⁴⁵V β⁺ decay **1982Ho11**

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	T. W. Burrows	NDS 109, 171 (2008)	30-Oct-2007				

Parent: ⁴⁵V: E=0.0; $J^{\pi}=7/2^-$; $T_{1/2}=547$ ms 6; $Q(\beta^+)=7126$ 17; $\%\beta^+$ decay=100.0 ⁴⁵V-E, J^{π} , $T_{1/2}$: From the ⁴⁵V Adopted Levels. ⁴⁵V O(*a*t.), From 2003 A (02)

⁴⁵V-Q(β^+): From 2003Au03.

Measured γ 's; helium-jet transport system. Others: 1992Bu01.

⁴⁵Ti Levels

E(level)	J^{π}			
0	7/2-			
40.1	$5/2^{-}$			

[†] From the Adopted Levels.

ε, β^+ radiations

I β normalization: see comment on I γ normalization.

E(decay)	E(level)	$I\beta^{+\dagger\ddagger}$	$I\varepsilon^{\ddagger}$	$\log ft^{\dagger}$	$I(\varepsilon + \beta^+)^{\dagger \ddagger}$	Comments
(7086 17)	40.1	4.3 15	0.0042 14	5.0 2	4.3 15	av E β =2834.3 84; ϵ K=0.000866 8; ϵ L=8.79×10 ⁻⁵ 8;
(7126 <i>17</i>)	0	95.6 15	0.091 2	3.64 2	95.7 15	$\varepsilon M += 1.514 \times 10^{-5} I3$ av E $\beta = 2854.0 \ 84; \ \varepsilon K = 0.000849 \ 7; \ \varepsilon L = 8.62 \times 10^{-5} \ 8; \ \varepsilon M += 1.484 \times 10^{-5} I3$

[†] Values are dependent on the theoretical assumptions used by 1982Ho11 to obtain the normalization. The evaluator estimates that these assumptions May lead At most to a factor of two difference In the feeding of the 40-keV state. Such a difference would change the log ft's by \approx 0.3.

[‡] Absolute intensity per 100 decays.

$\gamma(^{45}\text{Ti})$

I γ normalization: Ti(40.1 γ ⁴⁵Ti)/Ti(56.6 γ ⁴⁵V)=6.2% 9, assuming M1 for both transitions (1980Gr04). Based on theory and data from ⁴⁰Ca(⁷Li,2n γ) (1980Gr04), 1982Ho11 estimated that 70% 20 of all ⁴⁵V nuclei produced should pass through the 56.6-keV state.

Comparison to neighboring nuclei indicated that the branching to excited states was expected to Be small. Within the accuracy of the measurements of 1982Ho11, No other γ 's could Be assigned to ⁴⁵Ti In the decay of ⁴⁵V.

Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.	δ	α^{\ddagger}	$I_{(\gamma+ce)}^{\dagger}$	Comments
40.1	3.5 CA	40.1	5/2-	0	7/2-	(M1(+E2))	0.000 25	0.223 10	4.3 15	ce(K)/(γ +ce)=0.165 5; ce(L)/(γ +ce)=0.0156 7; ce(M)/(γ +ce)=0.00199 8; ce(N+)/(γ +ce)=0.000104 4 ce(N)/(γ +ce)=0.000104 4 Mult., δ , α : from the adopted gammas.

45 V β^+ decay 1982Ho11 (continued)

$\gamma(^{45}\text{Ti})$ (continued)

 † Absolute intensity per 100 decays.

^{\ddagger} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

⁴⁵V β⁺ decay 1982Ho11

Decay Scheme

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays

 ${}^{45}_{22}{\rm Ti}_{23}$