$(HI,xn\gamma)$

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	T. W. Burrows	NDS 109, 171 (2008)	30-Oct-2007						

1971B114,1971B1ZO,1971MaXE: E(¹⁶O)=34 and 36 MeV. Measured ce's (mag spect,Si), γ's, and pγ- and γγ-coincidences; RDM. 1974Wa07: E(¹⁹F)=45 MeV. See ⁴⁵Sc ²⁸Si(¹⁹F,2pγ), ³⁰Si(¹⁸O,p2nγ),... For details. 1975Ol01: $E({}^{19}F)=45$ MeV. See ${}^{45}Sc {}^{28}Si({}^{19}F,2p\gamma)$, ${}^{30}Si({}^{18}O,p2n\gamma)$,... For details.

1978Fo09: E(²⁴Mg)=50-71 MeV. Measured γ 's, γ -ray excitation functions (50-71 MeV, 7-MeV steps), and $\gamma\gamma$ -coincidences. $E(^{16}O)=35-80$ MeV. Measured γ 's, γ excitation functions (35-80 MeV, 5 MeV steps, and $\gamma(\theta=15^{\circ}-90^{\circ}, 15^{\circ} \text{ steps}, E(^{16}O)=60$

MeV).

1980Gr04: E(⁷Li)=14, 15, and 16 MeV. See ⁴⁵V ⁴⁰Ca(⁷Li,2n) for experimental details.

See 1983Bu21 for a detailed comparison of these data. Others: see 1992Bu01.

Includes: 27 Al(24 Mg, αpnγ) 1978Fo09 28 Si(19 F,pnγ) 1974Wa07,19750101 31 P(16 O,pnγ) 1971Bl14,1971BlZO,1971MaXE tvSee Also 24 Mg(24 Mg,2pnγ) And 30 Si(18 O,3nγ)

 $^{35}Cl(^{16}O, \alpha pn\gamma)$ 1978Fo09 ⁴⁰Ca(⁷Li,pnγ) 1980Gr04

⁴⁵Ti Levels

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	Comments		
0.0	7/2-				
36.75 18	3/2-	2.9 µs 3			
38.35 25	5/2-	12.3 ns 9			
329.58 [@] 18	3/2+	1.19 ns 7			
744.26 [@] 16	$5/2^{+}$	10.5 ps 17			
1226.83 [@] 16	$7/2^{+}$	2.8 ps 6			
1468.16 15	$11/2^{-}$	-			
1882.05 [@] 10	$9/2^{+}$	1.1 ps 6			
2656.48 21	$13/2^{-}$		J^{π} : 13/2 from 1188 $\gamma(\theta)$ (1978Fo09) assuming $J_f > J_i$ and $J_f - J_i \le 2$.		
3015.27 20	15/2-		J ^{π} : 15/2 from $\gamma(\theta)(358\gamma)$. I $\gamma(1547\gamma)/I\gamma(358\gamma)=4/1$ supports the 13/2, 15/2 sequence (1978Fo09).		
3601.68 25	$17/2^{-}$		J^{π} : 17/2 from 586 $\gamma(\theta)$ (1978Fo09).		
5419.5 4	$(21/2^{-})$		J^{π} : (19/2,21/2) from γ excit. Assignment based on "stretched E2 arguments" (1978Fo09).		
6162.6 5	$23/2^{-}$		J^{π} : if J(5422)=21/2, 23/2 from 743 $\gamma(\theta)$ (1978Fo09).		
7143.0 6	$27/2^{-}$		J^{π} : (Q) to (23/2 ⁻) (1978Fo09).		
			see comment on 980γ .		

[†] From least-squares fit to $E\gamma's$.

[‡] From the Adopted Levels. Contributing arguments from these data given In comments.

[#] From RDM (1971B114), except $T_{1/2}(39)$ which is from $n\gamma(t)$ (1980Gr04). Other $T_{1/2}(330)=1.2$ ns ($n\gamma(t)$, 1980Gr04).

[@] Band(A): 3/2⁺ rotational band (1971B114).

$\gamma(^{45}\text{Ti})$

Coincidences shown on drawing are from 1978Fo09 and 1980Gr04.

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	J_f^π	Mult. [#]	δ	$\alpha(\exp)^{\textcircled{0}{0}}$	Comments
36.75 38.35	3/2 ⁻ 5/2 ⁻	36.7 ^{&} 3 39.8 ^a	100	0.0 0.0	7/2 ⁻ 7/2 ⁻	D,E2 D			
329.58	3/2+	292.70 15	100	36.75	3/2-	E1		9.3×10 ⁻⁴ 14	Mult.: from $\alpha(\exp)$.
744.26	5/2+	414.6 ^{&} 2 703.6 ^a	100 4	329.58 38.35	3/2 ⁺ 5/2 ⁻	M1(+E2) ^b	≤0.43 ^b	6.0×10 ⁻⁴ 8	
		707.7 ^{&} 2	8.7 11	36.75	3/2-	D			
1226.83	7/2+	482.56 15	86 11	744.26	5/2+	M1+E2 ^b	0.58 ^b 35	5.7×10 ⁻⁴ 13	
		897.1 ^{&} 2	100 9	329.58	$3/2^+$	D,E2			
		1188.01 20	11.9- 21	38.33	5/2	D,E2			
1/68 16	$11/2^{-}$	1220.0 /	10.6 21	0.0	7/2 7/2-	D,E2 E2			Mult δ : from $\alpha(\theta)$ (1078Ec00) and linear
1408.10	11/2	1400.14 15	100	0.0	1/2	Ľ2			polarization (19750101).
1882.05	9/2+	655.2 ^{&} 2	35.6 5	1226.83	7/2+	D,E2		2.9×10^{-4} 9	
		1137.8 <mark>&</mark> 2	100.0 9	744.26	5/2+	D,E2			
		1882.0 ^{&} 1	6.8 14	0.0	$7/2^{-}$	D,Q			
2656.48	$13/2^{-}$	1188.61 ^e 20	100 ^e	1468.16	11/2-	D+Q ^C	-2.6° 5		
3015.27	$15/2^{-}$	358.97 15	25.4 19	2656.48	$13/2^{-}$	D+Q ^C	-2.6° 3		
0(01 (0	1 7 10 -	1546.90 15	100 7	1468.16	11/2-				T (10.055
3601.68	17/2	586.41 15		3015.27	15/2	D+Q ^e	-2.3° 1		$1\gamma < 618 > 355$
									1_{γ} , Mult., of limits deduced after subtraction of 10° V, 586 γ . The small contamination of this line did not seem to alter the results from $\gamma(\theta)$.
		944.8 <i>5</i>	100 9	2656.48	$13/2^{-}$				E_{γ} : from 1978Fo09 In (¹⁶ O,αpnγ).
5419.5	$(21/2^{-})$	1817.78 ^d 30	100	3601.68	$17/2^{-}$	(Q)			Mult.: see comment on $J^{\pi}(5420)$.
6162.6	$23/2^{-}$	743.06 ^d 25	100	5419.5	$(21/2^{-})$	D+Q ^C	-2.7^{c} 3		
7143.0	27/2-	980.45 25		6162.6	23/2-	(Q)			 Mult.: Iγ(15°)/Iγ(90°)>1? linear polarization (1975Ol01) consistent with L≤2. degenerate with a 984γ from ⁴⁸Ti. Placement At top of cascade based only on γγ-coin (1978Fo09).

 \mathbf{P}

[†] From 1974Wa07, except As noted.
[‡] Relative photon branching ratio from each level. Converted from % photon branching ratios of 1971B114 for gammas from states below 1.4 MeV and from the 1.9-MeV state and from relative photon intensities of 1978Fo09 In (¹⁶O,αpnγ) (Iγ(1468γ)=100) for the other gammas.
[#] From comparison to RUL, except As noted.
[@] From simultaneous measurement of Ice and Iγ (1971B114).

(HI,xn γ) (continued)

$\gamma(^{45}\text{Ti})$ (continued)

[&] From 1971B114. ^{*a*} From 1980Gr04. ^{*b*} From $\alpha(\exp)$ and comparison to RUL.

^{*c*} From $\gamma(\theta)$ (1978Fo09).

^d From comparison of the I γ 's of the sequentially emitted γ 's, 1818 and 743 keV, In (¹⁸O,3n γ) 1998Be29 conclude that the ordering by 1978Fo09 In (HI,xn γ) should Be inverted. This conclusion is supported by the existence of the 1330γ crossover.

^e Multiply placed with intensity suitably divided.

 $x \gamma$ ray not placed in level scheme.

 $^{45}_{22}{\rm Ti}_{23}$

4

$(HI,xn\gamma)$

 ${}^{45}_{22}{\rm Ti}_{23}$