19, α(N)=7.15E-8 10, α(N+)=7.15E-8 10

Back to top

Additional Level Data and Comments:

E(level)Jπ(level)T1/2(level)Comments
      0.07/2- 184.8 m 5 
% ε = 100
Q=0.015 15 (2005St24,1966Co19), μ=0.095 2, T=1/2
E(level): From (p,nγ). 289.5γ deduced from Eγ(to 40)-3.3 3. band BASED ON f7/2 ORBITAL, α=-1/2.
    329.303/2+ 1.099 ns 13  μ=+1.05 24 (1989Ra17,1977Bu10,1975Ha47)
Configuration: calculation by 1977La12 indicates that a contribution of f7/2 nucleons is required to reproduce μ.
E(level): Configuration: calculation by 1977La12 indicates that a contribution of f7/2 nucleons is required to reproduce μ. band BASED ON d3/2 ORBITAL, α=-1/2.
    743.885/2+ 10.5 ps 17  E(level): band BASED ON d3/2 ORBITAL, α=+1/2.
T1/2(level): From RDM in (HI,xnγ). Others: T1/2(744)|>1 ps and T1/2(1227)|>1.5 ps from DSAM in (p,Nγ).
   1226.507/2+ 2.8 ps 6  E(level): band BASED ON d3/2 ORBITAL, α=-1/2.
Jπ(level): From γ(θ), γ excit, and linear polarization in (α,nγ).
T1/2(level): From RDM in (HI,xnγ). Others: T1/2(744)|>1 ps and T1/2(1227)|>1.5 ps from DSAM in (p,Nγ).
   1353.499/2- 0.103 ps 9  E(level): From (HI,xnγ). band BASED ON f7/2 ORBITAL, α=+1/2.
T1/2(level): From DSAM in (p,nγ). Other DSAM in (p,nγ): T1/2(1354)=0.103 ps 24, T1/2(1468)=464 fs +114-89, T1/2(1521)=55 fs 9.
   1468.2411/2- 0.48 ps 7  E(level): From (p,nγ). 289.5γ deduced from Eγ(to 40)-3.3 3. band BASED ON f7/2 ORBITAL, α=-1/2. From (HI,xnγ).
Jπ(level): From γ(θ), γ excit, and linear polarization in (α,nγ).
T1/2(level): From DSAM in (p,nγ). Other DSAM in (p,nγ): T1/2(1354)=0.103 ps 24, T1/2(1468)=464 fs +114-89, T1/2(1521)=55 fs 9.
   1521.73/2- TO 9/2- 48 fs 11  E(level): From (HI,xnγ).
T1/2(level): From DSAM in (p,nγ). Other DSAM in (p,nγ): T1/2(1354)=0.103 ps 24, T1/2(1468)=464 fs +114-89, T1/2(1521)=55 fs 9.
   1565.41/2+ > 2.8 ps E(level): Kπ=1/2+ band.
   1799.0(1/2- TO 7/2-) 0.32 ps +22-8  E(level): From (HI,xnγ).
T1/2(level): From DSAM in (p,nγ). Other DSAM in (p,nγ): T1/2(1354)=0.103 ps 24, T1/2(1468)=464 fs +114-89, T1/2(1521)=55 fs 9.
   1881.769/2+ 0.68 ps +6-5  E(level): band BASED ON d3/2 ORBITAL, α=+1/2.
   1958.23/2+ 0.83 ps 14  E(level): Kπ=1/2+ band.
   2014.73/2- TO 9/2- 32 fs 9  E(level): From (HI,xnγ).
T1/2(level): From DSAM in (p,nγ). Other DSAM in (p,nγ): T1/2(1354)=0.103 ps 24, T1/2(1468)=464 fs +114-89, T1/2(1521)=55 fs 9.
   2258.25/2+ 0.194 ps 35  E(level): Kπ=1/2+ band.
   2474.5811/2+ 0.39 ps 6  E(level): band BASED ON d3/2 ORBITAL, α=-1/2.
   2531.41/2,3/2,5/2(+)   Jπ(level): γ to 1/2+.
   2656.6613/2- < 0.17 ps E(level): band BASED ON f7/2 ORBITAL, α=+1/2.
T1/2(level): From DSAM in (18O,3nγ).
   2849.41/2,3/2,5/2(+)   Jπ(level): γ to 1/2+.
   2911.67/2+ 0.36 ps 8  E(level): Kπ=1/2+ band.
   2932.9(13/2+)   E(level): (13/2+) INTRUDER band.
Jπ(level): (13/2+) INTRUDER band.
   3015.3715/2- 0.55 ps 14  E(level): From (p,nγ). 289.5γ deduced from Eγ(to 40)-3.3 3. band BASED ON f7/2 ORBITAL, α=-1/2.
T1/2(level): From DSAM in (18O,3nγ).
   3447.3113/2+ 0.180 ps 21  E(level): band BASED ON d3/2 ORBITAL, α=+1/2.
T1/2(level): From DSAM in (18O,3nγ).
   3601.8717/2- 0.90 ps 7  E(level): band BASED ON f7/2 ORBITAL, α=+1/2.
T1/2(level): From DSAM in (18O,3nγ).
   3922.4515/2+ 0.312 ps 21  E(level): band BASED ON d3/2 ORBITAL, α=-1/2.
T1/2(level): From DSAM in (18O,3nγ).
   4344.919/2- 0.104 ps 14  E(level): From (p,nγ). 289.5γ deduced from Eγ(to 40)-3.3 3. band BASED ON f7/2 ORBITAL, α=-1/2.
T1/2(level): From DSAM in (18O,3nγ).
   4723(7/2)-   T=3/2
E(level): Isobaric analog states of 45Sc g.s., 12.4?, and 938?.
E(level)Jπ(level)T1/2(level)Comments
   48103/2+,5/2+   T=3/2
E(level): Isobaric analog states of 45Sc g.s., 12.4?, and 938?.
   4855.2(17/2+) 0.35 ps 5  E(level): (13/2+) INTRUDER band.
T1/2(level): From DSAM in (18O,3nγ).
   5239.9(17/2+) 0.07 ps 6  E(level): band BASED ON d3/2 ORBITAL, α=+1/2.
T1/2(level): From DSAM in (18O,3nγ).
   5640.919/2+ 0.19 ps 6  E(level): band BASED ON d3/2 ORBITAL, α=-1/2.
T1/2(level): From DSAM in (18O,3nγ).
   57601/2+   T=3/2
E(level): Isobaric analog states of 45Sc g.s., 12.4?, and 938?.
   6163.023/2- 0.35 ps 4  E(level): From (p,nγ). 289.5γ deduced from Eγ(to 40)-3.3 3. band BASED ON f7/2 ORBITAL, α=-1/2. From (18O,3nγ). Weakly excited or not observed in 44Ca(p,π-), 45Sc(p,n).
T1/2(level): From DSAM in (18O,3nγ).
   6459.9(21/2+)   E(level): (13/2+) INTRUDER band.
Jπ(level): (13/2+) INTRUDER band.
   6757.9(21/2+)   E(level): band BASED ON d3/2 ORBITAL, α=+1/2.
   7143.427/2- 10.4 ps 14  E(level): From (p,nγ). 289.5γ deduced from Eγ(to 40)-3.3 3. band BASED ON f7/2 ORBITAL, α=-1/2. From (18O,3nγ). Weakly excited or not observed in 44Ca(p,π-), 45Sc(p,n).
T1/2(level): From DSAM in (18O,3nγ).
   7342.0(23/2+)   E(level): band BASED ON d3/2 ORBITAL, α=-1/2.
   8289.2(25/2+)   E(level): (13/2+) INTRUDER band.
Jπ(level): (13/2+) INTRUDER band.
   9643.5 < 0.07 ps T1/2(level): From DSAM in (18O,3nγ).
  10153.5(25/2-) < 0.07 ps E(level): π=- γ CASCADE.
T1/2(level): From DSAM in (18O,3nγ).
  10795.3(29/2+)   E(level): (13/2+) INTRUDER band.
Jπ(level): (13/2+) INTRUDER band.
  12498.6(29/2-) < 0.07 ps E(level): From (18O,3nγ). Weakly excited or not observed in 44Ca(p,π-), 45Sc(p,n). π=- γ CASCADE.
T1/2(level): From DSAM in (18O,3nγ).
  13030.4(33/2+)   E(level): (13/2+) INTRUDER band.
Jπ(level): (13/2+) INTRUDER band.

Back to top

Additional Gamma Comments:

E(level)E(gamma)Comments
     39.39     40.15E(γ): From (p,nγ). 289.5γ deduced from Eγ(to 40)-3.3 3.
I(γ): From (p,nγ). 289.5γ deduced from Eγ(to 40)-3.3 3.
    329.30    289.5E(γ): From (p,nγ). 289.5γ deduced from Eγ(to 40)-3.3 3.
I(γ): From (p,nγ). 289.5γ deduced from Eγ(to 40)-3.3 3.
M(γ): d,E2 or d,Q from comparison to RUL. Δπ=yes from decay scheme
    292.77E(γ): From (p,nγ). 289.5γ deduced from Eγ(to 40)-3.3 3.
I(γ): From (p,nγ). 289.5γ deduced from Eγ(to 40)-3.3 3.
M(γ): from α(exp) in (HI,xnγ). from γ(Q) and α(exp) in (HI,xnγ)
    743.88    414.36I(γ): From (p,nγ). 289.5γ deduced from Eγ(to 40)-3.3 3.
M(γ): from γ(θ) and nγ(θ) in (α,nγ) and α(exp) in (HI,xnγ)
    703.9E(γ): From (p,nγ). 289.5γ deduced from Eγ(to 40)-3.3 3.
I(γ): From (p,nγ). 289.5γ deduced from Eγ(to 40)-3.3 3.
M(γ): d,E2 or d,Q from comparison to RUL. Δπ=yes from decay scheme
    707.47E(γ): From (HI,xnγ)
M(γ): D+Q or d(+Q) from γ(θ) or nγ(θ) in (α,nγ). Δπ=yes from decay scheme
    744E(γ): From (p,nγ). 289.5γ deduced from Eγ(to 40)-3.3 3.
I(γ): From (p,nγ). 289.5γ deduced from Eγ(to 40)-3.3 3.
M(γ): d,E2 or d,Q from comparison to RUL. Δπ=yes from decay scheme. ΔJ=1 d+Q transition from DCO in (18O,3nγ)
   1226.50    482.61I(γ): Unweighted av of Iγ(483γ):Iγ(897γ):Iγ(1188γ):Iγ(1226γ)=13.6 5:15.1 2:2.0 1:0.81 3 from (24Mg,2pnγ), 47 4:36.9 23:10 4:6.4 19 from (p,nγ), 40 2:42 2:8.5 10:9.5 10 from (α,nγ), and 86 11:100 9:11.9 21:10.6 21
M(γ): ΔJ=1 d+Q transition from DCO in (18O,3nγ). From γ(θ) and linear polarization in (α,nγ)
    897.27I(γ): Unweighted av of Iγ(483γ):Iγ(897γ):Iγ(1188γ):Iγ(1226γ)=13.6 5:15.1 2:2.0 1:0.81 3 from (24Mg,2pnγ), 47 4:36.9 23:10 4:6.4 19 from (p,nγ), 40 2:42 2:8.5 10:9.5 10 from (α,nγ), and 86 11:100 9:11.9 21:10.6 21
M(γ): From γ(θ) and linear polarization in (α,nγ)
   1188.03E(γ): weighted av of 1185.8 2 from (24Mg,2pnγ), 1188.61 20 from (HI,xnγ), 1187 1 from (p,nγ), and 1187.9 3 from (α,nγ). 1188.03 35 is the mean of 1188.13 35 (LWM) and 1187.92 26 (RT) with ΔE(γ) from RT
I(γ): Unweighted av of Iγ(483γ):Iγ(897γ):Iγ(1188γ):Iγ(1226γ)=13.6 5:15.1 2:2.0 1:0.81 3 from (24Mg,2pnγ), 47 4:36.9 23:10 4:6.4 19 from (p,nγ), 40 2:42 2:8.5 10:9.5 10 from (α,nγ), and 86 11:100 9:11.9 21:10.6 21
M(γ): D+Q or d(+Q) from γ(θ) or nγ(θ) in (α,nγ). Δπ=yes from decay scheme
   1225.94I(γ): Unweighted av of Iγ(483γ):Iγ(897γ):Iγ(1188γ):Iγ(1226γ)=13.6 5:15.1 2:2.0 1:0.81 3 from (24Mg,2pnγ), 47 4:36.9 23:10 4:6.4 19 from (p,nγ), 40 2:42 2:8.5 10:9.5 10 from (α,nγ), and 86 11:100 9:11.9 21:10.6 21
M(γ): D+Q or d(+Q) from γ(θ) or nγ(θ) in (α,nγ). Δπ=yes from decay scheme
   1353.49   1314.0E(γ): From (p,nγ). 289.5γ deduced from Eγ(to 40)-3.3 3.. Isobaric analog states of 45Sc g.s., 12.4?, and 938?
I(γ): From (p,nγ). 289.5γ deduced from Eγ(to 40)-3.3 3.
M(γ): d,E2 from comparison to RUL. ΔJπ=2,no from decay scheme
   1353.6I(γ): From (p,nγ). 289.5γ deduced from Eγ(to 40)-3.3 3.
M(γ): From γ(θ) and linear polarization in (α,nγ)
   1468.24    114E(γ): From (18O,3nγ). Weakly excited or not observed in 44Ca(p,π-), 45Sc(p,n)
I(γ): From (18O,3nγ)
M(γ): d from comparison to RUL. Δπ=no from level scheme
   1468.14E(γ): From (HI,xnγ)
I(γ): From (18O,3nγ)
   1521.7   1484E(γ): Multiply placed with undivided intensity. From (p,nγ). 289.5γ deduced from Eγ(to 40)-3.3 3.
I(γ): Multiply placed with undivided intensity. From (p,nγ). 289.5γ deduced from Eγ(to 40)-3.3 3.
M(γ): From comparison to RUL
   1484E(γ): Multiply placed with undivided intensity. From (p,nγ). 289.5γ deduced from Eγ(to 40)-3.3 3.
I(γ): Multiply placed with undivided intensity. From (p,nγ). 289.5γ deduced from Eγ(to 40)-3.3 3.
M(γ): From comparison to RUL
   1521E(γ): From (p,nγ). 289.5γ deduced from Eγ(to 40)-3.3 3.
I(γ): From (p,nγ). 289.5γ deduced from Eγ(to 40)-3.3 3.
M(γ): From comparison to RUL
   1565.4   1236M(γ): From comparison to RUL
   1528M(γ): d,E2 or d,Q from comparison to RUL. Δπ=yes from decay scheme
   1799.0   1761E(γ): Multiply placed with undivided intensity. From (p,nγ). 289.5γ deduced from Eγ(to 40)-3.3 3.
I(γ): Multiply placed with undivided intensity. From (p,nγ). 289.5γ deduced from Eγ(to 40)-3.3 3.
M(γ): From comparison to RUL
   1761E(γ): Multiply placed with undivided intensity. From (p,nγ). 289.5γ deduced from Eγ(to 40)-3.3 3.
I(γ): Multiply placed with undivided intensity. From (p,nγ). 289.5γ deduced from Eγ(to 40)-3.3 3.
M(γ): From comparison to RUL
   1881.76    655.2E(γ): From (HI,xnγ)
I(γ): From (HI,xnγ)
M(γ): ΔJ=1 d+Q transition from DCO in (18O,3nγ)
   1137.8I(γ): From (HI,xnγ)
M(γ): ΔJ=0 d or ΔJ=2 Q transition from DCO in (18O,3nγ)
   1958.2   1920M(γ): d,E2 or d,Q from comparison to RUL. Δπ=yes from decay scheme
E(level)E(gamma)Comments
   2014.7   1976E(γ): Multiply placed with undivided intensity. From (p,nγ). 289.5γ deduced from Eγ(to 40)-3.3 3.
I(γ): Multiply placed with undivided intensity. From (p,nγ). 289.5γ deduced from Eγ(to 40)-3.3 3.
M(γ): From comparison to RUL
   1976E(γ): Multiply placed with undivided intensity. From (p,nγ). 289.5γ deduced from Eγ(to 40)-3.3 3.
I(γ): Multiply placed with undivided intensity. From (p,nγ). 289.5γ deduced from Eγ(to 40)-3.3 3.
M(γ): From comparison to RUL
   2016E(γ): From (p,nγ). 289.5γ deduced from Eγ(to 40)-3.3 3.
I(γ): From (p,nγ). 289.5γ deduced from Eγ(to 40)-3.3 3.
M(γ): From comparison to RUL
   2258.2    301E(γ): Isobaric analog states of 45Sc g.s., 12.4?, and 938?
M(γ): From comparison to RUL. d,E2 from comparison to RUL. ΔJπ=2,no from decay scheme
    691.0E(γ): Isobaric analog states of 45Sc g.s., 12.4?, and 938?
M(γ): d,E2 from comparison to RUL. ΔJπ=2,no from decay scheme
   2432.1   2394E(γ): Multiply placed with undivided intensity. From (p,nγ). 289.5γ deduced from Eγ(to 40)-3.3 3.
I(γ): Multiply placed with undivided intensity. From (p,nγ). 289.5γ deduced from Eγ(to 40)-3.3 3.
   2394E(γ): Multiply placed with undivided intensity. From (p,nγ). 289.5γ deduced from Eγ(to 40)-3.3 3.
I(γ): Multiply placed with undivided intensity. From (p,nγ). 289.5γ deduced from Eγ(to 40)-3.3 3.
   2432E(γ): From (p,nγ). 289.5γ deduced from Eγ(to 40)-3.3 3.
I(γ): From (p,nγ). 289.5γ deduced from Eγ(to 40)-3.3 3.
   2474.58    592.5E(γ): From (24Mg,2pnγ)
I(γ): From (24Mg,2pnγ). Branching ratios in (18O,3nγ) and (α,nγ) are discrepant
M(γ): ΔJ=1 d+Q transition from DCO in (18O,3nγ)
   1248.2E(γ): From (24Mg,2pnγ)
I(γ): From (24Mg,2pnγ). Branching ratios in (18O,3nγ) and (α,nγ) are discrepant
M(γ): ΔJ=0 d or ΔJ=2 Q transition from DCO in (18O,3nγ)
   2656.66   1188.61E(γ): From (HI,xnγ)
I(γ): From (24Mg,2pnγ). Branching ratios in (18O,3nγ) and (α,nγ) are discrepant
M(γ): ΔJ=1 d transition from DCO in (18O,3nγ). D+Q from γ(θ) in (HI,xnγ). Ne E1+M2 from δ and comparison to RUL.
   1303.5E(γ): Isobaric analog states of 45Sc g.s., 12.4?, and 938?. From (24Mg,2pnγ)
I(γ): From (24Mg,2pnγ)
M(γ): d,E2 from comparison to RUL. ΔJπ=2,no from decay scheme
   2911.6    954E(γ): Isobaric analog states of 45Sc g.s., 12.4?, and 938?
M(γ): d,E2 from comparison to RUL. ΔJπ=2,no from decay scheme
   2932.9    458E(γ): From (18O,3nγ). Weakly excited or not observed in 44Ca(p,π-), 45Sc(p,n)
   3015.37    358.97E(γ): From (HI,xnγ)
I(γ): From (HI,xnγ)
M(γ): ΔJ=1 d transition from DCO in (18O,3nγ). D+Q from γ(θ) in (HI,xnγ). Ne E1+M2 from δ and comparison to RUL.
   1546.90E(γ): From (HI,xnγ). Isobaric analog states of 45Sc g.s., 12.4?, and 938?
I(γ): From (HI,xnγ)
M(γ): d,E2 from comparison to RUL. ΔJπ=2,no from decay scheme. ΔJ=0 d or ΔJ=2 Q transition from DCO in (18O,3nγ)
   3447.31    972.6E(γ): From (24Mg,2pnγ)
I(γ): From (24Mg,2pnγ). Branching ratios in (18O,3nγ) are discrepant
   1565.7E(γ): Isobaric analog states of 45Sc g.s., 12.4?, and 938?. From (24Mg,2pnγ)
I(γ): From (24Mg,2pnγ). Branching ratios in (18O,3nγ) are discrepant
M(γ): d,E2 from comparison to RUL. ΔJπ=2,no from decay scheme. ΔJ=0 d or ΔJ=2 Q transition from DCO in (18O,3nγ)
   3601.87    586.41E(γ): From (HI,xnγ)
I(γ): From (24Mg,2pnγ). Branching ratios in (18O,3nγ) are discrepant
M(γ): ΔJ=1 d transition from DCO in (18O,3nγ). D+Q from γ(θ) in (HI,xnγ). Ne E1+M2 from δ and comparison to RUL.
    945.1E(γ): From (24Mg,2pnγ)
I(γ): From (24Mg,2pnγ)
M(γ): ΔJ=0 d or ΔJ=2 Q transition from DCO in (18O,3nγ). Q from DCO in (18O,3nγ). Ne M2 from comparison to RUL
   3922.45    475.2E(γ): From (24Mg,2pnγ)
I(γ): From (24Mg,2pnγ). Branching ratios in (18O,3nγ) are discrepant
M(γ): d from comparison to RUL. Δπ=no from level scheme
   1447.8E(γ): Isobaric analog states of 45Sc g.s., 12.4?, and 938?. From (24Mg,2pnγ)
I(γ): From (24Mg,2pnγ). Branching ratios in (18O,3nγ) are discrepant
M(γ): From comparison to RUL. d,E2 from comparison to RUL. ΔJπ=2,no from decay scheme. ΔJ=0 d or ΔJ=2 Q transition from DCO in (18O,3nγ)
   4344.9    742.8E(γ): From (24Mg,2pnγ)
I(γ): From (24Mg,2pnγ)
M(γ): From comparison to RUL. ΔJ=1 d transition from DCO in (18O,3nγ)
   1330.1E(γ): Isobaric analog states of 45Sc g.s., 12.4?, and 938?. From (24Mg,2pnγ)
I(γ): From (24Mg,2pnγ)
M(γ): From comparison to RUL. d,E2 from comparison to RUL. ΔJπ=2,no from decay scheme
   4855.2    933E(γ): From (18O,3nγ). Weakly excited or not observed in 44Ca(p,π-), 45Sc(p,n)
I(γ): From (18O,3nγ)
   1922E(γ): From (18O,3nγ). Weakly excited or not observed in 44Ca(p,π-), 45Sc(p,n)
I(γ): From (18O,3nγ)
E(level)E(gamma)Comments
   5239.9   1317.5E(γ): From (24Mg,2pnγ)
I(γ): From (24Mg,2pnγ)
   1792.5E(γ): From (24Mg,2pnγ)
I(γ): From (24Mg,2pnγ)
   5640.9    401.3E(γ): From (24Mg,2pnγ)
I(γ): From (24Mg,2pnγ). Branching ratios in (18O,3nγ) are discrepant
M(γ): From comparison to RUL. d from comparison to RUL. Δπ=no from level scheme
   1717.7E(γ): Isobaric analog states of 45Sc g.s., 12.4?, and 938?. From (24Mg,2pnγ)
I(γ): From (24Mg,2pnγ). Branching ratios in (18O,3nγ) are discrepant
M(γ): From comparison to RUL. d,E2 from comparison to RUL. ΔJπ=2,no from decay scheme. ΔJ=0 d or ΔJ=2 Q transition from DCO in (18O,3nγ)
   6006.7   2084E(γ): From (18O,3nγ). Weakly excited or not observed in 44Ca(p,π-), 45Sc(p,n)
   6163.0   1818.0E(γ): From (24Mg,2pnγ). From comparison of the Iγ’s of the sequentially emitted γ’s, 1818 and 743 keV, 1998Be29 in (18O,3nγ) concluded that the previous ordering by 1978Fo09 in (HI,xnγ) should Be inverted. This conclusion is supported by the existence of the 1330γ crossover.
I(γ): From (18O,3nγ)
M(γ): ΔJ=0 d or ΔJ=2 Q transition from DCO in (18O,3nγ). Q from DCO in (18O,3nγ). Ne M2 from comparison to RUL
   6459.9    453E(γ): From (18O,3nγ). Weakly excited or not observed in 44Ca(p,π-), 45Sc(p,n)
    819E(γ): From (18O,3nγ). Weakly excited or not observed in 44Ca(p,π-), 45Sc(p,n)
   6757.9   1117E(γ): From (18O,3nγ). Weakly excited or not observed in 44Ca(p,π-), 45Sc(p,n)
   1518E(γ): From (18O,3nγ). Weakly excited or not observed in 44Ca(p,π-), 45Sc(p,n)
   7143.4    980.45E(γ): From (HI,xnγ)
I(γ): From (18O,3nγ)
M(γ): ΔJ=0 d or ΔJ=2 Q transition from DCO in (18O,3nγ). Q from DCO in (18O,3nγ). Ne M2 from comparison to RUL
   7342.0    584E(γ): From (18O,3nγ). Weakly excited or not observed in 44Ca(p,π-), 45Sc(p,n)
   1701E(γ): From (18O,3nγ). Weakly excited or not observed in 44Ca(p,π-), 45Sc(p,n)
   7830.7   1073E(γ): From (18O,3nγ). Weakly excited or not observed in 44Ca(p,π-), 45Sc(p,n)
   2190E(γ): From (18O,3nγ). Weakly excited or not observed in 44Ca(p,π-), 45Sc(p,n)
   8289.2    459E(γ): From (18O,3nγ). Weakly excited or not observed in 44Ca(p,π-), 45Sc(p,n)
    947E(γ): From (18O,3nγ). Weakly excited or not observed in 44Ca(p,π-), 45Sc(p,n)
   1829E(γ): From (18O,3nγ). Weakly excited or not observed in 44Ca(p,π-), 45Sc(p,n)
   9643.5   2500E(γ): From (18O,3nγ). Weakly excited or not observed in 44Ca(p,π-), 45Sc(p,n)
I(γ): From (18O,3nγ)
M(γ): From comparison to RUL
  10153.5   3010E(γ): From (18O,3nγ). Weakly excited or not observed in 44Ca(p,π-), 45Sc(p,n)
I(γ): From (18O,3nγ)
M(γ): ΔJ=1 d transition from DCO in (18O,3nγ)
  10795.3   2506E(γ): From (18O,3nγ). Weakly excited or not observed in 44Ca(p,π-), 45Sc(p,n)
  12498.6   2345E(γ): From (18O,3nγ). Weakly excited or not observed in 44Ca(p,π-), 45Sc(p,n)
M(γ): From comparison to RUL
  13030.4   2235E(γ): From (18O,3nγ). Weakly excited or not observed in 44Ca(p,π-), 45Sc(p,n)

Back to top