²⁴Mg(²⁴Mg,2pnγ) E=83 MeV 2006Be07

History					
Type Author		Citation	Literature Cutoff Date		
Full Evaluation	T. W. Burrows	NDS 109, 171 (2008)	30-Oct-2007		

See also ${}^{30}\text{Si}({}^{18}\text{O},3n\gamma)$ and (HI,xn γ).

Measured E γ , I γ , $\gamma\gamma$, γ -N coin, γ -P coin using the EUROBALL array with 26 "Clover" detectors and 15 "Cluster" detector each containing 4 and 7 individual hyperpure Ge crystals, respectively. Protons were detected by an array of 40 Δ E-E Si detectors telescopes, and neutrons were detected using EUROBALL neutron wall consisting of 50 liquid scintillation detectors. Confirmed part of the level scheme proposed by 1998Be29 In (¹⁸O,3n γ) through E(-x)=7144 keV.

⁴⁵Ti Levels

 $E(\alpha),J(\beta)$ from the Adopted Levels. Energy held fixed In least-squares fit.

E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	Jπ‡	E(level) [†]	Jπ‡	E(level) [†]	J π ‡
0.0#	7/2-	1225.62 [@] 19	7/2+	2656.66 ^{<i>a</i>} 22	13/2-	4344.7 [#] 3	19/2-
36.53 15	3/2-	1353.38 ^a 24	9/2-	3015.26 [#] 23	$15/2^{-}$	5239.0 <mark>&</mark> <i>3</i>	$17/2^+$
39.39 <i>23</i>	$5/2^{-}$	1468.33 [#] 19	$11/2^{-}$	3446.6 ^{&} 3	$13/2^{+}$	5640.0 [@] 4	$19/2^{+}$
328.65 [@] 21	$3/2^{+}$	1880.89 ^{&} 23	9/2+	3601.7 ^{<i>a</i>} 3	$17/2^{-}$	6162.8 [#] 5	$23/2^{-}$
742.92 ^{&} 21	$5/2^{+}$	2473.71 [@] 24	$11/2^{+}$	3921.8 [@] 3	$15/2^{+}$	7143.2 [#] 6	$27/2^{-}$

[†] From least-squares fit to $E\gamma$'s (evaluator). Normalized χ^2 =2.98 compared to critical χ^2 =1.97 May suggest that uncertainties on $E\gamma$'s are underestimated.

 ‡ As proposed by 1998Be29 In ($^{18}\text{O},3n\gamma),$ except As noted.

[#] Band(A): band based on $f_{7/2}$ orbital, $\alpha = -1/2$.

[@] Band(B): band based on $d_{3/2}$ orbital, $\alpha = -1/2$.

& Band(C): band based on $d_{3/2}$ orbital, $\alpha = +1/2$.

^{*a*} Band(D): band based on $f_{7/2}$ orbital, $\alpha = +1/2$.

γ('	45-	Fi)
/ \		,

Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^π
(36.69 [‡] 21)		36.53	3/2-	0.0	7/2-
(40.15 [‡] <i>30</i>)		39.39	$5/2^{-}$	0.0	$7/2^{-}$
292.1 2	38 2	328.65	$3/2^{+}$	36.53	3/2-
358.3 2	20.6 7	3015.26	$15/2^{-}$	2656.66	$13/2^{-}$
401.3 <i>3</i>	1.40 6	5640.0	$19/2^{+}$	5239.0	$17/2^{+}$
414.0 2	29 1	742.92	$5/2^{+}$	328.65	$3/2^{+}$
475.2 2	3.7 1	3921.8	$15/2^{+}$	3446.6	$13/2^{+}$
482.4 2	13.6 5	1225.62	$7/2^{+}$	742.92	$5/2^{+}$
586.0 2	92 4	3601.7	$17/2^{-}$	3015.26	$15/2^{-}$
592.5 2	7.0 1	2473.71	$11/2^{+}$	1880.89	9/2+
654.9 2	5.6 1	1880.89	$9/2^{+}$	1225.62	$7/2^{+}$
706.9 <i>3</i>	3.3 2	742.92	$5/2^{+}$	36.53	$3/2^{-}$
742.8 2	77 1	4344.7	$19/2^{-}$	3601.7	$17/2^{-}$
897.2 2	15.1 2	1225.62	$7/2^{+}$	328.65	$3/2^{+}$
945.1 2	12.1 3	3601.7	$17/2^{-}$	2656.66	$13/2^{-}$
972.6 2	1.37 3	3446.6	$13/2^{+}$	2473.71	$11/2^{+}$
980.4 2	51.5 8	7143.2	$27/2^{-}$	6162.8	$23/2^{-}$
1138.2 2	20.8 2	1880.89	$9/2^{+}$	742.92	$5/2^{+}$
1185.8 2	2.0 1	1225.62	7/2+	39.39	5/2-

Continued on next page (footnotes at end of table)

²⁴Mg(²⁴Mg,2pnγ) E=83 MeV 2006Be07 (continued)

$\gamma(^{45}\text{Ti})$ (continued) I_{γ}^{\dagger} I_{γ}^{\dagger} \mathbf{E}_{γ} E_i (level) \mathbf{J}_i^{π} \mathbf{E}_f \mathbf{J}_{f}^{π} E_{γ} $E_i(level)$ \mathbf{J}_i^{π} \mathbf{E}_{f} \mathbf{J}_{f}^{π} 1188.0 2 29.6 4 2656.66 13/2-1468.33 11/2-1447.8 2 18.2 *I* 3921.8 $15/2^{+}$ 2473.71 11/2+ 1225.8 2 0.81 3 1225.62 $7/2^{+}$ 0.0 7/2-1468.2 2 100 *I* 1468.33 $11/2^{-}$ 0.0 7/2-1468.33 11/2⁻ 1880.89 9/2⁺ 2473.71 $11/2^+$ 1225.62 7/2+ 1547.1 2 1248.2 2 $20.8 \ 2$ 68 1 3015.26 $15/2^{-}$ 2.5 1 2656.66 $13/2^{-}$ 1353.38 9/2-1565.7 2 1.90 2 $13/2^{+}$ 1303.5 3 3446.6 5239.0 3921.8 15/2+ 2.40 5 $17/2^{+}$ 1717.7 5 10.0 2 5640.0 $19/2^{+}$ 3921.8 15/2+ 1317.5 2 $1.1 \ l$ 3015.26 15/2-4.48 6 17/2+ 3446.6 13/2+ 1330.1 3 4344.7 19/2-1792.5 2 5239.0 1353.6 3 3.6 1 1353.38 $9/2^{-}$ 0.0 7/2-1818.0 4 72 1 6162.8 $23/2^{-}$ 4344.7 19/2-

[†] Relative intensity.

[‡] From the Adopted Gammas.

 ${}^{45}_{22}{}^{7}_{23}{}^{-3}_{23}$

 ${}^{45}_{22}{\rm Ti}_{23}$

3

²⁴Mg(²⁴Mg,2pnγ) E=83 MeV 2006Be07

