45 Sc(p,n),(p,n γ)

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	T. W. Burrows	NDS 109,171 (2008)	30-Oct-2007				

Target $J^{\pi} = 7/2^{-}$.

1968Je03: energy not given. Cyclotron. Ge(Li), Si(Li), and curved-crystal spect.

1970Iy01: E(p)=2.8-5.6 MeV. Measured n's and n(θ =0°-135°) (tof,scin) and γ 's and γ (θ =0°,30°,60°,90°) Hauser-Feshbach calculations.

1970Ly02: E(p)=6, 7.5 MeV. Measured γ (t); Ge(Li), scin.

1971Iy02: E(p)=4.45-5.90 MeV. Measured E(n), $\sigma(E\gamma, E(n), \theta(\gamma))$; tof. DSAM.

1972Zu02: E(p)=3.35-4.50 MeV. Measured γ 's, $\gamma(\theta)$. DSAM.

1976Wh01: E(p)=3.5-5 MeV. Measured γ (t).

1980Ch13: E(p)=3.6 and 4.0 MeV. Measured γ 's and $\gamma\gamma$ - and $n\gamma$ -coincidences. Ge(Li), scin.

1985Av04: see 45 Sc 45 Sc(p,p' γ) for details.

Others: see 1992Bu01.

⁴⁵Ti Levels

See 1970Iy01 for suggested J^{π} deduced from comparison to Hauser-Feshbach calculations.

$\begin{array}{cccc} J & T \\ \underline{E_x} & \\ 1354 & 9/2 \\ 1468 & 11/2 \\ 1882 & 9/2 \\ 2016 & \leq 11/2 \end{array}$	$ \begin{array}{c} \text{From} \\ \text{J}^{\pi} \\ \text{Z}^{-} \\ \text{TV}\gamma(\theta) \\ \text{Z}^{+} \\ \text{TV}\gamma(\theta) \\ \text{TV}\gamma(\theta$	the Adopted L) and M1+E) and E2+M) and E2(+1 θ)	evels. Cont 2 γ to 7/2 3 γ to 7/2 13) γ to 5	ributing argu - - /2 ⁺	nents from	these	data	are:
E(level) [†] 0.0 36.7 3 40.1 3 329.5 3 743.9 3 1226.9 5 1354.1 8 1468 0 10	$ \begin{array}{c} J^{\pi} \\ 7/2^{-} \\ 3/2^{-} \\ 5/2^{-} \\ 3/2^{+} \\ 5/2^{+} \\ 5/2^{+} \\ 2 \\ 7/2^{+} \\ 2 \\ 9/2^{-} \\ 10 \end{array} $	$T_{1/2}^{\ddagger}$ 3.1 [#] µs 3 11.9 ^{#@} ns 7 1.099 [@] & ns 13 21 ps 21.5 ps 3 [@] fs 9 0.48 [@] ps 7	E(level) [†] 1521.0 10 1799.2 25 1881.9 8 1957.9 18 2016.0 10 2259.8 21 2432.1 20	J^{π} 3/2 ⁻ to 9/2 ⁻ (1/2 ⁻ to 7/2 ⁻) 9/2 ⁺ 3/2 ⁺ 3/2 ⁻ to 9/2 ⁻ 5/2 ⁺ 3/2 to 11/2	$\frac{T_{1/2}^{\ddagger}}{48^{@} \text{ fs } 11}$ 0.32 ps +22-8 0.62 ps +21-14 32 fs 9			

[†] From least-squares fit to $E\gamma$'s. $E\gamma E\gamma$ (to 40)–3.3 3, excluded from least-squares analysis.

[±] From DSAM (1971Iy02), except as noted.

[#] From γ (t) (1970Ly02). T_{1/2}(40) weighted average from (p,n γ), E(p)=6 MeV, and (α ,n γ), E α =10 MeV.

[@] See 1992Bu01 for other $T_{1/2}$ measurements.

[&] From γ (t) (1976Wh01).

	45 Sc(p,n),(p,n γ) (continued)												
							$\gamma(43)$	⁵ Ti)					
RI(F) E_x	Unweight $\frac{E_g}{E_g}$	ed a	average of the 1968Je03	e following b 1970Iy01	oranchir <u>1971</u> I	ıg rat <mark>y02</mark>	ios:	1972Zu02	198	0Ch13		1985Av04	
744	414 85	5	94 2	94	1	90	1	90.	69	90 5	5		
	704	F	6.2	G	1	2.	4 4			1005			
	707	2	0 2	0	1	10 6.	8 7			10.0 5			
	744					0.	2 1						
1227	483 31	5	53 <i>2</i>	46	1	53	2			51 3	-		
	897 32 1187 23	5	37 2	45.	1 ?	37	2			34.0 1/	/		
	1227 14	5	4 2	4	2	5	1			5.0 3			
1354	1314		65	7 1		9 1				7.0 4			
1521	1354 1484		94 5 83 2	93 1	<u> </u>	91 1				93 5		32 0 17	
1921	1521		17 2									68 4	
E _i (level)) J_i^{π}		E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \ddagger}$	E_f	\mathbf{J}_f^{π}	Mult. [#]	δ#				Comments	
36.7	3/2-		36.68 [@] 30	100 [@]	0.0	7/2-			$2 < \alpha$	exp)<20,	fron	n I $\gamma(37\gamma)$ and I $\gamma(292\gamma)$ measured just above breshold for the 330-keV state (1968 Je03)	
40.1	5/2-		$40.15^{\textcircled{0}}{30}$	$100^{@}$	0.0	$7/2^{-}$			the	production	on u	include for the 550-kev state (1905-05).	
329.5	3/2 ⁺		289.5 ^{<i>a</i>} 3	0.55 ^{&} 25	40.1	5/2-							
			292.77 [@] 5	99.45 ^{&} 25	36.7	3/2-							
743.9	5/2+		414.45 [@] 10	90.3 14	329.5	$3/2^{+}$	b						
			703.9 ^a 11	2.5 5	40.1	$5/2^{-}$							
			707.2 ^{⁽⁰⁾} 10	7.0 12	36.7	$3/2^{-}$			г с	1000			
1226.9	7/2+		/44 483 1	0.2 I 47 4	0.0 743 9	1/2 5/2+			E_{γ} : fi	rom 1980	Chl	13.	
1220.7	1/2		897 1	36.9 23	329.5	$3/2^+$							
			1187 1	10 4	40.1	5/2-							
			1227 1	6.4 19	0.0	7/2-	D+Q		$\delta: 0.0$	3 or + 3	1.60) 6 (1985Av04).	
1354.1	9/2-		1314 <i>I</i>	7.2 7	40.1	$5/2^{-}$			wiuit.	.,0. 110111	<i>Y</i> (0).		
	,		1354 <i>I</i>	92.8 7	0.0	7/2-	M1+E2 ^C	-0.34 ^c 12					
1468.0	$11/2^{-}$		1468 <i>1</i>	100	0.0	7/2-	E2+M3 ^C	$+0.09^{\circ}$ 7					
1521.0	3/2 ⁻ to 9/2	_	1484 ^{ed} <i>I</i>	58 ^e 26	40.1	5/2-							
			1484 ^{cu}] 1521]	58° 26	36.7	$3/2^{-}$							
1799.2	$(1/2^{-}$ to $7''$	2-)	$1761 \frac{edf}{2}$	42 20	40 1	1/2 5/2-							
1177.2	(1/2 10 //2	_ ,	1761^{edf} 2	100 ^e	36.7	$3/2^{-}$							
1881.9	9/2+		655 1	28 1	1226.9	$7/2^+$							

From ENSDF

 $^{45}_{22}\mathrm{Ti}_{23}\text{-}2$

I

γ ⁽⁴⁵Ti) (continued)

E_i (level)	J_i^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \ddagger}$	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	δ#
1881.9	9/2+	1138 <i>I</i>	72 1	743.9	$5/2^{+}$	E2(+M3) ^C	+0.3 ^c 3
1957.9	$3/2^{+}$	1214 2	100	743.9	$5/2^{+}$		
2016.0	3/2 ⁻ to 9/2 ⁻	1976 ^{edf} 1	53 ^e 1	40.1	5/2-		
		1976 ^{ed f} 1	53 ^e 1	36.7	3/2-		
		2016 1	47 <i>1</i>	0.0	$7/2^{-}$		
2259.8	$5/2^{+}$	302 2		1957.9	$3/2^{+}$		
		1930 <i>3</i>		329.5	$3/2^{+}$		
2432.1	3/2 to 11/2	2394 ^{edf} 3	20 ^e 10	40.1	$5/2^{-}$		
		2394 ^{edf} 3	20 ^e 10	36.7	3/2-		
		2432 2	80 10	0.0	7/2-		

[†] From 1971Iy02, except as noted.

[‡] % photon branching from each level.

[#] From $\gamma(\theta)$ (1971Iy02), except as noted.

ω

^(a) From 1968Je03. [&] From 1980Ch13. ^a From E γ (to 40)–3.3 3. 1980Ch13 observed a small peak 3.3 keV 3 below the 292 γ and confirmed its existence in $\gamma\gamma$ -coin in ⁴²Ca(α ,n γ).

^b Isotropic distribution at E(p)=3.85 MeV (1970Iy01).

^c From $\gamma(\theta)$ and comparison to RUL (1971Iy02).

^d Possible doublet (evaluator).

^e Multiply placed with undivided intensity.

^f Placement of transition in the level scheme is uncertain.

 $^{45}_{22}{\rm Ti}_{23}$

4