		Type Au	His	story Citation	Literature Cutoff Date
	Ful	I Evaluation T. W. 1	Burrows NDS	5 109,171 (2008)	30-Oct-2007
$Q(\beta^{-}) = -7129 8$; Note: Current ev	S(n)=9531.9 12; valuation has used	$S(p)=8482.1 20; Q(\alpha)$ the following Q record)=-6296.1 9 rd -7126 17	2012Wa38 9528.6 128478.6	20–6292.9 10 2003Au03.
			⁴⁵ Ti	Levels	
			Cross Reference	e (XREF) Flags	
	A ${}^{45}V \beta^+ d$ B (HI,xn γ) C ${}^{24}Mg({}^{24}Mg)$ D ${}^{30}Si({}^{18}O)$	ecay Ag,2pnγ) E=83 MeV 3nγ)	$ \begin{array}{rcl} E & {}^{42}Ca(\alpha), \\ F & {}^{44}Ca(po), \\ G & {}^{45}Sc(p), \\ H & {}^{45}Sc({}^{3}H) \end{array} $	$(n\gamma)$ bl p,π ⁻), ⁴⁵ Sc(p,n) n),(p,nγ) He,t) E=24.6 MeV	I 46 Ti(p,d),(d,t), $({}^{3}$ He, α) J 44 Ti(n, γ) E=th
T(B) TV (E _x	$\begin{array}{c} From \gamma(t)\\ (HI, xn\gamma)\\ RDM & n\gamma(t) \end{array}$	in $(\alpha, n\gamma)$ and γ $(\alpha, n\gamma), (p, n\gamma)$ $(p, n\gamma)$	(t) in (p,n (α,nγ)	γ), <u>γ</u>	respectively. Other $T_{1/2}$'s: (p,n γ) (t) γ (t) DSAM
40 12.3 ns 330 1.19 n >693 fs	; 9 1s 7 1.2 ns	11.9 ns 7 S	11.85 ns	42	11.5 ns <i>15</i>
E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	XREF		Comments
0.0@	7/2-	184.8 min 5	ABCDEFGHI	$\frac{\%\epsilon + \%\beta^{+} = 100}{\mu = 0.095 2; Q = 0}$ T=1/2 J ^{π} : J=7/2 from in (p,d),(d,t),(T _{1/2} : from 1960 μ ,Q: AB. Polari	0.015 <i>15</i> (2005St24,1966Co19) AB (1976Fu06,1966Co19); π =- from L=3 ³ He, α). SP004 (chem; pc 10 T _{1/2}). zation correction for Q. μ /Q>0. ^{47,49} Ti
36.53 15	3/2-	3.0 µs 2	BCDE G I	J ^{π} : E2(+M1) γ T _{1/2} : weighted	to $7/2^-$ and D,E2 γ from $1/2^+$, 1565. av of 2.9 μ s 3 from RDM in (HI,xn γ) and
39.39 <i>23</i>	5/2-	11.29 ns 9	ABCDE G	$\mu = -0.133 \ 10 \ (2)$ J ^{π} : 5/2 from γ (ℓ μ : DPAD. Other	(1) III (p,nγ). 1005St24,1977Br15) θ in (α,nγ). D,E2 γ from 9/2 ⁻ , 1353. r: -0.08 3 (1977St12,DPAD).
329.30 ^{&} 15	3/2+	1.099 ns <i>13</i>	BCDE G I	μ =+1.05 24 (19) J ^{π} : L=2 in (p,d) identical to th μ : IPAD, recalc rounded-off Configuration: contribution of	89Ra17,1977Bu10,1975Ha47)),(d,t),(³ He,α). Shape of $\sigma(\theta)$ in (³ He,α) hat for g.s., $3/2^+$ of ³⁹ Ca. ulated by 1977Bu10. 2005St24 cite a value of +1.1 <i>3</i> . calculation by 1977La12 indicates that a of f7/2 nucleons is required to reproduce μ .
743.88 ^b 17	5/2+	10.5 ^{<i>a</i>} ps 17	BCDE G	J^{π} : from $\gamma(\theta)$ in	$(\alpha,n\gamma)$ and M1+E2 γ to 3/2 ⁺ .
1226.50 ^{&} 15	7/2+ <i>c</i>	$2.8^a \text{ ps } 6$	BCDE G		
1353.49 ^e 18	9/2-	0.103^{a} ps 9	CDE G I	J^{π} : from $\gamma(\theta)$ in	(p,n γ) and M1+E2 γ to 7/2 ⁻ .
1468.24 [®] 14 1521.7 6	$11/2^{-c}$ $3/2^{-}$ to $9/2^{-}$	$\begin{array}{c} 0.48^{a} \text{ ps } 7\\ 48^{d} \text{ fs } 11 \end{array}$	BCDE G I E G	J^{π} : 3/2 ⁻ to 11/2	p^{-} from D,E2 γ to 7/2 ⁻ . Ne 9/2,11/2 ⁻ if
1565 Af 7	1/2+	>28 pc	с т	$D,E2 \gamma 10 3/2$	$\gamma_{10} = \gamma_{12} = \gamma_{11/2} = 11 \text{ D}, \text{E} 2 \gamma_{10} = 0.5/2$.
1709.0.15	$\frac{1}{2}$ (1/2 ⁻ to 7/2 ⁻)	-2.0 ps 0.32 ^d ps ± 22.8	E I FCT		
1881.76 ^b 19	9/2 ⁺	0.52 ps + 22-6 0.68 ps + 6-5	BCDE G	J^{π} : from $\gamma(\theta)$ in	$(\alpha, n\gamma)$ and E2 γ to $5/2^+$.

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

⁴⁵Ti Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF	Comments
				T _{1/2} : weighted ave(int.) of 0.69 ps 7 from DSAM in ($^{18}O,3n\gamma$), 0.69 ps 14 from DSAM in ($\alpha,n\gamma$), 0.62 ps +21-14 from DSAM in (p,n γ), and 1.1 ps 6 from RDM in (HI,xn γ).
1958.2 ^{<i>f</i>} 4	3/2+	0.83 ps 14	EGI	J ^{π} : 3/2,5/2 from anisotropy of 1214 γ , Ne 5/2 from $\gamma(\theta)$ and $n\gamma(\theta)$ in $(\alpha,n\gamma)$. M1+E2 γ to 5/2 ⁺ .
2014.7 6	3/2 ⁻ to 9/2 ⁻	32 ^d fs 9	EG	J ^{π} : 3/2 ⁻ to 11/2 ⁻ from D,E2 γ to 7/2 ⁻ . Ne 9/2,11/2 ⁻ if D,E2 γ to 3/2 ⁻ ; Ne 9/2 ⁺ ,11/2 ⁻ if D,E2 γ to 5/2 ⁻ .
2258.2 ^{<i>f</i>} 6 2432.1 <i>15</i>	5/2 ⁺ 3/2 to 11/2	0.194 ps 35	E G I G	J^{π} : 5/2 from $n\gamma(\theta)$ in $(\alpha, n\gamma)$; M1+E2 γ to 5/2 ⁺ . J^{π} : γ to 7/2 ⁻ .
2474.58 ^{&} 21	11/2+	0.39 ps 6	CDE	J ^{π} : 7/2,11/2 from $\gamma(\theta)$ and $n\gamma(\theta)$ in $(\alpha,n\gamma)$; $\Delta J=2$ E2(+M3) γ to 7/2 ⁺ .
				T _{1/2} : weighted av of 0.45 ps 9 from DSAM in $(\alpha,n\gamma)$ and 0.35 ps 7 from DSAM in (¹⁸ O,3n γ).
2500 <i>20</i> 2531.4 <i>12</i>	$5/2^{-},7/2^{-}$ $1/2,3/2,5/2^{(+)}g$,	E E	
2656.66 ^e 18 2849.4 12 2890 20	$13/2^{-}$ $1/2,3/2,5/2^{(+)}g$ $(3/2^{+},5/2^{+})$	<0.17 ^h ps	BCDE E I	J ^{π} : 13/2 from $\gamma(\theta)$ in (HI,xn γ). M1+E2 γ to 11/2 ⁻ .
2911.6 ^{<i>f</i>} 6	7/2+	0.36 ps 8	E	J ^π : $5/2^+$, $7/2^+$ from D,E2 γ to $3/2^+$, 1958, and M1+E2 γ to $9/2^+$; Ne $5/2$ from nγ(θ) in (α,nγ).
2932.9 <i>9</i> 3000 <i>20</i>	$(13/2^+)^{i}$ $(3/2^+, 5/2^+)$		D I	
3015.37 [@] 18 3080 20	$15/2^{-}$ (3/2 ⁺ ,5/2 ⁺)	0.55 ^h ps 14	BCDE I	J ^{π} : 15/2 from $\gamma(\theta)$ in (HI,xn γ); π =- from M1+E2 γ to 13/2 ⁻ .
3156.0 <i>11</i> 3200 <i>20</i>			E	
3400 20 3447.31 ^b 23	$(3/2^+, 5/2^+)$ $13/2^+$	0.180 ^h ps 21	CD I	J^{π} : D,E2 γ to 11/2 ⁺ and $\Delta J=0$ d or $\Delta J=2$ E2 to 9/2 ⁺ ;
3540 20	3/2+,5/2+		I	member of band based on $d_{3/2}$ orbital.
3601.87 ^e 21 3830 20	17/2 ⁻ 1/2 ⁺	0.90 ^h ps 7	BCD I	J^{π} : $\Delta J=1$ M1+E2 γ to 15/2 ⁻ and $\Delta J=2$ E2 γ to 13/2 ⁻ .
3922.45 ^{&} 25	15/2+	0.312 ^h ps 21	CD	J ^{π} : D γ to 13/2 ⁺ and Δ J=0 d or Δ J=E2 γ to 11/2 ⁺ . Member of band based on d _{3/2} orbital.
3937.6 11	(11/2 to 15/2)	o to the tr	E	J^{π} : from γ excit in $(\alpha, n\gamma)$.
4344.9 3	19/2	0.104" ps 14	CD F	J [*] : $\Delta J=1$ M1 γ to 1//2 and D,E2 γ to 15/2. Member of band based on $f_{7/2}$ orbital.
4723 7	(7/2) ⁻		HI	T=3/2 E(level): unweighted av of 4716 6 from (p,d),(d,t),(3 He, α) and 4730 7 from (3 He,t). I ^{π} : 5/2 ⁻ 7/2 ⁻ from L=3 in (p,d) (d,t) (3 He, α). LAS(45 Sc, g, s)
4810 ^j 20	3/2+,5/2+		I	T=3/2 T=3/2
4855.2 9 5030 20 5180 20	$(17/2^+)$ $(3/2^+, 5/2^+)$ $1/2^-, 3/2^-$	0.35 ^h ps 5	D I I	
5239.9 ^b 3	(17/2 ⁺)	0.07 ^h ps 6	CD	J ^{π} : γ 's to 15/2 ⁺ and 13/2 ⁺ . Member of band based on d _{3/2} orbital.
5330 20 5540 20	3/2+,5/2+		I T	
5640.9 ^{&} 4	19/2+	0.19 ^h ps 6	CD	J^{π} : D γ to (17/2 ⁺) and $\Delta J=0$ d or $\Delta J=2$ E2 γ to 15/2 ⁺ .

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

⁴⁵Ti Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	XREF	Comments
				Member of band based on $d_{3/2}$ orbital.
5760 ^j 20 6006 7 0	$1/2^{+}$		I	T=3/2
$6163.0^{\textcircled{0}{k}}5$	23/2-	0.35 ^h ps 4	BCD F	J ^{π} : Δ J=2 E2 γ to 19/2 ⁻ . Member of band based on f _{7/2} orbital.
6459.9 8	$(21/2^+)^{i}$		D	
6757.9 ^b 7	$(21/2^+)$		D	J^{π} : γ' s to (17/2 ⁺) and 19/2 ⁺ . Member of band based on d _{3/2} orbital.
7143.4 ^{@k} 6	$27/2^{-}$	10.4 ^h ps <i>14</i>	BCD F	J^{π} : $\Delta J=2 E2 \gamma$ to $23/2^{-}$. Member of band based on $f_{7/2}$ orbital.
7342.0 ^{&} 8 7830.7 8	$(23/2^+)$		D D	$J^{\pi} \colon \gamma's$ to (21/2 ⁺) and 19/2 ⁺ . Member of band based on $d_{3/2}$ orbital.
8289.2 8	$(25/2^+)^{i}$		D	
9643.5 12		<0.07 ^h ps	D	
10153.5 ¹ 12	(25/2 ⁻)	<0.07 ^{<i>h</i>} ps	D	J^{π} : $\Delta J=1$ (D) to 27/2 ⁻ . Possible member of band based on $f_{7/2}$ orbital.
10795.3 <i>13</i>	$(29/2^+)^{i}$		D	
12498.6 ^{kl} 16	(29/2 ⁻)	<0.07 ^h ps	D	J^{π} : D,E2 γ to (25/2 ⁻). Possible member of band based on $f_{7/2}$ orbital.
13030.4 17	$(33/2^+)^{i}$		D	

[†] From least-squares fit to $E\gamma$ assuming $\Delta E(\gamma)=1$ keV when not given, except as noted. $E\gamma$ deduced from $E\gamma$ (to 40)-3.3 *3* in (p,n γ) excluded from least-squares analysis.

[‡] From angular momentum transfer in (p,d),(d,t),(³He, α), except as noted.

[#] From DSAM in $(\alpha, n\gamma)$, except as noted.

^(a) Band(A): Band based on $f_{7/2}$ orbital, $\alpha = -1/2$ (2006Be07). Identified as members of a $\pi = -\gamma$ cascade by 1998Be29. 1998Be29 extended negative parity states given in 1992Bu01 from 7144 keV to 12499 keV.

[&] Band(B): Band based on d_{3/2} orbital, $\alpha = -1/2$ (1998Be29,2004Be20,2006Be07). 1998Be29 extended the band labeled as $K^{\pi} = 3/2^+$ in 1992Bu01 from 2476 keV to 5639 keV. Further extended by 2004Be20 to 7340. Confirmed by 2006Be07 through 5639.

^{*a*} From RDM in (HI,xn γ). Others: T_{1/2}(744) \geq 1 ps and T_{1/2}(1227) \geq 1.5 ps from DSAM in (p,N γ).

^b Band(C): Band based on d_{3/2} orbital, $\alpha = +1/2$ (1998Be29,2004Be20,2006Be07). 1998Be29 extended the band labeled as $K^{\pi} = 3/2^+$ in 1992Bu01 from 2476 keV to 5639 keV. Further extended by 2004Be20 to 7340. Confirmed by 2006Be07 through 5639.

^{*c*} From $\gamma(\theta)$, γ excit, and linear polarization in $(\alpha, n\gamma)$.

^d From DSAM in (p,n γ). Other DSAM in (p,n γ): T_{1/2}(1354)=0.103 ps 24, T_{1/2}(1468)=464 fs +114-89, T_{1/2}(1521)=55 fs 9.

^{*e*} Band(D): Band based on $f_{7/2}$ orbital, $\alpha = +1/2$ (2006Be07). Identified as members of a $\pi = -\gamma$ cascade by 1998Be29. 1998Be29 extended negative parity states given in 1992Bu01 from 7144 keV to 12499 keV.

^{*f*} Band(E): $K^{\pi} = 1/2^+$ band (1984Ka05).

 g γ to $1/2^+.$

^{*h*} From DSAM in (¹⁸O,3n γ).

- ^{*i*} Band(M): (13/2⁺) intruder band (2004Be20). Based on the relatively high $\beta \approx 0.45$ reached for this new band, extended shell model calculations, and resemblance to the T=0 g.s. band in ⁴⁶V (1999Ol01).
- ^j Isobaric analog states of ⁴⁵Sc g.s., 12.4?, and 938?
- ^k Weakly excited or not observed in ⁴⁴Ca(p, π^{-}), ⁴⁵Sc(p,n).
- ^{*l*} Band(F): $\pi = -\gamma$ cascade (1998Be29). May Be members of the band based on $f_{7/2}$ orbital, $\alpha = +1/2$ (evaluator). 1998Be29 extended negative parity states given in 1992Bu01 from 7144 keV to 12499 keV.

$\gamma(^{45}{\rm Ti})$

See (HI,xn γ) and (α ,n γ) for unplaced gammas.

4

E(G)	TV	Weighted av	verages of t	he foll	owing:				
Adopted	(2^{24} Mg, 2pn γ)	(p,n;	γ)	(α, n)	γ)	(HI, 2	$xn\gamma)$	
414.36 482.61 707.47 897.27 1137.8 2 1225.94	18 14 16 12 21	414.0 2 482.4 2 706.9 3 897.2 2 1138.2 2 1225.8 2	414.4	.5 <i>1</i> 0	482.9 707.5 897.5 137.9 1227	2 2 2 2 2 8 2 11 7 1	482.56 15 707.7 2 397.1 2 137.8 2 1226.6 7	TVExternal TVExternal TVInternal TVInternal TVExternal	TVExternal
E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α^{r}	Comments
36.53	3/2-	36.69 21	100	0.0	7/2-	(E2)		16.6 5	
39.39	5/2-	40.15 [#] 30	100#	0.0	7/2-	(M1(+E2)) 0.000 25	0.223 10	B(M1)(W.u.)=0.00246 7 α (K)=0.201 9; α (L)=0.0190 9; α (M)=0.00242 11; α (N+)=0.000126 5 α (N)=0.000126 5 Mult.,δ: from $\gamma(\theta)$ in (α ,n γ) and comparison to RUL. $\Delta\pi$ =no from decay scheme.
329.30	3/2+	289.5 [#] 3	0.55 [#] 25	39.39	5/2-	(E1,M2) [@])	0.0036 25	B(E1)(W.u.)<1.1×10 ⁻⁷ 5; B(M2)(W.u.)<6 3 α (K)=0.0032 23; α (L)=0.00030 21; α (M)=4.E-5 3; α (N+)=2.0×10 ⁻⁶ 15 α (N)=2.0×10 ⁻⁶ 15
		292.77 [#] 5	100.00 [#] 25	36.53	3/2-	E1(+M2)	≤0.032 ^{&}	1.08×10 ⁻³ 2	B(E1)(W.u.)=1.927×10 ⁻⁵ 25; B(M2)(W.u.)≤1.055 14 α (K)=0.000978 14; α (L)=8.76×10 ⁻⁵ 13; α (M)=1.118×10 ⁻⁵ 16; α (N+)=6.01×10 ⁻⁷ 9 α (N)=6.01×10 ⁻⁷ 9 Mult.: from α (exp) in (HI,xn γ). Mult.: from γ (Q) and α (exp) in (HI,xn γ).
743.88	5/2+	414.36 <i>18</i>	100.0 [#] 16	329.30	3/2+	M1+E2	+0.40 3	7.27×10 ⁻⁴ 22	B(M1)(W.u.)=0.023 4; B(E2)(W.u.)=58 12 α (K)=0.000660 20; α (L)=5.95×10 ⁻⁵ 18; α (M)=7.60×10 ⁻⁶ 23; α (N+)=4.09×10 ⁻⁷ 12 α (N)=4.09×10 ⁻⁷ 12

	Adopted Levels, Gammas (continued)													
					<u> γ(</u>	(45Ti) (continued	d)							
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$E_f = J_f^{\pi}$	Mult. [‡]	δ^{\ddagger}	α^{r}	Comments						
743.88	5/2+	703.9 [#] 11	2.8 [#] 6	39.39 5/2-	(E1) [@]		0.0001100 16	Mult.: from $\gamma(\theta)$ and $n\gamma(\theta)$ in $(\alpha, n\gamma)$ and $\alpha(\exp)$ in (HI, $xn\gamma$). δ : from $\gamma(\theta)$ and $n\gamma(\theta)$ in $(\alpha, n\gamma)$. B(E1)(W.u.)=3.7×10 ⁻⁶ 10 $\alpha(K)=9.96\times10^{-5}$ 15; $\alpha(L)=8.89\times10^{-6}$ 13; $\alpha(M)=1.137\times10^{-6}$ 17 $\alpha(N+)=6.16\times10^{-8}$ 9						
		707.47 ^a 16	7.8 14	36.53 3/2-	(E1+M2) ^b	+0.06 +5-4	1.10×10 ⁻⁴ 4	$\alpha(N)=6.16\times10^{-8} 9$ B(E1)(W.u.)=1.01×10 ⁻⁵ 25; B(M2)(W.u.)=0.3 +6-3 $\alpha(K)=0.000100 4; \alpha(L)=8.9\times10^{-6} 3;$						
		744 [#]	0.22 [#] 11	0.0 7/2-	(E1,M2) [@] c		0.00026 17	$\alpha(M)=1.14\times10^{-6} 4; \ \alpha(N+)=6.17\times10^{-8} 20$ $\alpha(N)=6.17\times10^{-8} 20$ B(E1)(W.u.)<2.4×10^{-7} 14; B(M2)(W.u.)<2.0 12 $\alpha(K)=0.00024 15; \ \alpha(L)=2.1\times10^{-5} 14; \alpha(M)=2.7\times10^{-6} 17; \ \alpha(N+)=1.5\times10^{-7} 10$						
1226.50	7/2+	482.61 14	98.1 ^{<i>d</i>} 32	743.88 5/2+	M1+E2 ^{ce}	+0.28 ^e 3	4.57×10 ⁻⁴ 11	$\alpha(N)=1.5\times10^{-7} \ 10$ B(M1)(W.u.)=0.028 7; B(E2)(W.u.)=25 8 $\alpha(K)=0.000415 \ 10; \ \alpha(L)=3.73\times10^{-5} \ 9; \\\alpha(M)=4.77\times10^{-6} \ 11; \ \alpha(N+)=2.58\times10^{-7} \ 6$						
		897.27 12	100.0 ^d 57	329.30 3/2+	E2(+M3) ^e	≤0.0011 &	0.0001590 23	$B(E2)(W.u.)=16 \ 4; \ B(M3)(W.u.) \le 1.7 \times 10^2 \ 4$ $\alpha(K)=0.0001442 \ 21; \ \alpha(L)=1.292 \times 10^{-5} \ 18;$ $\alpha(M)=1.652 \times 10^{-6} \ 24$ $\alpha(N+)=8.93 \times 10^{-8} \ 13$						
		1188.03 <i>35</i>	17.6 ^d 25	39.39 5/2-	(E1(+M2)) ^b	0.00 6	8.55×10 ⁻⁵ 13	$ α(N)=8.93\times10^{-6} 13 $ B(E1)(W.u.)=8.7×10 ⁻⁶ 23; B(M2)(W.u.)<0.10 3 $α(K)=3.48\times10^{-5} 6; α(L)=3.10\times10^{-6} 6;$ $α(M)=3.96\times10^{-7} 7; α(N+)=4.72\times10^{-5} 8$ $α(N)=2.15\times10^{-8} 4; α(IPF)=4.72\times10^{-5} 8$ E _γ : weighted av of 1185.8 2 from (²⁴ Mg,2pnγ), 1188.61 20 from (HI,xnγ), 1187 1 from (p,nγ), and 1187.9 3 from (α,nγ). 1188.03 35 is the mean of 1188.13 35 (LWM) and 1187.92 26 (RT) with ΔE(γ) from RT.						
		1225.94 21	13.8 ^d 38	0.0 7/2-	(E1+M2) ^b	-0.34 6	$1.10 \times 10^{-4} 2$	B(E1)(W.u.)=5.6×10 ⁻⁶ 20; B(M2)(W.u.)=2.0 10						

S

 $^{45}_{22}{
m Ti}_{23}$ -5

I

				1	Adopte	d Levels, Ga	mmas (cont	inued)	
						γ ⁽⁴⁵ Ti) (c	ontinued)		
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^{π}	Mult. [‡]	δ^{\ddagger}	α^{r}	Comments
									$ \begin{aligned} &\alpha(\mathrm{K}) = 4.1 \times 10^{-5} \ 3; \ \alpha(\mathrm{L}) = 3.7 \times 10^{-6} \ 3; \\ &\alpha(\mathrm{M}) = 4.7 \times 10^{-7} \ 4; \ \alpha(\mathrm{N}+) = 6.4 \times 10^{-5} \ 3 \\ &\alpha(\mathrm{N}) = 2.56 \times 10^{-8} \ 18; \ \alpha(\mathrm{IPF}) = 6.4 \times 10^{-5} \ 3 \end{aligned} $
1353.49	9/2-	1314.0# 10	7.8# 8	39.39	5/2-	(E2) ^J		9.68×10 ⁻⁵ 14	B(E2)(W.u.)=10.7 <i>15</i> α (K)=5.87×10 ⁻⁵ 9; α (L)=5.24×10 ⁻⁶ 8; α (M)=6.71×10 ⁻⁷ <i>10</i> ; α (N+)=3.22×10 ⁻⁵ 6 α (N)=3.64×10 ⁻⁸ 6; α (IPF)=3.22×10 ⁻⁵ 5
		1353.6 2	100.0 [#] 8	0.0	7/2-	M1+E2 ^e	-0.39 10	8.45×10 ⁻⁵ 18	B(M1)(W.u.)=0.069 8; B(E2)(W.u.)=16 7 α (K)=4.80×10 ⁻⁵ 9; α (L)=4.28×10 ⁻⁶ 8; α (M)=5.48×10 ⁻⁷ 10; α (N+)=3.16×10 ⁻⁵ 9 α (N)=2.98×10 ⁻⁸ 6; α (IPF)=3.16×10 ⁻⁵ 9 δ : weighted av of -0.51 +8-18 from (α ,n γ) and -0.34 12 from (p,n γ); $\gamma(\theta)$.
1468.24	11/2-	114 ^g	18	1353.49	9/2-	(M1) ^{<i>h</i>}		0.01339	B(M1)(W.u.)=0.31 5 α (K)=0.01212 17; α (L)=0.001115 16; α (M)=0.0001424 20; α (N+)=7.58×10 ⁻⁶ 11 α (N)=7.58×10 ⁻⁶ 11
		1468.14 ^{<i>a</i>} 15	100 ^g	0.0	7/2-	E2(+M3)	≤0.0005	0.0001280 18	$\begin{array}{l} \text{B(E2)(W.u.)=18} & 3; \text{ B(M3)(W.u.)\leq14.6} & 22 \\ \alpha(\text{K})=4.65\times10^{-5} & 7; & \alpha(\text{L})=4.15\times10^{-6} & 6; \\ \alpha(\text{M})=5.30\times10^{-7} & 8; & \alpha(\text{N}+)=7.64\times10^{-5} \\ 11 \\ \alpha(\text{N})=2.88\times10^{-8} & 4; & \alpha(\text{IPE})=7.64\times10^{-5} & 11 \\ \end{array}$
1521.7	$3/2^{-}$ to $9/2^{-}$	1484 <i>s</i> #t_1	$1.0 \times 10^{2} s^{\#} 5$	39.39	5/2-	D.E2 ^{&}			u(II)-2.00×10 +, u(III)-7.04×10 11
1021.7	5/2 10 7/2	$1484^{s\#t}$ /	$1.0 \times 10^{2} s^{\#} 5$	36.53	$3/2^{-}$	$D,E2^{\&}$			
		1521 [#] <i>I</i>	$7.\times10^{1#}5$	0.0	7/2-	D,E2 ^{&}			
1565.4	$1/2^{+}$	1236 <i>1</i>	100.0 23	329.30	3/2+	D,E2 ^{&}			B(M1)(W.u.)<0.0036; B(E2)(W.u.)<6.4
		1528 <i>I</i>	14.9 23	36.53	3/2-	(E1) [@]		0.000309 5	B(E1)(W.u.)<7.0×10 ⁻⁶ α (K)=2.27×10 ⁻⁵ 4; α (L)=2.02×10 ⁻⁶ 3; α (M)=2.58×10 ⁻⁷ 4; α (N+)=0.000284 4 α (N)=1.404×10 ⁻⁸ 20; α (IPF)=0.000284 4

 $^{45}_{22}\mathrm{Ti}_{23}\text{-}6$

	Adopted Levels, Gammas (continued)												
					γ (⁴⁵ Ti)	(continued)							
E _i (level)	${f J}^\pi_i$	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [‡]	δ^{\ddagger}	α^{r}	Comments					
1799.0	(1/2 ⁻ to 7/2 ⁻)	1761 <i>^{s#t}</i> 2 1761 <i>^{s#t}</i> 2	100 <i>s</i> # 100 <i>s</i> #	39.39 5/2 ⁻ 36.53 3/2 ⁻	D,E2 ^{&} D,E2 ^{&}								
1881.76	9/2+	655.2 ^{<i>a</i>} 2	35.6 ^{<i>a</i>} 5	1226.50 7/2+	M1+E2 ^C	+0.27 +12-7	2.27×10^{-4} 11	B(M1)(W.u.)=0.028 3; B(E2)(W.u.)=13					
		1137.8 2	100.0 ^{<i>a</i>} 14	743.88 5/2+	E2(+M3) ^{<i>i</i>}	≤0.00028	9.18×10 ⁻⁵ <i>13</i>	$\alpha(K)=0.000206 \ 10; \ \alpha(L)=1.84\times10^{-5} \ 9; \\ \alpha(M)=2.36\times10^{-6} \ 12; \\ \alpha(N+)=1.28\times10^{-7} \ 6 \\ \alpha(N)=1.28\times10^{-7} \ 6 \\ B(E2)(W.u.)=33 \ 7; \ B(M3)(W.u.)\le14 \ 3 \\ \end{array}$					
								$\alpha(K)=8.09\times10^{-5} 12; \ \alpha(L)=7.24\times10^{-6} \\ 11; \ \alpha(M)=9.26\times10^{-7} 13; \\ \alpha(N+)=2.68\times10^{-6} 4 \\ \alpha(N)=5.02\times10^{-8} 7; \ \alpha(IPF)=2.63\times10^{-6} \\ 4 \end{cases}$					
1958.2	3/2+	1214.3 <i>3</i>	100 5	743.88 5/2+	M1+E2		8.0×10 ⁻⁵ 9	$\alpha(K)=6.4\times10^{-5} 7; \ \alpha(L)=5.7\times10^{-6} 6; \alpha(M)=7.3\times10^{-7} 8; \ \alpha(N+)=9.7\times10^{-6} 18 \alpha(N)=4.0\times10^{-8} 4; \ \alpha(IPF)=9.6\times10^{-6} 18 So the 0.47 + 20 - 14 cm + 27 + 77 - 16 $					
		1920 <i>1</i>	18 5	39.39 5/2-	(E1,M2) [@]		0.00038 22	B(E1)(W.u.)<1.4×10 ⁻⁵ 5; B(M2)(W.u.)<18 6 α (K)=3.0×10 ⁻⁵ 14; α (L)=2.6×10 ⁻⁶ 13; α (M)=3.4×10 ⁻⁷ 16; α (N+)=0.00035 24					
2014 5	2/2= 0/2=	1076 ^{s#t} 1	100.05# 10	20.20 5/2-				$\alpha(N)=1.8\times10^{-8}$ 9; $\alpha(IPF)=0.00035$ 24					
2014.7	3/2 to 9/2	$1976^{s#t}$ 1 $1976^{s#t}$ 1 $2016^{#}$ 1	$100.0^{s#}$ 19 $100.0^{s#}$ 19 $88.7^{#}$ 10	$39.39 \ 5/2$ $36.53 \ 3/2^{-}$	D,E2 ^{∞} D,E2 ^{$\&$}								
2258.2	5/2+	301 <i>I</i>	6 <i>4</i>	0.0 7/2 1958.2 3/2 ⁺	$(E2)^{\&f}$		0.00501 <i>10</i>	α(K)=0.00454 9; α(L)=0.000413 8; α(M)=5.26×10-5 10; α(N+)=2.77×10-6 6 α(N)=2.77×10-6 6 the calculated transition strength for this γ gives B(E2)(W.u.)=4.×103 3, which well exceeds the RUL.					
		691.0 <i>15</i>	4 3	1565.4 1/2+	(E2) ^{<i>f</i>}		0.000323 5	B(E2)(W.u.)=4.E+1 4 α (K)=0.000293 5; α (L)=2.63×10 ⁻⁵ 4;					

 \neg

 $^{45}_{22}{
m Ti}_{23}$ -7

	Adopted Levels, Gammas (continued)													
						γ ⁽⁴⁵ Ti) (co	ntinued)							
E_i (level)	J^{π}_i	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	δ^{\ddagger}	a ^r	Comments					
2258.2	5/2+	1514 1	74 8	743.88	5/2+	M1+E2	+1.4 +3-5	1.31×10 ⁻⁴ 7	$\alpha(M)=3.36\times10^{-6} 6; \alpha(N+)=1.81\times10^{-7} 3$ $\alpha(N)=1.81\times10^{-7} 3$ $B(M1)(W.u.)=0.0044 \ 16; B(E2)(W.u.)=10 3$ $\alpha(K)=4.18\times10^{-5} \ 13; \alpha(L)=3.73\times10^{-6} \ 12;$ $\alpha(M)=4.77\times10^{-7} \ 15; \alpha(N+)=8.5\times10^{-5} 6$ $\alpha(M)=4.77\times10^{-7} \ 15; \alpha(M)=8.5\times10^{-5} 6$					
		1929 <i>1</i>	100 8	329.30	3/2+	M1+E2	+0.42 +6-10	2.58×10 ⁻⁴ 5	$\begin{aligned} \alpha(N) &= 2.00 \times 10^{-6} \ s; \ \alpha(IPF) = 8.5 \times 10^{-6} \ o \\ B(M1)(W.u.) &= 0.0073 \ 16; \ B(E2)(W.u.) = 0.9 \ 3 \\ \alpha(K) &= 2.54 \times 10^{-5} \ 4; \ \alpha(L) = 2.26 \times 10^{-6} \ 4; \\ \alpha(M) &= 2.90 \times 10^{-7} \ 5; \ \alpha(N+) = 0.000230 \ 5 \\ \alpha(N) &= 1.578 \times 10^{-8} \ 24; \ \alpha(IPF) = 0.000230 \ 5 \end{aligned}$					
2432.1	3/2 to 11/2	2394 <i>s#t 3</i>	25 ^{s#} 13	36.53	3/2-									
		2394 <i>^{s#t} 3</i>	25 <mark>8#</mark> 13	39.39	5/2-									
		2432 [#] 2	100 [#] 13	0.0	7/2-									
2474.58	11/2+	592.5 []] 2	33.6 ^{<i>jk</i>} 5	1881.76	9/2+	M1+E2 ^c	+0.09 5	2.69×10 ⁻⁴ 5	B(M1)(W.u.)=0.068 <i>11</i> ; B(E2)(W.u.)=4 +5-4 α (K)=0.000244 5; α (L)=2.19×10 ⁻⁵ 4; α (M)=2.80×10 ⁻⁶ 5; α (N+)=1.52×10 ⁻⁷ 3 α (N)=1.52×10 ⁻⁷ 3					
		1248.2 ^{<i>j</i>} 2	100.0. ^{jk} 10	1226.50	7/2+	E2(+M3) ^{<i>i</i>}	≤0.00032	9.00×10 ⁻⁵ 13	B(E2)(W.u.)=38 6; B(M3)(W.u.) $\leq 17 3$ α (K)=6.57×10 ⁻⁵ 10; α (L)=5.87×10 ⁻⁶ 9; α (M)=7.51×10 ⁻⁷ 11; α (N+)=1.77×10 ⁻⁵ 3 α (N)=4.07×10 ⁻⁸ 6; α (IPE)=1.77×10 ⁻⁵ 3					
2531.4	$1/2.3/2.5/2^{(+)}$	966-1	100	1565.4	$1/2^{+}$				$u(n) = 4.07 \times 10^{-0}, u(n 1) = 1.77 \times 10^{-5}$					
2656.66	13/2-	1188.61 ^{<i>a</i>} 20	100.0 ^{<i>jk</i>} 14	1468.24	11/2-	M1+E2 ^{mn}	-2.6 ^{<i>l</i>} 5	8.61×10 ⁻⁵ 16	$\begin{array}{l} \alpha(\mathrm{K}) = 7.15 \times 10^{-5} \ 13; \ \alpha(\mathrm{L}) = 6.39 \times 10^{-6} \ 12; \\ \alpha(\mathrm{M}) = 8.18 \times 10^{-7} \ 15; \ \alpha(\mathrm{N}+) = 7.31 \times 10^{-6} \\ 18 \end{array}$					
									$\alpha(N)=4.44\times10^{-8}$ 8; $\alpha(IPF)=7.27\times10^{-6}$ 18					
		1303.5 ^j 3	8.4 ^j 4	1353.49	9/2-	(E2) ^{<i>f</i>}		9.55×10 ⁻⁵ 14	$\alpha(\mathbf{K}) = 5.97 \times 10^{-5} \ 9; \ \alpha(\mathbf{L}) = 5.34 \times 10^{-6} \ 8; \\ \alpha(\mathbf{M}) = 6.82 \times 10^{-7} \ 10; \ \alpha(\mathbf{N}+) = 2.97 \times 10^{-5} \\ 5 \\ \alpha(\mathbf{N}) = 3.71 \times 10^{-8} \ 6; \ \alpha(\mathbf{IPF}) = 2.97 \times 10^{-5} \ 5 \\ \end{array}$					

 ∞

 $^{45}_{22}\mathrm{Ti}_{23}\text{-}8$

					Adopte	ed Levels, Gar	nmas (con	tinued)	
						γ ⁽⁴⁵ Ti) (co	ntinued)		
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_{f}	${ m J}_f^\pi$	Mult. [‡]	δ^{\ddagger}	α^{r}	Comments
2849.4 2911.6	1/2,3/2,5/2 ⁽⁺⁾ 7/2 ⁺	1284 <i>1</i> 954 <i>1</i>	100 50 20	1565.4 1958.2	1/2 ⁺ 3/2 ⁺	(E2) ^f		0.0001360 20	B(E2)(W.u.)=48 24 α (K)=0.0001235 18; α (L)=1.106×10 ⁻⁵ 16; α (M)=1.414×10 ⁻⁶ 21 α (N+)=7.65×10 ⁻⁸ 11 α (N)=7.65×10 ⁻⁸ 11
		1030 <i>I</i>	67 13	1881.76	9/2+	M1+E2		0.000100 14	$\alpha(N) = 7.55 \times 10^{-5} II \alpha(K) = 9.0 \times 10^{-5} I2; \ \alpha(L) = 8.1 \times 10^{-6} II; \alpha(M) = 1.03 \times 10^{-6} I4; \alpha(N+) = 5.6 \times 10^{-8} 8 \alpha(N) = 5.6 \times 10^{-8} 8 \delta; +0.32 + 2I - II \text{ or } >4.9.$
		2167 1	100 22	743.88	5/2+	M1+E2		0.00038 4	$\alpha(K)=2.14\times10^{-5} \ 8; \ \alpha(L)=1.90\times10^{-6} \ 7; \ \alpha(M)=2.43\times10^{-7} \ 9; \ \alpha(N+)=0.00036 \ 4 \ \alpha(N)=1.33\times10^{-8} \ 5; \ \alpha(IPF)=0.00036 \ 4 \ \delta; \ \pm 0.52 \ \pm 29 - 16 \ or \ \pm 2.8 \ 10 \ cm^{-2}$
2932.9	$(13/2^+)$	458 <mark>8</mark>		2474.58	$11/2^{+}$				0. +0.52 +29-10 01 +2.8 10.
3015.37	15/2-	358.97 ^{<i>a</i>} 15	25.4 ^{<i>a</i>} 19	2656.66	13/2-	M1+E2 ^{mn}	-2.6 ^l 3	0.00242 7	$\alpha(K)=0.00220 \ 6; \ \alpha(L)=0.000199 \ 6;$ $\alpha(M)=2.54\times10^{-5} \ 7;$ $\alpha(N+)=1.35\times10^{-6} \ 4$ $\alpha(N)=1.35\times10^{-6} \ 4$ δ : value of -2.6 3 results in E2 transition strength which greatly exceeds the RUL, with B(M1)(W.u)=0.023 \ 8; B(E2)(W u)=3.2\times10^{3} \ 9
		1546.90 ^{<i>a</i>} 15	100 ^{<i>a</i>} 7	1468.24	11/2-	(E2) ^{<i>fi</i>}		1.52×10 ⁻⁴	B(E2)(W.u.)= 3.2×10^{-9} . B(E2)(W.u.)= 10.3 α (K)= 4.18×10^{-5} 6; α (L)= 3.73×10^{-6} 6; α (M)= 4.77×10^{-7} 7; α (N+)= 0.0001064 15 α (N)= 2.59×10^{-8} 4; α (IPF)= 0.0001064 15
3156.0		2412 <i>I</i>	100	743.88	5/2+				15
3447.31	13/2+	972.6 ^j 2 1565.7 ^j 2	72.2 ^{jo} 16 100.0 ^{jo} 11	2474.58 1881.76	11/2 ⁺ 9/2 ⁺	D,E2 (E2) ^{fi}		0.0001590 23	B(E2)(W.u.)=20.4 24 α (K)=4.08×10 ⁻⁵ 6; α (L)=3.64×10 ⁻⁶ 5; α (M)=4.65×10 ⁻⁷ 7:

					Adopte	d Levels, Gan	nmas (cont	inued)	
						γ ⁽⁴⁵ Ti) (cor	tinued)		
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α^{r}	Comments
									B(E2)(W.u.)=20.4 24 α (K)=4.08×10 ⁻⁵ 6; α (L)=3.64×10 ⁻⁶ 5; α (M)=4.65×10 ⁻⁷ 7; α (N+)=0.0001142 16 α (N)=2.53×10 ⁻⁸ 4; α (IPF)=0.0001142 16
3601.87	17/2-	586.41 ^{<i>a</i>} 15	100 ^{jo} 5	3015.37	15/2-	M1+E2 ^{mn}	-2.3 ^l 1	4.85×10 ⁻⁴ 8	$\begin{aligned} &\alpha(\mathbf{K}) = 0.000440 \ 7; \ \alpha(\mathbf{L}) = 3.96 \times 10^{-5} \ 7; \\ &\alpha(\mathbf{M}) = 5.06 \times 10^{-6} \ 8; \\ &\alpha(\mathbf{N}+) = 2.72 \times 10^{-7} \ 5 \\ &\alpha(\mathbf{N}) = 2.72 \times 10^{-7} \ 5 \\ &\delta: \ value \ of \ -2.3 \ I \ results \ in \ E2 \\ &transition \ strength \ which \ greatly \\ &exceeds \ the \ RUL, \ with \\ &B(\mathbf{M}1)(\mathbf{W}.u.) = 0.0170 \ 22; \\ &B(\mathbf{E2})(\mathbf{W}.u.) = 710 \ 80. \end{aligned}$
		945.1 ^{<i>j</i>} 2	13.2 ^j 3	2656.66	13/2-	E2 ^{ip}		0.0001390 20	B(E2)(W.u.)=10.2 <i>10</i> α (K)=0.0001264 <i>18</i> ; α (L)=1.132×10 ⁻⁵ <i>16</i> ; α (M)=1.448×10 ⁻⁶ <i>21</i> α (N+)=7.83×10 ⁻⁸ <i>11</i> α (N)=7.83×10 ⁻⁸ <i>11</i>
3922.45	15/2+	475.2 ^{<i>j</i>} 2	20.3 ^{jo} 6	3447.31	13/2+	(M1) ^{<i>h</i>}		1.66×10 ⁻⁴ 3	B(M1)(W.u.)=0.111 9 α (K)=0.000391 6; α (L)=3.51×10 ⁻⁵ 5; α (M)=4.49×10 ⁻⁶ 7; α (N+)=2.43×10 ⁻⁷ 4 α (N)=2.43×10 ⁻⁷ 4
		1447.8 ^{<i>j</i>} 2	100.0 ^{jo} 6	2474.58	11/2+	(E2) ^{&} <i>fi</i>		1.22×10 ⁻⁴ 2	B(E2)(W.u.)=24.9 <i>17</i> α (K)=4.78×10 ⁻⁵ 7; α (L)=4.27×10 ⁻⁶ 6; α (M)=5.46×10 ⁻⁷ 8; α (N+)=6.94×10 ⁻⁵ <i>10</i> α (N)=2.97×10 ⁻⁸ 5; α (IPF)=6.94×10 ⁻⁵ <i>10</i>
3937.6 4344.9	(11/2 to 15/2) 19/2 ⁻	1463 <i>1</i> 742.8 ^j 2	100 100.0 ^j 13	2474.58 3601.87	11/2 ⁺ 17/2 ⁻	M1 ^{&m}		0.0001660 24	B(M1)(W.u.)=0.51 7
	~ , =				,=				$\alpha(K)=0.0001510 \ 22; \ \alpha(L)=1.351\times10^{-5}$ 19; \(\alpha(M)=1.729\times10^{-6} \ 25) \(\alpha(N+)=9.39\times10^{-8} \ 14) \(\alpha(N)=9.39\times10^{-8} \ 14)
		1330.1 ^j 3	1.43 ^j 13	3015.37	15/2-	(E2) ^{&} f		9.91×10 ⁻⁵ 14	B(E2)(W.u.)=1.9 4 α (K)=5.72×10 ⁻⁵ 8; α (L)=5.11×10 ⁻⁶ 8; α (M)=6.53×10 ⁻⁷ 10;

н

	Adopted Levels, Gammas (continued)												
						$\gamma(45)$	⁵ Ti) (continued)						
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	α^{r}	Comments					
								B(E2)(W.u.)=1.9 4 α (K)=5.72×10 ⁻⁵ 8; α (L)=5.11×10 ⁻⁶ 8; α (M)=6.53×10 ⁻⁷ 10; α (N+)=3.61×10 ⁻⁵ 6 α (N)=3.55×10 ⁻⁸ 5; α (IPF)=3.61×10 ⁻⁵ 6					
4855.2	(17/2 ⁺)	933 ⁸ 1922 ⁸	g g	3922.45 2932.9	15/2 ⁺ (13/2 ⁺)	D,E2							
5239.9	$(17/2^+)$	1317.5 ^j 2	53.6 ^j 12	3922.45	$15/2^{+}$								
		1792.5 ^j 2	100.0 ^j 14	3447.31	13/2+	[E2]	2.49×10 ⁻⁴ 4	B(E2)(W.u.)=3.E+1 3 α (K)=3.13×10 ⁻⁵ 5; α (L)=2.79×10 ⁻⁶ 4; α (M)=3.57×10 ⁻⁷ 5; α (N+)=0.000214 3 α (N)=1.94×10 ⁻⁸ 3; α (IPF)=0.000214 3					
5640.9	19/2+	401.3 ^j 3	14.0 ^{jo} 6	5239.9	(17/2 ⁺)	(M1) ^{&} h	6.29×10 ⁻⁴ 9	B(M1)(W.u.)=0.22 7 α (K)=0.000570 8; α (L)=5.13×10 ⁻⁵ 8; α (M)=6.57×10 ⁻⁶ 10; α (N+)=3.55×10 ⁻⁷ 5 α (N)=3.55×10 ⁻⁷ 5					
		1717.7 ^j 5	100 ^{.jo} 2	3922.45	15/2+	(E2) ^{&} fi	2.18×10 ⁻⁴ 3	B(E2)(W.u.)=18 6 α (K)=3.40×10 ⁻⁵ 5; α (L)=3.03×10 ⁻⁶ 5; α (M)=3.87×10 ⁻⁷ 6; α (N+)=0.000180 3 α (N)=2.11×10 ⁻⁸ 3; α (IPF)=0.000180 3					
6006.7		2084 ^g		3922.45	$15/2^{+}$								
6163.0	23/2-	1818.0 ^{jq} 4	100 ^g	4344.9	19/2-	E2 ^{<i>i</i>p}	0.000260 4	B(E2)(W.u.)=8.6 <i>10</i> α (K)=3.05×10 ⁻⁵ 5; α (L)=2.71×10 ⁻⁶ 4; α (M)=3.47×10 ⁻⁷ 5; α (N+)=0.000226 4 α (N)=1.89×10 ⁻⁸ 3; α (IPF)=0.000226 4					
6459.9	$(21/2^+)$	453 ^g 819 ^g		6006.7 5640.9	19/2+								
6757.9	$(21/2^+)$	1117 ^g 1518 ^g		5640.9 5239.9	$19/2^+$ (17/2 ⁺)								
7143.4	27/2-	980.45 ^{<i>a</i>} 25	100 ^g	6163.0	23/2-	E2 ^{ip}	0.0001270 18	B(E2)(W.u.)=6.3 9 α (K)=0.0001154 <i>17</i> ; α (L)=1.033×10 ⁻⁵ <i>15</i> ; α (M)=1.321×10 ⁻⁶ <i>19</i> α (N+)=7.15×10 ⁻⁸ <i>10</i> α (N)=7.15×10 ⁻⁸ <i>10</i>					
7342.0	(23/2+)	584 <mark>8</mark> 1701 ⁸		6757.9 5640.9	(21/2 ⁺) 19/2 ⁺								
7830.7		1073 ^g 2190 ^g		6757.9 5640.9	(21/2 ⁺) 19/2 ⁺								
8289.2	$(25/2^+)$	459 <mark>8</mark>		7830.7	-								

γ ⁽⁴⁵Ti) (continued)</sup>

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [‡]	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [‡]
8289.2	$(25/2^+)$	947 <mark>8</mark>		7342.0 ($(23/2^+)$		10795.3	$(29/2^+)$	2506 <mark>8</mark>	8289.2	$(25/2^+)$	
		1829 <mark>8</mark>		6459.9 ($(21/2^+)$		12498.6	$(29/2^{-})$	2345 <mark>8</mark>	10153.5	$(25/2^{-})$	D,E2 <mark>&</mark>
9643.5		2500 <mark>8</mark>	100 <mark>8</mark>	7143.4 2	$27/2^{-}$	D,E2 <mark>&</mark>	13030.4	$(33/2^+)$	2235 <mark>8</mark>	10795.3	$(29/2^+)$	
10153.5	$(25/2^{-})$	3010 <mark>8</mark>	100 <mark>8</mark>	7143.4 2	$27/2^{-}$	$(D)^{m}$						

[†] From $(\alpha, n\gamma)$, except as noted.

- [‡] From $\gamma(\theta)$ or $n\gamma(Q)$ in $(\alpha, n\gamma)$ and comparison to RUL, except as noted.
- [#] From (p,n γ). 289.5 γ deduced from E γ (to 40)-3.3 3.
- [@] D,E2 or D,Q from comparison to RUL. $\Delta \pi$ =yes from decay scheme.
- [&] From comparison to RUL.
- ^{*a*} From (HI,xn γ).

12

- ^b D+Q or D(+Q) from $\gamma(\theta)$ or $n\gamma(\theta)$ in $(\alpha, n\gamma)$. $\Delta \pi$ =yes from decay scheme.
- ^{*c*} Δ J=1 d+Q transition from DCO in (¹⁸O,3n γ).
- ^d Unweighted av of $I\gamma(483\gamma)$: $I\gamma(897\gamma)$: $I\gamma(1188\gamma)$: $I\gamma(1226\gamma)$ =13.6 5:15.1 2:2.0 1:0.81 3 from (²⁴Mg,2pn\gamma), 47 4:36.9 23:10 4:6.4 19 from (p,n\gamma), 40 2:42 2:8.5 10:9.5 10 from (α ,n γ), and 86 11:100 9:11.9 21:10.6 21.
- ^{*e*} From $\gamma(\theta)$ and linear polarization in $(\alpha, n\gamma)$.
- ^{*f*} D,E2 from comparison to RUL. ΔJ^{π} =2,no from decay scheme.
- ^{*g*} From (18 O,3n γ).
- ^{*h*} D from comparison to RUL. $\Delta \pi$ =no from level scheme.
- ^{*i*} $\Delta J=0$ d or $\Delta J=2$ Q transition from DCO in (¹⁸O,3n γ).
- ^{*j*} From (24 Mg,2pn γ).
- ^{*k*} Branching ratios in (¹⁸O,3n γ) and (α ,n γ) are discrepant.
- ^{*l*} From $\gamma(\theta)$ in (HI,xn γ).
- ^{*m*} Δ J=1 d transition from DCO in (¹⁸O,3n γ).
- ^{*n*} D+Q from $\gamma(\theta)$ in (HI,xn γ). Ne E1+M2 from δ and comparison to RUL.
- ^{*o*} Branching ratios in ($^{18}O, 3n\gamma$) are discrepant.
- ^{*p*} Q from DCO in (¹⁸O,3n γ). Ne M2 from comparison to RUL.
- ^{*q*} From comparison of the I γ 's of the sequentially emitted γ 's, 1818 and 743 keV, 1998Be29 in (¹⁸O,3n γ) concluded that the previous ordering by 1978Fo09 in (HI,xn γ) should Be inverted. This conclusion is supported by the existence of the 1330 γ crossover.
- ^r Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ-ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.
- ^s Multiply placed with undivided intensity.
- ^t Placement of transition in the level scheme is uncertain.

 $^{45}_{22}\mathrm{Ti}_{23}\text{--}12$

Level Scheme

Intensities: Relative photon branching from each level

 $^{45}_{22}{\rm Ti}_{23}$

 $^{45}_{22}{\rm Ti}_{23}$

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

 ${}^{45}_{22}{\rm Ti}_{23}$

