³⁰Si(¹⁸O,3nγ) 1998Be29,2004Be20

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	T. W. Burrows	NDS 109, 171 (2008)	30-Oct-2007

⁴⁵Ti Levels

See also ${}^{24}Mg({}^{24}Mg,2pn\gamma)$ and (HI,xn γ).

1998Be29: E=60 MeV. Measured γ , $\gamma\gamma$, $\gamma\gamma(Q)$ (DCO), T_{1/2} by DSAM using GASP detector array (36 Compton-suppressed HPGe and 80 BGO scintillators. 40 Ge detectors for DSAM).

2004Be20: E=68 MeV. Measured E γ , I γ , lifetimes, $\gamma\gamma$ using EUROBALL IV array. Lifetimes estimated with application of the Recoil Filter Detector. However, other than a statement that $T_{1/2}$'s are between 40 fs and 800 fs. No values of level lifetimes are given In the paper.

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #
0@	7/2 ^{-&}		4855.5 ^c 14	17/2 ⁺ <i>d</i>	0.35 ps 5
37.0 8	3/2- &		5237.3 ^b 13	$(17/2^+)$	0.07 ps 6
40.0 13	5/2 ^{-&}		5639.2 ^a 14	$19/2^{+}$	0.19 ps 6
330.0 ^a 10	3/2+ &		6005.6 15		-
745.0 <mark>b</mark> 9	5/2+ &		6162.9 [@] 16	$23/2^{-}$	0.35 ps 4
1228.0 ^a 8	7/2+ &		6458.5 ^c 14	21/2+ <i>d</i>	-
1354.1 8	9/2 ^{-&}		6755.9 ^b 14	$21/2^{+d}$	
1468.0 [@] 8	11/2 ^{-&}		7143.9 [@] 19	27/2-	10.4 ^e ps 14
1883.0 ^b 10	9/2+ <mark>&</mark>	0.69 ps 7	7340.2 ^a 15	$23/2^{+d}$	-
2476.0 ^{<i>a</i>} 11	$11/2^{+}$	0.35 ps 7	7828.9 15	-	
2656.2 10	$13/2^{-}$	<0.17 ps	8287.6 ^C 15	25/2+ <i>d</i>	
2933.7 ^c 14	$(13/2^+)^{d}$		9644.0 22	(_)	<0.07 ps
3014.7 [@] 11	$15/2^{-}$	0.55 ps 14	10154.0 [@] 22	$(25/2^{-})^{fg}$	<0.07 ps
3448.1 ^b 12	$13/2^{+}$	0.180 ps 21	10793.6 ^c 18	29/2+ ^d	
3601.9 [@] 12	$17/2^{-}$	0.90 ps 7	12499.1 [@] 24	(29/2 ⁻) ^g	<0.07 ps
3922.1 ^a 13	$15/2^{+}$	0.312 ps 21	13028.7 ^c 21	33/2+ <i>d</i>	-
4344.8 [@] 13	19/2-	0.104 ps 14			

[†] From least-squares fit to $E\gamma$'s assuming $\Delta E(\gamma)=1$ keV (evaluator).

[‡] Spin assignments of positive parity states are based mainly on observed decay patterns (1998Be29). DCO ratios confirm the previous J^{π} assignments for the known π =- states lying above 11/2⁻ (1998Be29); few other detailed arguments for J^{π} of π =- states given.

[#] From DSAM (1998Be29).

^(a) Band(A): $\pi = -\gamma$ cascade. 1998Be29 extended negative parity states given In 1992Bu01 from 7144 keV to 12499 keV.

[&] From the Adopted Levels.

^{*a*} Band(B): $3/2^+$ band, $\alpha = -1/2$. 1998Be29 extended the band labeled As $K^{\pi} = 3/2^+$ In 1992Bu01 from 2476 keV to 5639 keV. Further extended by 2004Be20 to 7340.

^b Band(C): $3/2^+$ band, $\alpha = +1/2$. 1998Be29 extended the band labeled As $K^{\pi} = 3/2^+$ In 1992Bu01 from 2476 keV to 5639 keV. Further extended by 2004Be20 to 7340.

^{*c*} Band(D): (13/2⁺) intruder band (2004Be20). Based on the relatively high $\beta \approx 0.45$ reached for this new band, extended shell model calculations, and resemblance to the T=0 g.s. band In ⁴⁶V (1999Ol01).

^d As proposed by 2004Be20; few details given. ADOPTED with some reservations by the evaluator.

^{*e*} About one order of magnitude larger than the typical value for the rest of the π =- states. Therefore, the line shapes of the γ 's emitted In the decay of short-lived state lying below contain both the stopped and shifted components relating to feed from above and to the direct side feeding. (1998Be29).

³⁰Si(¹⁸O,3nγ) **1998Be29,2004Be20** (continued)

⁴⁵Ti Levels (continued)

 f 25/2⁻ or 29/2⁻ from D γ to 7144, 27/2⁻ (1998Be29).

^g Comparison of observed level structure with shell model calculations suggest $J^{\pi}=25/2^{-}$ and $29/2^{-}$, respectively (1998Be29).

γ (⁴⁵Ti)

DCO: from 1998Be29. DCO ratios are similar for γ 's between π =+ states differing by Δ J=1 and Δ J=2.

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	Comments
37		37.0	$3/2^{-}$	0	7/2-		
114	10	1468.0	$11/2^{-}$	1354.1	9/2-		
293	195	330.0	$3/2^{+}$	37.0	3/2-	10	
358	100	3014.7	15/2-	2656.2	13/2-	D ^{#@}	DCO=1.75 30
402	8	5639.2	19/2+	5237.3	$(17/2^+)$	D	
415	183	745.0	5/2+	330.0	$3/2^{+}$	$D+Q^{\alpha u}$	DCO=0.82 7
453 ⁰		6458.5	$21/2^{+}$	6005.6			
458 ⁰		2933.7	$(13/2^+)$	2476.0	$11/2^{+}$		
459 <mark>0</mark>		8287.6	$25/2^+$	7828.9			
474	20	3922.1	$15/2^{+}$	3448.1	$13/2^{+}$	D	
483	86	1228.0	7/2+	745.0	$5/2^{+}$	$D+Q^{\otimes a}$	DCO=0.80 11
584 ⁰		7340.2	$23/2^+$	6755.9	$21/2^{+}$	0	
587	509	3601.9	$17/2^{-}$	3014.7	$15/2^{-}$	D [@] <i>c</i>	DCO=1.78 11
593	48	2476.0	$11/2^+$	1883.0	9/2+	D+Q ^{&a}	DCO=0.85 15
655	33	1883.0	$9/2^{+}$	1228.0	$7/2^{+}$	D+Q ^{&ad}	DCO=0.96 20
708	13	745.0	5/2+	37.0	$3/2^{-}$	-	
743 ^e	499	4344.8	19/2-	3601.9	$17/2^{-}$	M1 [@] <i>c</i>	DCO=1.60 19
819 <mark>b</mark>		6458.5	$21/2^+$	5639.2	19/2+		
898	89	1228.0	7/2+	330.0	$3/2^{+}$	&	DCO=0.74 10
933	13	4855.5	$17/2^{+}$	3922.1	$15/2^{+}$	D,E2	
946	115	3601.9	$17/2^{-}$	2656.2	$13/2^{-}$	E2 ^{cf}	DCO=1.02 5
947 <mark>6</mark>		8287.6	$25/2^+$	7340.2	$23/2^+$		
972	13	3448.1	$13/2^{+}$	2476.0	$11/2^{+}$	D,E2	
981	378	7143.9	$27/2^{-}$	6162.9	$23/2^{-}$	E2 ^{cf}	DCO=0.85 13
1073 ^b		7828.9		6755.9	$21/2^{+}$		
1117 <mark>b</mark>		6755.9	$21/2^+$	5639.2	19/2+		
1138	90	1883.0	$9/2^{+}$	745.0	$5/2^{+}$	D,E2 ^{&g}	DCO=0.64 11
1188	11	1228.0	7/2+	40.0	$5/2^{-}$		
1188	198	2656.2	13/2-	1468.0	$11/2^{-}$	D ^{#@}	DCO=1.96 14
1228	13	1228.0	7/2+	0	$7/2^{-}$	0	
1248	131	2476.0	$11/2^{+}$	1228.0	$7/2^{+}$	D,E2 ^{&g}	DCO=0.75 15
1302	11	2656.2	$13/2^{-}$	1354.1	$9/2^{-}$	D,E2	
1315	1/	5237.3	$(1/2^{+})$ $10/2^{-}$	3922.1	15/2 -	D E2	
1354	11	1354 1	$9/2^{-}$	0	$\frac{15/2}{7/2^{-}}$	D,E2	
1446	135	3922.1	15/2+	2476.0	11/2+	$D F 2 \frac{\&g}{\&g}$	DCO=0.66.10
1468	1000	1468.0	$11/2^{-1}$	0	$7/2^{-}$	D, <u>L</u> 2 -	
1518 ^b		6755.9	$21/2^{+}$	5237.3	$(17/2^+)$		
1547	531	3014 7	15/2-	1468.0	$\frac{11}{2^{-1}}$	E2 ^{#f}	DCO=1.01.10
1565	52	3448 1	13/2+	1883.0	9/2+	$D E 2^{\&g}$	DCO=0.79.16
1603 ^b	52	6458 5	$21/2^+$	4855 5	17/2+	L,LL -	
1701 ^b		73/0.2	23/2+	5630.2	10/2+		
1/01		1340.2	23/2	5057.2	1 7/2	d on nevt po	ge (footnotes at end of table)

³⁰Si(¹⁸O,3nγ) 1998Be29,2004Be20 (continued)

$\gamma(^{45}\text{Ti})$ (continued)

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	Comments
1717 1789	101 30	5639.2 5237.3	$\frac{19/2^+}{(17/2^+)}$	3922.1 3448.1	15/2 ⁺ 13/2 ⁺	D,E2 ^{&g}	DCO=0.68 11
1818 ^e	459	6162.9	23/2-	4344.8	19/2-	E2 ^{cf}	DCO=0.98 17
1829 <mark>b</mark>		8287.6	$25/2^+$	6458.5	$21/2^+$		
1922 <mark>b</mark>		4855.5	$17/2^{+}$	2933.7	$(13/2^+)$		
2084 <mark>b</mark>		6005.6		3922.1	$15/2^+$		
2190 <mark>b</mark>		7828.9		5639.2	$19/2^{+}$		
2235 <mark>b</mark>		13028.7	$33/2^{+}$	10793.6	$29/2^+$		
2345	78	12499.1	$(29/2^{-})$	10154.0	$(25/2^{-})$	D,E2	
2500	100	9644.0	(_)	7143.9	$27/2^{-}$	D,E2	
2506 <mark>b</mark>		10793.6	29/2+	8287.6	$25/2^+$		
3010	141	10154.0	$(25/2^{-})$	7143.9	$27/2^{-}$	(D) [@]	DCO>1

[†] From 1998Be29, except As noted. I γ 's are relative intensities.

[‡] From comparison to RUL (evaluator), except As noted.

[#] DCO obtained for 1468 γ gate.

[@] $\Delta J=1$ D transition from DCO.

 $^{\&}$ DCO obtained for 293 γ gate.

^{*a*} $\Delta J=1$ D+Q transition from DCO. δ obtained is In agreement with adopted value.

^b From 2004Be20. Not reported 1998Be29.

^c DCO obtained for 1547γ gate.

^d D,E2 from comparison to RUL (evaluator).

^{*e*} From comparison of the I γ 's of the sequentially emitted γ 's, 1818 and 743 keV, 1998Be29 conclude that the previous ordering by 1978Fo09 In (HI,xn γ) should Be inverted. This conclusion is supported by the existence of the 1330 γ crossover.

 f ΔJ=2 Q from DCO. ≠ M2 from comparison to RUL.

^{*g*} $\Delta J=0$ D or $\Delta J=2$ Q transition from DCO. \neq M2 from comparison to RUL.

^{*h*} DCO obtained for 981 γ gate.

 $^{45}_{22}{\rm Ti}_{23}$

4

 $^{45}_{22}{\rm Ti}_{23}$

³⁰Si(¹⁸O,3nγ) 1998Be29,2004Be20

6