References quoted in the ENSDF dataset: 4NN ADOPTED LEVELS

75 references found.

Clicking on a keynumber will list datasets that reference the given article.


1952SU10

Phys.Rev. 85, 942 (1952)

K.H.Sun, F.A.Pecjak, A.J.Allen

The Tetraneutron

NUCLEAR REACTIONS 103Rh, 209Bi(n, 4n), E ∼ 18 MeV; measured reaction products. 4NN; deduced tetraneutron yield upper limit.

doi: 10.1103/physrev.85.942.2


1963AR06

Phys.Letters 4, 350 (1963)

P.E.Argan, A.Piazzoli

Some Possible Consequences of the Existence of the States H4 and H5

NUCLEAR STRUCTURE 4H, 5H; measured not abstracted; deduced nuclear properties.

doi: 10.1016/0031-9163(63)90505-5


1963SC35

Phys.Lett. 5, 292 (1963)

J.P.Schiffer, R.Vandenbosch

Search for a Particle-Stable Tetra Neutron

doi: 10.1016/S0375-9601(63)96134-6


1964GO25

Phys.Lett. 9, 184 (1964)

V.I.Goldansky

The Occurrence of He8 Casts Doubts on the Stability of H5, H4 and Tetraneutron

doi: 10.1016/0031-9163(64)90136-2


1964VL01

At.Energ. 17, 687 (1964)

N.A.Vlasov, L.N.Samoilov

Heavy hydrogen and neutron isotopes

NUCLEAR REACTIONS 3H(d, n), E=6.3, 10.9, 19 MeV; analyzed available data. 4He; deduced energy levels, level scheme, neutron polarization.

RADIOACTIVITY 5H(β-), (2n) [from 7Li(γ, 2p), (p, 3p), E not given]; analyzed available data; deduced production σ ratios, lack of 5H boud states.

NUCLEAR STRUCTURE 4NN, 4He; analyzed available data; calculated binding energies, the existence of a bound tetraneutron conditions; deduced lack of tetraneutron bound states.

doi: 10.1007/BF01650846


1964VO05

Phys.Rev.Lett. 12, 128 (1964); Erratum Phys. Rev. Lett. 12, 497 (1964)

F.von Hippel, P.P.Divakaran

Analysis of the Experimental Evidence for the Existence of a 4H State with T = 2

NUCLEAR REACTIONS 4He(γ, π+), E not given; analyzed available data. 3,4H; deduced theoretical internal energy spectrum in the n-T system, in the absence of an experimental Q(n, T) spectrum, it is difficult to conclude whether or not there is a 4H state present in the products of reaction.

doi: 10.1103/PhysRevLett.12.128


1965CI01

Phys.Rev. 137, B345 (1965)

S.Cierjacks, G.Markus, W.Michaelis, W.Ponitz

Further Evidence for the Nonexistence of Particle-Stable Tetraneutrons

NUCLEAR STRUCTURE 4n; measured not abstracted; deduced nuclear properties.

doi: 10.1103/PhysRev.137.B345


1965GI10

Phys.Lett. 19, 335 (1965)

L.Gilly, M.Jean, R.Meunier, M.Spighel, J.P.Stroot, P.Duteil

Double Charge Exchange with Negative Pions Search for Tetraneutron

doi: 10.1016/0031-9163(65)91012-7


1965TA14

Phys.Rev.Lett. 15, 165 (1965)

Y.C.Tang, B.F.Bayman

Nonexistence of the Tetraneutron

doi: 10.1103/PhysRevLett.15.165


1967GR33

Nucl.Phys. B2, 181 (1967)

P.Grassberger, W.Sandhas

Systematical treatment of the non-relativistic n-particle scattering problem

doi: 10.1016/0550-3213(67)90017-X


1967KA20

Phys.Letters 25B, 536 (1967)

L.Kaufman, B.W.Gauld, V.Perez-Mendez, J.M.Sperinde, S.H.Williams

π- - Helium Inelastic Interactions at 140 MeV

NUCLEAR STRUCTURE 4He; measured not abstracted; deduced nuclear properties.

doi: 10.1016/0370-2693(67)90137-2


1968BA48

Yadern.Fiz. 7, 28(1968); Soviet J.Nucl.Phys. 7, 20(1968)

Y.A.Batusov, S.A.Bunyatov, V.M.Sidorov, V.A.Yarba

Production of He8 in π- -Meson Capture by Carbon, Nitrogen, and Oxygen Nuclei

NUCLEAR REACTIONS 12C, 14N, 16O(π-, X), E=80 MeV; measured 16 π- capture events; deduced σ. 4n, 8He deduced mass.


1968KA35

Phys.Rev. 175, 1358 (1968)

L.Kaufman, V.Perez-Mendez, J.Sperinde

π- - 4He Inelastic and Capture Reactions Leading to Excited and Multineutron Final States

doi: 10.1103/PhysRev.175.1358


1968ME03

Nucl.Phys. A109, 1 (1968)

W.E.Meyerhof, T.A.Tombrello

Energy Levels of Light Nuclei A = 4

doi: 10.1016/0375-9474(68)90556-3


1970TH12

Nucl.Phys. A143, 304 (1970)

D.R.Thompson

Study of the d + d System using the Method of Resonating-Group Structure

doi: 10.1016/0375-9474(70)90565-8


1973FI04

Nucl.Phys. A206, 1 (1973)

S.Fiarman, W.E.Meyerhof

Energy Levels of Light Nuclei A = 4

NUCLEAR STRUCTURE 4H, 4He, 4Li; compiled levels, reaction Q-values, J, π, T.

doi: 10.1016/0375-9474(73)90605-2


1977BA47

Yad.Fiz. 26, 249 (1977); Sov.J.Nucl.Phys. 26, 129 (1977)

Y.A.Batusov, L.Vizireva, V.B.Kovacheva, P.Cuer, J.P.Massue, F.Mirsalikhova, V.M.Sidorov, K.M.Chernev

Search for Neutron Nuclei in Absorption of π- Mesons in Emulsion Loaded with 7Li

NUCLEAR REACTIONS 7Li(π-, α), (π-,3He), E=0 MeV; measured σ for production of neutron nuclei 3n, 4n.


1980BE22

Nucl.Phys. A341, 414 (1980)

J.J.Bevelacqua

Theoretical Estimates of the Trineutron and Tetraneutron Finding Energies

NUCLEAR STRUCTURE 3n, 4n; calculated binding energies. Translationally invariant, symmetrized oscillator basis.

doi: 10.1016/0375-9474(80)90374-7


1980DE36

Nucl.Phys. A350, 149 (1980)

F.W.N.De Boer, J.J.Van Ruyven, A.W.B.Kalshoven, H.Verheul, R.Vis, E.Sugarbaker, C.Fields, C.S.Zaidins

The Tetraneutron Revisited

NUCLEAR REACTIONS 130Te(3He, 4n), E=44, 130 MeV; deduced upper limit for process.

RADIOACTIVITY 132Te [from 130Te(4n, 2n)]; measured Eγ, Iγ, Eβ, Iβ. Ge(Li) detector, chemical separations, enriched, natural targets.

doi: 10.1016/0375-9474(80)90393-0


1981JI02

Phys.Lett. 102B, 381 (1981)

R.I.Jibuti, R.Ya.Kezerashvili, K.I.Sigua

Investigation of π-+) + 4He → π+-) + 4n(4p) Reactions

NUCLEAR REACTIONS 4He(π-, π+), E=140, 176 MeV; calculated σ(θ, E(π+)); 4He(π+, π-), E=0.1-1.75 GeV; calculated σ(E); deduced final state interaction effects. Four-body model, hyperspherical basis.

doi: 10.1016/0370-2693(81)91236-3


1981KA39

Yad.Fiz. 34, 661 (1981)

G.P.P.Kamuntavichyus

Lower Limits on the Bound State Energies of Atomic Nuclei

NUCLEAR STRUCTURE 3,4,5n, 3,4,5H, 3,4,5He, 4,5Li, 4,5Be, 5B; calculated binding energy lower limit. Realistic potentials.


1981PEZU

LA-8768-PR, p.29 (1981)

V.Perez-Mendez, A.Stetz

Pion-Induced Double Charge Exchange on Helium Isotopes

NUCLEAR REACTIONS 3,4He(π-, π+), E=140, 200, 295 MeV; measured σ(θ, E(π)) vs three, four-neutron missing mass.


1984UN02

Phys.Lett. 144B, 333 (1984)

J.E.Ungar, R.D.McKeown, D.F.Geesaman, R.J.Holt, J.R.Specht, K.E.Stephenson, B.Zeidman, C.L.Morris

Search for the Tetraneutron by the Double-Charge-Exchange of Negative Pions

NUCLEAR REACTIONS 12C, 4He(π-, π+), E=165 MeV; measured σ(θ) vs pion momentum; deduced bound tetraneutron production σ upper limit.

doi: 10.1016/0370-2693(84)91272-3


1986BE44

Izv.Akad.Nauk SSSR, Ser.Fiz. 50, 1936 (1986); Bull.Acad.Sci.USSR, Phys.Ser. 50, No.10, 64 (1986)

A.V.Belozerov, K.Borcha, Z.Dlouty, A.M.Kalinin, Nguen Khoai Tyau, Yu.E.Penionzhkevich

Determination of Nucleon Stability and Investigation of Quasi-Stationary States for Multi-Neutron Nuclei 3n, 4n, 4H, 5H, 6H

NUCLEAR REACTIONS 7Li(11B, 14O), (11B, 15O), 9Be(11B, 14O), (11B, 15O), (11B, 16O), E=88 MeV; measured product spectra. 3,4n, 4,5,6H deduced unbound levels, T1/2, Γ.


1986BE54

Pisma Zh.Eksp.Teor.Fiz. 44, 498 (1986); JETP Lett.(USSR) 44, 641 (1986)

A.V.Belozerov, K.Borcha, Z.Dlouhy, A.M.Kalinin, Nguyen Hoai Tyau, Yu.E.Penionzhkevich

Search for 3n and 4n in the Reactions 7Li + 11B

NUCLEAR REACTIONS 7Li(11B, 14O), (11B, 15O), E=88 MeV; measured σ(E(14O)), σ(E(15O)), σ(ejecticle θ, E); deduced residual production σ limits. Magnetic analyzer.


1986KE20

Yad.Fiz. 44, 842 (1986); Sov.J.Nucl.Phys. 44, 542 (1986)

R.Ya.Kezerashvili

Does a Tetraneutron Exist ( Question )

NUCLEAR REACTIONS 4He(π-, π+), E at 165 MeV/c; calculated σ(Eπ+, θπ+); deduced no evidence for tetraneutron.


1986KI20

Phys.Rev.Lett. 57, 3152 (1986)

E.R.Kinney, J.L.Matthews, P.A.M.Gram, D.W.MacArthur, E.Piasetzky, G.A.Rebka, Jr., D.A.Roberts

Inclusive Pion Double Charge Exchange in 4He

NUCLEAR REACTIONS 4He(π+, π-), (π-, π+), E=120, 150, 180, 240, 270 MeV; measured σ(E(π), θ(π)); deduced reaction mechanism. Liquid helium target, double focusing spectrometer.

doi: 10.1103/PhysRevLett.57.3152


1987BEYJ

JINR-E7-87-140 (1987)

A.V.Belozyorov, C.Borcea, Z.Dlouhy, A.M.Kalinin, Nguyen Hoai Chau, Yu.E.Penionzhkevich

Search for the Tri- and Tetraneutron in Reactions Induced by 11B and 9Be Ions on 7Li and 9Be

NUCLEAR REACTIONS 7Li(9Be, 12N), 9Be(9Be, 14O), E=107 MeV; 7Li(11B, 14O), (11B, 15O), E=88 MeV; measured σ(E(12N)), σ(E(14O)), σ(E(15O)); deduced trineutron, tetraneutron production σ uper limit. Magnetic spectrograph, ionization chamber.


1987BO40

Rev.Roum.Phys. 32, 497 (1987)

C.Borcea, A.V.Belozyorov, Z.Dlouhy, A.M.Kalinin, Nguyen Hoai Chau, Yu.E.Penionzhkevich

Experimental Study of Multineutron Systems and Heavy Isotopes of H and He

NUCLEAR REACTIONS 7Li(11B, 15O), (11B, 14O), (11B, 14N), (11B, 13C), (11B, 12C), (11B, 11C), (11B, 10C), E(cm)=34.2 MeV; 7Li(9Be, 12N), E(cm)=46.81 MeV; 9Be(11B, 16O), (11B, 15O), (11B, 14O), (11B, 13N), E(cm)=39.6 MeV; 9Be(14C, 14O), E(cm)=61.83 MeV; 9Be(14C, 16O), E(cm)=60.26 MeV; measured energy spectra, σ(θ). 3n, 4n, 5H deduced unbound states. 6H deduced excitation energy. 5,6,7,8,9He deduced levels, Γ. Magnetic spectrograph. Phase space calculations.


1988BE02

Nucl.Phys. A477, 131 (1988)

A.V.Belozyorov, C.Borcea, Z.Dlouhy, A.M.Kalinin, Nguyen Hoai Chau, Yu.E.Penionzhkevich

Search for the Tri- and Tetra-Neutron in Reactions Induced by 11B and 9Be Ions on 7Li

NUCLEAR REACTIONS 7Li(11B, 14O), E=48-71 MeV; 7Li(11B, 15O), E=52-76 MeV; 7Li(9Be, 12N), E=58-85 MeV; 9Be(9Be, 14O), E=72-90 MeV; measured σ(E(14O)), σ(E(15O)), σ(E(12N)); deduced 3n, 4n production σ upper limit. Phase space analysis.

doi: 10.1016/0375-9474(88)90365-X


1988IN04

Ukr.Fiz.Zh. 33, 176 (1988)

E.V.Inopin, Yu.V.Kirichenko

On Possibility of Existence of Multineutrons

NUCLEAR STRUCTURE 4n; calculated total energy; deduced no tetraneutron stable state. Variational principle.


1989GO17

Phys.Rev. C40, 2390 (1989)

T.P.Gorringe, S.Ahmad, D.S.Armstrong, R.A.Burnham, M.D.Hasinoff, A.J.Larabee, C.E.Waltham, G.Azuelos, J.A.Macdonald, J.-M.Poutissou, M.Blecher, D.H.Wright, P.Depommier, R.Poutissou, E.T.H.Clifford

Search for the Tetraneutron using the Reaction 4He(π-, π+)4n

NUCLEAR REACTIONS 4He(π-, π+), E=80 MeV; measured pion momentum spectra; deduced tetraneutron production σ upper limit.

doi: 10.1103/PhysRevC.40.2390


1989GO18

Yad.Fiz. 50, 347 (1989)

A.M.Gorbatov, P.V.Komarov, Yu.N.Krylov, A.V.Bursak, V.L.Skopich, P.Yu.Nikishov, E.A.Kolganova

Multineutron Systems in Hyperspherical Basis

NUCLEAR STRUCTURE 3,4,6,8n; calculated bound state nonexistence. Hyperspherical basis.


1989GU16

Yad.Fiz. 50, 19 (1989)

I.F.Gutich, A.V.Nesterov, I.P.Okhrimenko

Study of Tetraneutron Continuum States

NUCLEAR STRUCTURE 4n; calculated continuum levels; deduced kinematical barrier resonance, parameters. Hyperspherical method.


1992TI02

Nucl.Phys. A541, 1 (1992)

D.R.Tilley, H.R.Weller, G.M.Hale

Energy Levels of Light Nuclei A = 4

COMPILATION 4H, 4He, 4Li; compiled, evaluated structure data.

doi: 10.1016/0375-9474(92)90635-W


1997SO27

J.Phys.(London) G23, 1619 (1997)

S.A.Sofianos, S.A.Rakityansky, G.P.Vermaak

Subthreshold Resonances in Few-Neutron Systems

NUCLEAR STRUCTURE 3,4n; calculated subthreshold resonant states; deduced potential sensitivity. Jost function.

doi: 10.1088/0954-3899/23/11/010


2002MA21

Phys.Rev. C65, 044006 (2002)

F.M.Marques, M.Labiche, N.A.Orr, J.C.Angelique, L.Axelsson, B.Benoit, U.C.Bergmann, M.J.G.Borge, W.N.Catford, S.P.G.Chappell, N.M.Clarke, G.Costa, N.Curtis, A.D'Arrigo, E.de Goes Brennand, F.de Oliveira Santos, O.Dorvaux, G.Fazio, M.Freer, B.R.Fulton, G.Giardina, S.Grevy, D.Guillemaud-Mueller, F.Hanappe, B.Heusch, B.Jonson, C.Le Brun, S.Leenhardt, M.Lewitowicz, M.J.Lopez, K.Markenroth, A.C.Mueller, T.Nilsson, A.Ninane, G.Nyman, I.Piqueras, K.Riisager, M.G.Saint Laurent, F.Sarazin, S.M.Singer, O.Sorlin, L.Stuttge

Detection of Neutron Clusters

NUCLEAR REACTIONS C(14Be, nX), E=35 MeV/nucleon; C(11Li, nX), E=30 MeV/nucleon; C(15B, X), E=48 MeV/nucleon; measured En, (charged particle)n-, nn-coin, angular distributions; deduced possible neutron cluster formation.

doi: 10.1103/PhysRevC.65.044006


2003AR18

Phys.Rev. C 68, 034303 (2003)

K.Arai

Resonance states of 5H and 5Be in a microscopic three-cluster model

NUCLEAR STRUCTURE 5H, 5,6He, 4,5Li, 5,6Be; calculated resonance energies, J, π, widths. 4n calculated energy eigenvalues; deduced no resonance states. Microscopic three-cluster model.

doi: 10.1103/PhysRevC.68.034303


2003BE46

J.Phys.(London) G29, 2431 (2003)

C.A.Bertulani, V.Zelevinsky

Is the tetraneutron a bound dineutron-dineutron molecule?

NUCLEAR STRUCTURE 4n; calculated dinuetron-dineutron molecular potential; deduced no bound state.

doi: 10.1088/0954-3899/29/10/309


2003PI09

Phys.Rev.Lett. 90, 252501 (2003)

S.C.Pieper

Can Modern Nuclear Hamiltonians Tolerate a Bound Tetraneutron ?

NUCLEAR STRUCTURE 2,4,6,8n, 2,3,4,5H, 4,5,6He, 6Li; calculated binding energies. Various nuclear Hamiltonians compared.

doi: 10.1103/PhysRevLett.90.252501


2003TI03

J.Phys.(London) G29, L9 (2003)

N.K.Timofeyuk

Do multineutrons exist?

NUCLEAR STRUCTURE 4,6,8,10n; calculated hyperradial potentials, deduced no bound or resonance states. 4H, 4He; calculated binding energies.

doi: 10.1088/0954-3899/29/2/102


2003WO13

Nucl.Phys. A722, 55c (2003)

R.Wolski, S.I.Sidorchuk, G.M.Ter-Akopian, A.S.Fomichev, A.M.Rodin, S.V.Stepantsov, W.Mittig, P.Roussel-Chomaz, H.Savajols, N.Alamanos, F.Auger, V.Lapoux, R.Raabe, Yu.M.Tchuvil'sky, K.Rusek

Elastic scattering of 8He on 4He and 4n system

NUCLEAR REACTIONS 4He(8He, 8He), E=26 MeV/nucleon; measured σ(θ). 2H(8He, 6Li), E=96 MeV; calculated σ(θ), excitation energy distribution.

doi: 10.1016/S0375-9474(03)01335-6


2004GR03

Eur.Phys.J. A 19, 187 (2004)

L.V.Grigorenko, N.K.Timofeyuk, M.V.Zhukov

Broad states beyond the neutron drip line Examples of 5H and 4n

NUCLEAR STRUCTURE 5H; calculated levels, J, π, widths. 4n, 5H; calculated continuum response, related features. Model with source approach.

doi: 10.1140/epja/i2003-10124-1


2004SH09

Phys.Rev. C 69, 027601 (2004)

B.M.Sherrill, C.A.Bertulani

Proton-tetraneutron elastic scattering

NUCLEAR REACTIONS 4n(p, p), E=14 MeV; calculated σ(θ), backscattered proton spectra. Implications for previous experiment discussed.

doi: 10.1103/PhysRevC.69.027601


2004WO10

Nucl.Phys. A738, 431 (2004)

R.Wolski, P.Roussel-Chomaz, S.I.Sidorchuk, G.M.Ter-Akopian

Search for extremely neutron rich systems

NUCLEAR REACTIONS C(6He, X), E=240 MeV/nucleon; 2H(t, p), E not given; 2H(8He, 4n), E not given; analyzed data. 4n, 4,5H deduced resonance features.

doi: 10.1016/j.nuclphysa.2004.04.080


2005BL09

Nucl.Phys. A752, 279c (2005)

Y.Blumenfeld

Reactions near the neutron drip-line

NUCLEAR REACTIONS 1H(6He, 6He), (6He, 6He'), E=15 MeV/nucleon; measured σ(q); deduced halo effect. 1H(6He, α), E=25 MeV/nucleon; measured σ(θ). 2H(8He, 6Li), E=15 MeV/nucleon; measured excitation energy spectrum; deduced possible resonance structure. 1H(22O, 22O'), E=46.6 MeV/nucleon; measured σ(E, θ).

doi: 10.1016/j.nuclphysa.2005.02.146


2005KI20

Phys.Rev. C 72, 044608 (2005)

E.R.Kinney, J.L.Matthews, P.A.M.Gram, D.W.MacArthur, E.Piasetzky, G.A.Rebka, Jr., D.A.Roberts

Inclusive pion double charge exchange in 4He at intermediate energies

NUCLEAR REACTIONS 4He(π+, π-), E=120, 150, 180, 240, 270 MeV; 4He(π-, π+), E=180, 240 MeV; measured σ(E, θ); deduced multiple scattering effects, total σ.

doi: 10.1103/PhysRevC.72.044608


2005LA27

Phys.Rev. C 72, 034003 (2005)

R.Lazauskas, J.Carbonell

Is a physically observable tetraneutron resonance compatible with realistic nuclear interactions?

NUCLEAR STRUCTURE 4n; calculated resonance energies; deduced no observable state. Faddeev-Yakubovski equations, realistic interactions, complex scaling and analytical continuation in the coupling constant.

doi: 10.1103/PhysRevC.72.034003


2005MA97

Eur.Phys.J. A 25, Supplement 1, 311 (2005)

F.M.Marques Moreno, for the Demon-Charissa Collaborations

Multineutron clusters: Perspectives to create nuclei 100% neutron-rich

NUCLEAR REACTIONS C(14Be, nX), E not given; analyzed En, (charged particle)n-coin; deduced possible neutron cluster formation.

doi: 10.1140/epjad/i2005-06-208-8


2006SI33

Ukr.J.Phys. 51, 954 (2006)

I.V.Simenog, B.E.Grinyuk, Yu.M.Bidasyuk

Can tetraneutron exist from theoretical point of view?

NUCLEAR STRUCTURE 4n, 3H, 4He; calculated bound state features, pair correlation functions.


2007FOZY

Proc.Intern.Symposium on Exotic Nuclei, Khanty-Mansiysk, Russia, 17-22 July, 2006, Yu.E.Penionzhkevich, E.A.Cherepanov, Eds. p.3 (2007); AIP Conf.Proc. 912 (2007)

S.Fortier, E.Tryggestad, E.Rich, D.Beaumel, E.Becheva, Y.Blumenfeld, F.Delaunay, A.Drouart, A.Fomichev, N.Frascaria, S.Gales, L.Gaudefroy, A.Gillibert, J.Guillot, F.Hammache, K.W.Kemper, E.Khan, V.Lapoux, V.Lima, L.Nalpas, A.Obertelli, E.C.Pollacco, F.Skaza, U.Datta Pramanik, P.Roussel-Chomaz, D.Santonocito, J.A.Scarpaci, O.Sorlin, S.V.Stepantsov, G.M.Ter Akopian, R.Wolski

Search for resonances in 4n, 7H and 9He via transfer reactions

NUCLEAR REACTIONS 2H(8He, p), (8He, α), (8He, 6Li), E=15.3 MeV/nucleon; measured charged particle energies and yields.

doi: 10.1063/1.2746575


2007SH52

Phys.Lett. B 644, 33 (2007)

A.M.Shirokov, J.P.Vary, A.I.Mazur, T.A.Weber

Realistic nuclear Hamiltonian: Ab exitu approach

NUCLEAR STRUCTURE 3H, 3,4He, 6He, 6,7Li, 7,8,9,10Be, 9,10,11,12B, 10,11,12,13,14C, 12,13,14,15N, 13,14,15,16O; calculated binding energies with bare JISP16 and effective interaction generated by JISP16, ground and excitation energies. Fully-microscopic no-core shell model (NCSM).

doi: 10.1016/j.physletb.2006.10.066


2008LA20

Phys.Atomic Nuclei 71, 209 (2008)

Yu.A.Lashko, G.F.Filippov

Cluster structure of a low-energy resonance in tetraneutron

NUCLEAR STRUCTURE 2,3,4NN; calculated effective 2n-2n potential, eigenvalues, effective intercluster potential induced by the Rosenfeld interaction, phase shift of the elastic 2n-2n scattering in the coupled-channel approach, coefficients of the expansion of the continuum states of the 4NN system in the SU(3) basis; deduced that the tetraneutron has a good chance to exist as a compound system, where 3n+n and 2n-2n coupled cluster configurations coexist.

doi: 10.1134/S1063778808020014


2010NI10

Phys.Rev. C 81, 064606 (2010)

E.Yu.Nikolskii, A.A.Korsheninnikov, H.Otsu, H.Suzuki, K.Yoneda, H.Baba, K.Yamada, Y.Kondo, N.Aoi, A.S.Denikin, M.S.Golovkov, A.S.Fomichev, S.A.Krupko, M.Kurokawa, E.A.Kuzmin, I.Martel, W.Mittig, T.Motobayashi, T.Nakamura, M.Niikura, S.Nishimura, A.A.Ogloblin, P.Roussel-Chomaz, A.Sanchez-Benitez, Y.Satou, S.I.Sidorchuk, T.Suda, S.Takeuchi, K.Tanaka, G.M.Ter-Akopian, Y.Togano, M.Yamaguchi

Search for 7H in 2H+8He collisions

NUCLEAR REACTIONS 2H(8He, 3He)7H, E=42 MeV/nucleon; 2H(12Be, 3He)11Li, E=71 MeV/nucleon; measured 3He spectra; deduced missing-mass spectra of 7H. Search for 7H. Comparison with DWBA calculations.

doi: 10.1103/PhysRevC.81.064606


2016BE42

Nature(London) 532, 448 (2016)

C.A.Bertulani, V.Zelevinsky

Four neutrons together momentarily

NUCLEAR STRUCTURE 4NN; analyzed available data; deduced evidence for the fleeting existence of this state, implications for neutron stars.

doi: 10.1038/nature17884


2016HI03

Phys.Rev. C 93, 044004 (2016)

E.Hiyama, R.Lazauskas, J.Carbonell, M.Kamimura

Possibility of generating a 4-neutron resonance with a T=3/2 isospin 3-neutron force

NUCLEAR STRUCTURE 4n; calculated narrow resonant states of tetraneutron for Jπ=0+, 2+ and 2-. 4H, 4He, 4Li; calculated energies of the lowest T=1, Jπ=2- states. 3n; calculated resonance trajectories for Jπ=3/2-, 1/2- and 1/2+ states. Complex scaling method (CSM) for resonance positions and widths. Gaussian expansion method used to solve Schrodinger equation and Lagrange-mesh technique to solve Faddeev-Yakubovsky (FY) equation. Comparison with recent experimental data from RIKEN.

doi: 10.1103/PhysRevC.93.044004


2016KI01

Phys.Rev.Lett. 116, 052501 (2016)

K.Kisamori, S.Shimoura, H.Miya, S.Michimasa, S.Ota, M.Assie, H.Baba, T.Baba, D.Beaumel, M.Dozono, T.Fujii, N.Fukuda, S.Go, F.Hammache, E.Ideguchi, N.Inabe, M.Itoh, D.Kameda, S.Kawase, T.Kawabata, M.Kobayashi, Y.Kondo, T.Kubo, Y.Kubota, M.Kurata-Nishimura, C.S.Lee, Y.Maeda, H.Matsubara, K.Miki, T.Nishi, S.Noji, S.Sakaguchi, H.Sakai, Y.Sasamoto, M.Sasano, H.Sato, Y.Shimizu, A.Stolz, H.Suzuki, M.Takaki, H.Takeda, S.Takeuchi, A.Tamii, L.Tang, H.Tokieda, M.Tsumura, T.Uesaka, K.Yako, Y.Yanagisawa, R.Yokoyama, K.Yoshida

Candidate Resonant Tetraneutron State Populated by the 4He(8He, 8Be) Reaction

NUCLEAR REACTIONS 4He(8He, 8Be), E=186 MeV/nucleon; measured missing-mass spectrum; deduced the tetraneutron system energy of the state with uncertainties, Q-value.

doi: 10.1103/PhysRevLett.116.052501


2016SH35

Phys.Rev.Lett. 117, 182502 (2016)

A.M.Shirokov, G.Papadimitriou, A.I.Mazur, I.A.Mazur, R.Roth, J.P.Vary

Prediction for a Four-Neutron Resonance

NUCLEAR REACTIONS 4He(8He, 8Be), E<30 MeV; calculated scattering phase shifts, tetraneutron ground state energy, resonance parameters. ab initio approach using the JISP16 realistic NN interaction.

doi: 10.1103/PhysRevLett.117.182502


2017CA16

Few-Body Systems 58, 67 (2017)

J.Carbonell, R.Lazauskas, E.Hiyama, M.Kamimura

On the Possible Existence of Four Neutron Resonances

NUCLEAR REACTIONS 3He(n, n), E=0.03-10 MeV;3He(n, x), E not given; calculated possible tetraneutron resonance trajectory for 0+ state; deduced resonance, σ, resonance energy and width vs other parameters, higher 4n resonances, tetraneutron production response function via double charge exchange; deduced parameters.

doi: 10.1007/s00601-017-1219-0


2017FO13

Phys.Rev.Lett. 119, 032501 (2017)

K.Fossez, J.Rotureau, N.Michel, M.Ploszajczak

Can Tetraneutron be a Narrow Resonance?

NUCLEAR STRUCTURE 4NN; analyzed available data; calculated evolution of the energy and width of the four-neutron system with the scaling of the N3LO interaction; deduced the energy of the four-neutron system compatible with the experimental value, its width must be larger than the reported upper limit, supporting the interpretation of the experimental observation as a reaction process too short to form a nucleus. Quasistationary formalism using ab initio techniques with various two-body chiral interactions.

doi: 10.1103/PhysRevLett.119.032501


2017GA10

Phys.Rev.Lett. 118, 232501 (2017)

S.Gandolfi, H.-W.Hammer, P.Klos, J.E.Lynn, A.Schwenk

Is a Trineutron Resonance Lower in Energy than a Tetraneutron Resonance?

doi: 10.1103/PhysRevLett.118.232501


2017LA11

Prog.Theor.Exp.Phys. 2017, 073D03 (2017)

R.Lazauskas, J.Carbonell, E.Hiyama

Modeling the double charge exchange response function for a tetraneutron system

NUCLEAR REACTIONS 4He(8He, 8Be)4NN, E<8 MeV; analyzed available data; calculated σ, response functions, 4n resonance trajectory.

doi: 10.1093/ptep/ptx078


2017TH03

Int.J.Mod.Phys. E26, 1730003 (2017)

M.Thoennessen

2016 Update of the discoveries of nuclides

COMPILATION 4NN, 96In, 94Cd, 92Ag, 90Pd, 63Se, 67,68Kr, 178Pb, 230Am, 234Cm, 234Bk; compiled first identification (or discovery) of isotopes.

doi: 10.1142/S021830131730003X


2018DE24

Phys.Lett. B 782, 238 (2018)

A.Deltuva

Tetraneutron: Rigorous continuum calculation

NUCLEAR STRUCTURE 4NN; calculated energy dependence of selected 4n transition matrix elements using half-shell matrix elements of 4n transition operators.

doi: 10.1016/j.physletb.2018.05.041


2019DE27

Phys.Rev. C 100, 044002 (2019)

A.Deltuva, R.Lazauskas

Tetraneutron resonance in the presence of a dineutron

NUCLEAR REACTIONS 2n(2n, 2n)4n; calculated dineutron scattering phase shifts and cross sections by solving exact four-particle continuum using Faddeev-Yakubovsky (FY) and Alt, Grassberger, and Sandhas (AGS) equations, and by varying the interaction enhancement factor; deduced bound tetraneutron as a virtual 0+ state.

doi: 10.1103/PhysRevC.100.044002


2019LI50

Phys.Rev. C 100, 054313 (2019)

J.G.Li, N.Michel, B.S.Hu, W.Zuo, F.R.Xu

Ab initio no-core Gamow shell-model calculations of multineutron systems

NUCLEAR STRUCTURE 3,4n; calculated resonances, energies and widths using the ab-initio no-core Gamow shell model based on nuclear chiral effective field theory interaction. Comparison with experimental data.

doi: 10.1103/PhysRevC.100.054313


2020HI09

Phys.Rev.Lett. 125, 052501 (2020)

M.D.Higgins, C.H.Greene, A.Kievsky, M.Viviani

Nonresonant Density of States Enhancement at Low Energies for Three or Four Neutrons

NUCLEAR STRUCTURE 3,4NN; calculated hyperspherical potential curves, rescaled Wigner-Smith time delays, low energy enhancement of the density of states.

doi: 10.1103/PhysRevLett.125.052501


2020YU05

Bull.Rus.Acad.Sci.Phys. 84, 1183 (2020)

A.V.Yushkov, V.V.Dyachkov, Y.A.Zaripova

A New Approach to the Experimental Detection and Study of Multineutrons

NUCLEAR REACTIONS 4He(16O, X)4NN, E=160 MeV; 2,3H(16O, X)2NN/3NN, E=160 MeV;calculated kinematics for the detection of tetraneutrons, dineutrons and trineutrons.

doi: 10.3103/S1062873820100305


2021HI04

Phys.Rev. C 103, 024004 (2021)

M.D.Higgins, C.H.Greene, A.Kievsky, M.Viviani

Comprehensive study of the three- and four-neutron systems at low energies

NUCLEAR STRUCTURE 3,4n; calculated adiabatic hyperspherical potential curves for Jπ=3/2- for the 3n system and Jπ=0+ for the 4n system, phase shifts and eigenshifts using explicitly correlated Gaussian (CGHS) and the hyperspherical harmonic (HH) bases, multichannel analysis of the three-and four-neutron scattering near the scattering continuum threshold; deduced no evidence of a 4n-resonance at low energy. Discussed experimental result of possible 4n resonance by 2016Ki01 in 4He(8He, 4n8Be) reaction.

doi: 10.1103/PhysRevC.103.024004


2021HU28

Few-Body Systems 62, 102 (2021)

S.W.Huang, Z.H.Yang, F.M.Marques, N.L.Achouri, D.S.Ahn, T.Aumann, H.Baba, D.Beaumel, M.Bohmer, K.Boretzky, M.Caamano, S.Chen, N.Chiga, M.L.Cortes, D.Cortina, P.Doornenbal, C.A.Douma, F.Dufter, J.Feng, B.Fernandez-Dominguez, Z.Elekes, U.Forsberg, T.Fujino, N.Fukuda, I.Gasparic, Z.Ge, R.Gernhauser, J.M.Gheller, J.Gibelin, A.Gillibert, Z.Halasz, T.Harada, M.N.Harakeh, A.Hirayama, N.Inabe, T.Isobe, J.Kahlbow, N.Kalantar-Nayestanaki, D.Kim, S.Kim, S.Kiyotake, T.Kobayashi, Y.Kondo, P.Koseoglou, Y.Kubota, I.Kuti, C.Lehr, C.Lenain, P.J.Li, Y.Liu, Y.Maeda, S.Masuoka, M.Matsumoto, A.Matta, J.Mayer, H.Miki, M.Miwa, B.Monteagudo, I.Murray, T.Nakamura, A.Obertelli, N.A.Orr, H.Otsu, V.Panin, S.Park, M.Parlog, S.Paschalis, M.Potlog, S.Reichert, A.Revel, D.Rossi, A.Saito, M.Sasano, H.Sato, H.Scheit, F.Schindler, T.Shimada, Y.Shimizu, S.Shimoura, H.Simon, I.Stefan, S.Storck, L.Stuhl, H.Suzuki, D.Symochko, H.Takeda, S.Takeuchi, J.Tanaka, Y.Togano, T.Tomai, H.T.Tornqvist, E.Tronchin, J.Tscheuschner, T.Uesaka, V.Wagner, K.Wimmer, H.Yamada, B.Yang, L.Yang, Y.Yasuda, K.Yoneda, L.Zanetti, J.Zenihiro

Experimental Study of 4n by Directly Detecting the Decay Neutrons

RADIOACTIVITY 7H(t), 6He(2n) [from 1H(8He, 2p), E=150 MeV/nucleon]; measured decay products, En, In. 4NN; deduced relative-energy spectrum, neutron multiplicity distribution. The radioactive isotope beam factory (RIBF).

doi: 10.1007/s00601-021-01691-4


2021MA23

Eur.Phys.J. A 57, 105 (2021)

F.M.Marques, J.Carbonell

The quest for light multineutron systems

NUCLEAR REACTIONS 12C, 4He(π-, π+), E=165 MeV; 7Li(7Li, 10C), E<65 MeV; analyzed available data. 3,4NN; deduced miltineutron systems.

doi: 10.1140/epja/s10050-021-00417-8


2021WA16

Chin.Phys.C 45, 030003 (2021)

M.Wang, W.J.Huang, F.G.Kondev, G.Audi, S.Naimi

The AME 2020 atomic mass evaluation (II). Tables, graphs and references

ATOMIC MASSES A=1-295; compiled, evaluated atomic masses, mass excess, β-, ββ and ββββ-decay, binding, neutron and proton separation energies, decay and reaction Q-value data.

doi: 10.1088/1674-1137/abddaf


2022DU08

Nature(London) 606, 678 (2022)

M.Duer, T.Aumann, R.Gernhauser, V.Panin, S.Paschalis, D.M.Rossi, N.L.Achouri, D.Ahn, H.Baba, C.A.Bertulani, M.Bohmer, K.Boretzky, C.Caesar, N.Chiga, A.Corsi, D.Cortina-Gil, C.A.Douma, F.Dufter, Z.Elekes, J.Feng, B.Fernandez-Dominguez, U.Forsberg, N.Fukuda, I.Gasparic, Z.Ge, J.M.Gheller, J.Gibelin, A.Gillibert, K.I.Hahn, Z.Halasz, M.N.Harakeh, A.Hirayama, M.Holl, N.Inabe, T.Isobe, J.Kahlbow, N.Kalantar-Nayestanaki, D.Kim, S.Kim, T.Kobayashi, Y.Kondo, D.Korper, P.Koseoglou, Y.Kubota, I.Kuti, P.J.Li, C.Lehr, S.Lindberg, Y.Liu, F.M.Marques, S.Masuoka, M.Matsumoto, J.Mayer, K.Miki, B.Monteagudo, T.Nakamura, T.Nilsson, A.Obertelli, N.A.Orr, H.Otsu, S.Y.Park, M.Parlog, P.M.Potlog, S.Reichert, A.Revel, A.T.Saito, M.Sasano, H.Scheit, F.Schindler, S.Shimoura, H.Simon, L.Stuhl, H.Suzuki, D.Symochko, H.Takeda, J.Tanaka, Y.Togano, T.Tomai, H.T.Tornqvist, J.Tscheuschner, T.Uesaka, V.Wagner, H.Yamada, B.Yang, L.Yang, Z.H.Yang, M.Yasuda, K.Yoneda, L.Zanetti, J.Zenihiro, M.V.Zhukov

Observation of a correlated free four-neutron system

NUCLEAR REACTIONS 1H(8He, pα)4NN, E=156 MeV/nucleon; measured reaction products, Ep, Ip, Eα, Iα. 4NN; deduced missing mass spectra, 4NN resonance, resonance parameters. Comparison with theoretical calculations. The Radioactive Ion Beam Factory operated by the RIKEN Nishina Center and the Center for Nuclear Study, University of Tokyo, using the Superconducting Analyzer for Multi-particles from Radio Isotope Beams (SAMURAI).

doi: 10.1038/s41586-022-04827-6


2022FA01

Phys.Lett. B 824, 136799 (2022)

T.Faestermann, A.Bergmaier, R.Gernhauser, D.Koll, M.Mahgoub

Indications for a bound tetraneutron

NUCLEAR REACTIONS 7Li(7Li, 10C)4NN, E=46 MeV; measured reaction products. 10C; deduced energy spectra, tetraneutron binding energy.

doi: 10.1016/j.physletb.2021.136799


2023LA03

Phys.Rev.Lett. 130, 102501 (2023)

R.Lazauskas, E.Hiyama, J.Carbonell

Low Energy Structures in Nuclear Reactions with 4n in the Final State

NUCLEAR STRUCTURE 8He, 2,4NN; calculated strength and low energy four-neutron response functions with the AV18 nn interaction, low energy 4n response functions for the scaled nn MT13 potential; deduced the sharp low energy peak observed by studying the missing mass spectra of four neutrons as a consequence of dineutron-dineutron correlations.

doi: 10.1103/PhysRevLett.130.102501