NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 29, 2024.

Search: Author = Tian Yuhong

Found 39 matches.

Back to query form



2024SA20      Phys.Rev.Lett. 132, 162501 (2024)

S.N.Santiesteban, S.Li, D.Abrams, S.Alsalmi, D.Androic, K.Aniol, J.Arrington, T.Averett, C.Ayerbe Gayoso, J.Bane, S.Barcus, J.Barrow, A.Beck, V.Bellini, H.Bhatt, D.Bhetuwal, D.Biswas, A.Camsonne, J.Castellanos, J.Chen, J.-P.Chen, D.Chrisman, M.E.Christy, C.Clarke, S.Covrig, R.Cruz-Torres, D.Day, D.Dutta, E.Fuchey, C.Gal, F.Garibaldi, T.N.Gautam, T.Gogami, J.Gomez, P.Gueye, T.J.Hague, J.O.Hansen, F.Hauenstein, W.Henry, D.W.Higinbotham, R.J.Holt, C.Hyde, K.Itabashi, M.Kaneta, A.Karki, A.T.Katramatou, C.E.Keppel, P.M.King, L.Kurbany, T.Kutz, N.Lashley-Colthirst, W.B.Li, H.Liu, N.Liyanage, E.Long, A.Lovato, J.Mammei, P.Markowitz, R.E.McClellan, F.Meddi, D.Meekins, R.Michaels, M.Mihovilovic, A.Moyer, S.Nagao, D.Nguyen, M.Nycz, M.Olson, L.Ou, V.Owen, C.Palatchi, B.Pandey, A.Papadopoulou, S.Park, T.Petkovic, S.Premathilake, V.Punjabi, R.D.Ransome, P.E.Reimer, J.Reinhold, S.Riordan, N.Rocco, V.M.Rodriguez, A.Schmidt, B.Schmookler, E.P.Segarra, A.Shahinyan, S.Sirca, K.Slifer, P.Solvignon, T.Su, R.Suleiman, L.Tang, Y.Tian, W.Tireman, F.Tortorici, Y.Toyama, K.Uehara, G.M.Urciuoli, D.Votaw, J.Williamson, B.Wojtsekhowski, S.Wood, Z.H.Ye, J.Zhang, X.Zheng

Novel Measurement of the Neutron Magnetic Form Factor from A=3 Mirror Nuclei

NUCLEAR REACTIONS 3H, 3He(e-, e-), E=2.222, 4.323 GeV; measured reaction products; deduced σ(θ, E), the neutron magnetic form factor using quasielastic scattering from the mirror nuclei. Comparison with available data. Hall A at Jefferson Lab (JLab).

doi: 10.1103/PhysRevLett.132.162501
Citations: PlumX Metrics


2023CH23      Phys.Rev. C 107, 054306 (2023)

J.Chen, M.Liu, C.Yuan, S.Chen, N.Shimizu, X.Sun, R.Xu, Y.Tian

Shell-model-based investigation on level density of Xe and Ba isotopes

NUCLEAR STRUCTURE 131,132,133,134Sn, 132,133,134,135Sb, 133,134,135,136Te, 134,135,136,137I, 135,136,137,138Xe, 136,137,138,139Cs, 137,138,139,140Ba; calculated one-neutron separation energy S(n). 132,133,134Sn, 132,133,134,135Sb, 134,135,136Te, 135,136,137I, 136,137,138Xe, 137,138,139Cs, 138,139,140Ba; calculated two-neutron separation energies S(2n). 134, ,136,138Xe, 134,136,138,140Ba, 128,129,130,134,135,136Sn, 131,135Sb, 132,134,136Te, 133,135,137I, 135,137,139Cs, 139La; calculated levels, J, π. 133,134,135,136,137Xe, 134,135,136,137,138,139Ba; calculated nuclear level densities (NLD), cumulative number of levels spin distributions. 134Te, 135I, 136Xe, 137Cs, 138Ba, 139La; calculated effective single particle energy for proton and neutron orbits with and without the consideration of tensor part in two-body matrix elements. 133,134,135,136,137Xe; calculated spin distribution , parity ratios, spin cut-off parameter. Configuration-interaction shell model with a unified effective nuclear force. Comparison to experimental data.

doi: 10.1103/PhysRevC.107.054306
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2023TI01      Phys.Rev. C 107, 015201 (2023)

Y.Tian, for the CLAS Collaboration

Exclusive π- electroproduction off the neutron in deuterium in the resonance region

NUCLEAR REACTIONS 2H(e, e'pπ-), E=2.039 GeV; measured reaction products; deduced σ(θ), kinematically defined final-state-interaction contribution factor, exclusive structure functions, Legendre moments of the exclusive structure functions. CEBAF Large Acceptance Spectrometer (CLAS) detector at JLAB.

doi: 10.1103/PhysRevC.107.015201
Citations: PlumX Metrics


2022SU03      Prog.Theor.Exp.Phys. 2022, 013D01 (2022)

K.N.Suzuki, T.Gogami, B.Pandey, K.Itabashi, S.Nagao, K.Okuyama, S.N.Nakamura, L.Tang, D.Abrams, T.Akiyama, D.Androic, K.Aniol, C.Ayerbe Gayoso, J.Bane, S.Barcus, J.Barrow, V.Bellini, H.Bhatt, D.Bhetuwal, D.Biswas, A.Camsonne, J.Castellanos, J.-P.Chen, J.Chen, S.Covrig, D.Chrisman, R.Cruz-Torres, R.Das, E.Fuchey, K.Gnanvo, F.Garibaldi, T.Gautam, J.Gomez, P.Gueye, T.J.Hague, O.Hansen, W.Henry, F.Hauenstein, D.W.Higinbotham, C.E.Hyde, M.Kaneta, C.Keppel, T.Kutz, N.Lashley-Colthirst, S.Li, H.Liu, J.Mammei, P.Markowitz, R.E.McClellan, F.Meddi, D.Meekins, R.Michaels, M.Mihovilovic, A.Moyer, D.Nguyen, M.Nycz, V.Owen, C.Palatchi, S.Park, T.Petkovic, S.Premathilake, P.E.Reimer, J.Reinhold, S.Riordan, V.Rodriguez, C.Samanta, S.N.Santiesteban, B.Sawatzky, S.Sirca, K.Slifer, T.Su, Y.Tian, Y.Toyama, K.Uehara, G.M.Urciuoli, D.Votaw, J.Williamson, B.Wojtsekhowski, S.A.Wood, B.Yale, Z.Ye, J.Zhang, X.Zheng

The cross-section measurement for the 3H(e, e'K+)nnΛ reaction

NUCLEAR REACTIONS 3H(e-, e-'K+), E not given; measured reaction products; deduced σ(θ), missing mass. Comparison with Monte Carlo simulations.

doi: 10.1093/ptep/ptab158
Citations: PlumX Metrics


2022TI01      Nucl.Instrum.Methods Phys.Res. A1026, 166151 (2022)

Yu.E.Titarenko, V.F.Batyaev, K.V.Pavlov, A.Yu.Titarenko, S.V.Malinovskiy, V.I.Rogov, V.M.Zhivun, T.V.Kulevoy, M.V.Chauzova, R.S.Khalikov, A.V.Ignatyuk, V.Yu.Blandinskiy, A.A.Kovalishin, M.I.Baznat, A.Yu.Stankovskiy, A.I.Dubrouski, H.I.Kiyavitskaya, T.Xue, Y.Tian, M.Zeng, Z.Zeng, O.Normahmedov, T.Sato

206, 207, 208, natPb(p, x)194Hg and 209Bi(p, x)194Hg excitation functions in the energy range 0.04-2.6 GeV

NUCLEAR REACTIONS Pb, 209Bi(p, X)194Hg, E=0.04-2.6 GeV; measured reaction products, Eγ, Iγ; deduced production σ. Comparison with theoretical calculations.

doi: 10.1016/j.nima.2021.166151
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetF1462.


2021HU18      Chin.Phys.C 45, 044001 (2021)

W.Hua, Z.Zhang, L.Ma, Z.Gan, H.Yang, C.Yuan, M.Huang, C.Yang, M.Zhang, Y.Tian, X.Zhou

Fine structure of α decay in 222Pa

RADIOACTIVITY 222Pa, 218Ac, 214Fr(α) [from 186W(40Ar, X)222Pa, E=198.7 MeV]; measured decay products, Eα, Iα; deduced Q-values, T1/2. Comparison with available data.

doi: 10.1088/1674-1137/abdea8
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2021HU19      Chin.Phys.C 45, 044003 (2021)

W.Hua, Z.Zhang, L.Ma, Z.Gan, H.Yang, M.Huang, C.Yang, M.Zhang, Y.Tian, X.Zhou, C.Yuan, C.Shen, L.Zhu

α-decay study of 218Ac and 221Th in 40Ar+186W reaction

RADIOACTIVITY 218Ac, 221Th, 217Ra, 213Rn(α) [from 186W(40Ar, X)221Th/218Ac, E=198.7 MeV]; measured decay products, Eα, Iα; deduced Q-values, T1/2. Comparison with available data.

doi: 10.1088/1674-1137/abe0bd
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetS0272. Data from this article have been entered in the XUNDL database. For more information, click here.


2020KA09      Nucl.Data Sheets 163, 109 (2020)

T.Kawano, Y.S.Cho, P.Dimitriou, D.Filipescu, N.Iwamoto, V.Plujko, X.Tao, H.Utsunomiya, V.Varlamov, R.Xu, R.Capote, I.Gheorghe, O.Gorbachenko, Y.L.Jin, T.Renstrom, M.Sin, K.Stopani, Y.Tian, G.M.Tveten, J.M.Wang, T.Belgya, R.Firestone, S.Goriely, J.Kopecky, M.Krticka, R.Schwengner, S.Siem, M.Wiedeking

IAEA Photonuclear Data Library 2019

doi: 10.1016/j.nds.2019.12.002
Citations: PlumX Metrics


2020SU07      Phys.Rev. C 101, 034302 (2020)

X.Sun, R.Xu, Y.Tian, Z.Ma, Z.Zhang, Z.Ge, H.Zhang, E.N.E.van Dalen, H.Muther

Relativistic mean-field approach in nuclear systems

NUCLEAR STRUCTURE 16O, 40,48Ca, 90Zr, 116,132Sn, 208Pb; calculated binding energy per nucleon, charge radii, charge density distribution, single particle energies, spin-orbit splitting in 16O, scalar and vector potentials for neutrons and protons as a function of isospin asymmetry using both local density approximation (LDA) and improved LDA, based on Dirac-Brueckner-Hartree-Fock (DBHF) approach starting from a realistic nucleon-nucleon interaction. Comparison with experimental data.

doi: 10.1103/PhysRevC.101.034302
Citations: PlumX Metrics


2020TI03      Nucl.Instrum.Methods Phys.Res. A984, 164635 (2020)

Y.E.Titarenko, V.F.Batyaev, K.V.Pavlov, A.Y.Titarenko, S.V.Malinovskiy, V.I.Rogov, V.M.Zhivun, T.V.Kulevoy, M.V.Chauzova, S.V.Lushin, A.S.Busygin, A.V.Ignatyuk, P.N.Alekseev, V.Y.Blandinskiy, A.A.Kovalishin, S.I.Tyutyunnikov, A.A.Baldin, A.N.Sosnin, M.I.Baznat, A.Y.Stankovskiy, A.I.Dubrouski, H.I.Kiyavitskaya, T.Xue, Y.Tian, M.Zeng, Z.Zeng, T.Sato

208, 207, 206, natPb(p, x)207Bi and 209Bi (p, x)207Bi excitation functions in the energy range of 0.04 - 2.6 GeV

NUCLEAR REACTIONS 206,207,208Pb, Pb, 209Bi(p, X)207Bi, E=0.04-2.6 GeV; measured reaction products, Eγ, Iγ; deduced σ and uncertainties. Comparison with MCNP-6.1, PHITS, Geant4 and TENDL-2019 calculations.

doi: 10.1016/j.nima.2020.164635
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetF1448.


2020WU05      Phys.Lett. B 805, 135431 (2020)

D.Wu, N.Y.Wang, B.Guo, C.Y.He, Y.Tian, X.Tao, T.L.Ma, F.L.Liu, W.S.Yang, J.H.Wei, Y.P.Shen, S.L.Guo, Q.W.Fan, X.G.Wu, Y.Zheng, T.X.Li, Z.Q.Wang, H.L.Luo, Y.N.Liu, M.L.Qiu

New measurement of the 74Ge(p, γ)75As reaction cross sections in the p-process nucleosynthesis

NUCLEAR REACTIONS 74Ge(p, γ), E(cm)=1-4.5 MeV; measured reaction products, Eγ, Iγ; deduced σ, reaction rates. Comparison with EMPIRE and TALYS nuclear model codes calculations.

doi: 10.1016/j.physletb.2020.135431
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetS0231.


2019TI10      Chin.Phys.C 43, 114102 (2019)

Y.Tian, X.Tao, J.Wang, X.Ke, R.Xu, Z.Ge

Giant dipole resonance parameters from photoabsorption cross-sections

NUCLEAR STRUCTURE 34S, 40Ar, 40,42,44,46,48Ca, 48Ti, 51V, 52Cr, 90,91,92,94Zr, 112,114,116,117,118,119,120,122,124Sn, 138Ba, 208Pb, 209Bi, 23Na, 24,25Mg, 27Al, 28,29Si, 63,65Cu, 80Se, 127I, 133Cs, 159Tb, 181Ta, 182,184,186W, 186,188,189,190,192Os, 235U; analyzed available data; deduced systematic GDR parameters.

doi: 10.1088/1674-1137/43/11/114102
Citations: PlumX Metrics


2019ZH39      Nucl.Phys. A990, 1 (2019)

Z.Zhang, R.R.Xu, Z.Y.Ma, Z.G.Ge, Y.Tian, D.Y.Pang, X.D.Sun, Y.L.Jin, X.Tao, Y.Zhang, J.M.Wang

Global α-nucleus optical model based on an Dirac Brueckner Hartree Fock approach

doi: 10.1016/j.nuclphysa.2019.06.013
Citations: PlumX Metrics


2018TI06      Phys.Rev. C 97, 064615 (2018)

Y.Tian, D.Y.Pang, Z.-y.Ma

Effects of nonlocality of nuclear potentials on direct capture reactions

NUCLEAR REACTIONS 48Ca(n, γ), E=0.01-0.4 MeV; 7Li(n, γ), E=0.01-2 MeV; 12C(p, γ), E=0-1.2 MeV; calculated local and non-local potential parameters, s-wave phase shifts of target nuclides as function of incident energy, and σ(E) with the Perey-Buck-type nonlocal potentials using a potential model; deduced effects of potential nonlocality in direct radiative capture reactions. Comparison with experimental values.

doi: 10.1103/PhysRevC.97.064615
Citations: PlumX Metrics


2016XU07      Phys.Rev. C 94, 034606 (2016)

R.Xu, Z.Ma, Y.Zhang, Y.Tian, E.N.E.van Dalen, H.Muther

Global analysis of isospin dependent microscopic nucleon-nucleus optical potentials in a Dirac-Brueckner-Hartree-Fock approach

NUCLEAR REACTIONS 40Ca(n, n), E=2.06-185.0 MeV; 208Pb(n, n), E=1.8-155.0 MeV; 12C(n, n), E=1.04-225.0 MeV; 56Fe(n, n), E=1.8-75.0 MeV; 98Mo(n, n), E=1.5-26.0 MeV; 103Rh(n, n), E=4.51-10.0 MeV; 28Si, 90Zr, 120Sn(n, n), E=65 MeV; 27Al(n, n), E=3.2-26.0 MeV; 40Ca, 56Fe(p, p), E=61.5, 65 MeV; 28Si(p, p), E=14.26-250.0 MeV; 58Ni(p, p), E=7.0-250.0 MeV; 90Zr(p, p), E=9.7-185.0 MeV; 208Pb(p, p), E=16.0-201.0 MeV; calculated σ(θ, E). 12C, 40Ca(polarized n, n), E=10.9 MeV; 58Ni(polarized n, n), E=9.92 MeV; 208Pb(polarized n, n), E=9.97 MeV; 56Fe(polarized p, p), E=16.0-65.0 MeV; 58Ni(polarized p, p), E=16.0-250.0 MeV; 208Pb(polarized p, p), E=80, 200 MeV; calculated analyzing powers Ay(θ, E). 12C, 56Fe, 208Pb(n, X), 40Ca, 120Sn, 208Pb(p, X), E<200 MeV; calculated reaction σ(E). Global analysis of the isospin dependent nucleon-nucleus microscopic optical potential (MOP) based on the DBHF calculation in symmetric and asymmetric nuclear matter; deduced relativistic MOP for nucleon-nucleus scattering. Comparisons with experimental data, and with results from phenomenological Koning-Delaroche global potential. Compiled bibliographic information for experimental (n, n) data for 12C, 14N, 16O, 23Na, 24Mg, 27Al, 28Si, 31P, 32S, 39K, 40Ca, 48Ti, 52Cr, 55Mn, 56Fe, 59Co, 58Ni, 63Cu, 80Se, 88Sr, 89Y, 90Zr, 93Nb, 98Mo, 103Rh, 115In, 120Sn, 197Au, 208Pb, 209Bi targets, and experimental (p, p) data for 12C, 27Al, 28Si, 40Ca, 56Fe, 58Ni, 90Zr, 120Sn, 208Pb targets.

doi: 10.1103/PhysRevC.94.034606
Citations: PlumX Metrics


2016ZH33      Yuan.Wul.Ping. 33, 217 (2016); Nucl.Phys.Rev. 33, 217 (2016)

Z.Zhang, Z.Gan, L.Ma, H.Yang, J.Wang, L.Yu, J.Jiang, Y.Tian, B.Ding, S.Guo, Y.Wang, T.Huang, M.Sun, K.Wang

Alpha Decay of the Neutron-deficient Isotopes 215, 216U

RADIOACTIVITY 215,216U(α) [from 180W(40Ar, xn), E=189.5, 204.5, 207.6 MeV]; measured decay products, Eα, Iα; deduced energy levels, J, π, T1/2. Comparison with systematics.

doi: 10.11804/NuclPhysRev.33.02.217
Citations: PlumX Metrics


2013TI03      Phys.Rev. C 87, 057305 (2013)

Y.Tian, Y.Cui

Systematics of nuclear ground-state properties of Sr isotopes by covariant density functional theory

NUCLEAR STRUCTURE 82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104Sr; calculated rms charge radii, S(2n), three-point neutron pairing energies of ground states. Density functional theory with parameter set DD-PC1. Comparison with experimental data.

doi: 10.1103/PhysRevC.87.057305
Citations: PlumX Metrics


2010MA35      Nucl.Phys. A834, 50c (2010)

Z.-y.Ma, Y.Tian, P.Ring

Density functional theory with a separable pairing force in finite nuclei

NUCLEAR STRUCTURE 102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136Sn; calculated E2, B(E2), pairing gap using separable and Gogny D1S forces. 128,130,132,134,136,138,140,142,144,146,148,150,152,154,156,158,160,162,164,166,168,170,172,174,176,178,180,182,184,186,188Sm; calculated deformation using RMF+BCS, HFB, RHB (relativistic Hartree-Bogoliubov). Comparison with data.

doi: 10.1016/j.nuclphysa.2010.01.015
Citations: PlumX Metrics


2010NI06      Phys.Rev. C 81, 054318 (2010)

T.Niksic, P.Ring, D.Vretenar, Y.Tian, Z.-y.Ma

3D relativistic Hartree-Bogoliubov model with a separable pairing interaction: Triaxial ground-state shapes

NUCLEAR STRUCTURE 134,136,138,140,142,144,146,148,150,152,154,156Sm, 190,192,194,196,198,200Pt; calculated triaxial quadrupole binding-energy contour maps, neutron and proton pairing energy maps in β-γ plane, quadrupole deformations. 192Pt; calculated proton and neutron canonical single-particle energy levels. Relativistic Hartree-Bogoliubov (RHB) model.

doi: 10.1103/PhysRevC.81.054318
Citations: PlumX Metrics


2010YA20      Phys.Rev. C 82, 054305 (2010)

D.Yang, L.-G.Cao, Y.Tian, Z.-Y.Ma

Importance of self-consistency in relativistic continuum random-phase approximation calculations

NUCLEAR STRUCTURE 40Ca, 132Sn, 208Pb; calculated inverse energy-weighted moments and strength distributions of isoscalar giant-monopole resonances (ISGMR), isovector giant-monopole resonances (IVGMR), isoscalar giant-quadrupole resonances (ISGQR), isovector giant-quadrupole resonances (IVGQR) using relativistic continuum random phase approximation (RCRPA) method.

doi: 10.1103/PhysRevC.82.054305
Citations: PlumX Metrics


2010ZO02      Chin.Phys.C 34, 56 (2010)

W.-H.Zou, Y.Tian, S.-F.Shen, J.-Z.Gu, B.-B.Peng, D.-D.Zhang, Z.-Y.Ma

Nuclear structure around 80Zr

NUCLEAR STRUCTURE 80,82,84Zr; calculated potential energy surfaces, ground state bands. Projected shell model (PSM) and relativistic Hartee-Bogoliubov (RHB) theory.

doi: 10.1088/1674-1137/34/1/010
Citations: PlumX Metrics


2010ZO03      Phys.Rev. C 82, 024309 (2010)

W.-h.Zou, Y.Tian, J.-z.Gu, S.-f.Shen, J.-m.Yao, B.-b.Peng, Z.-y.Ma

Microscopic description of nuclear structure around 80Zr

NUCLEAR STRUCTURE 80,82,84Zr; calculated ground-state total binding energies and angular momentum projected potential energy surfaces (AMPPES) using projected shell model with a quadrupole constrained relativistic Hartree-Bogoliubov (RHB) theory and NL3 effective interaction and Gogny D1S interaction for the pairing force. Shape coexistence and shape transitions, and decay out of superdeformed rotational bands.

doi: 10.1103/PhysRevC.82.024309
Citations: PlumX Metrics


2009TI03      Phys.Lett. B 676, 44 (2009)

Y.Tian, Z.Y.Ma, P.Ring

A finite range pairing force for density functional theory in superfluid nuclei

NUCLEAR STRUCTURE Sn, Pb; calculated pairing energy and associated matrix elements using the relativistic Hartree?Bogoliubov approach.

doi: 10.1016/j.physletb.2009.04.067
Citations: PlumX Metrics


2009TI04      Phys.Rev. C 79, 064301 (2009)

Y.Tian, Z.-y.Ma, P.Ring

Separable pairing force for relativistic quasiparticle random-phase approximation

NUCLEAR STRUCTURE 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136Sn, 122Zr, 124Mo, 126Ru, 128Pd, 130Cd, 132Sn, 134Te, 136Xe, 138Ba, 140Ce, 142Nd, 144Sm, 146Gd, 148Dy, 150Er, 152Yb; calculated energies of first 2+, first and second 3-, B(E2), proton average gap, and isoscalar giant monopole resonance (ISGMR) using Relativistic Hartree-Bogoliubov (RHB) and relativistic quasiparticle random phase approximation (RQRPA). Comparison with experimental data.

doi: 10.1103/PhysRevC.79.064301
Citations: PlumX Metrics


2009TI07      Phys.Rev. C 80, 024313 (2009)

Y.Tian, Z.-y.Ma, P.Ring

Axially deformed relativistic Hartree Bogoliubov theory with a separable pairing force

NUCLEAR STRUCTURE 164Er, 128,130,132,134,136,138,140,142,144,146,148,150,152,154,156,158,160,162,164,166,168,170,172,174,176,178,180,182,184,186,188Sm, 240Pu; calculated binding energies, neutron and proton pairing energies using axially symmetric relativistic Hartree-Bogoliubov calculations. Comparison with experimental data.

doi: 10.1103/PhysRevC.80.024313
Citations: PlumX Metrics


2008ZO03      Phys.Rev. C 78, 064613 (2008)

W.Zou, Y.Tian, Z.-Y.Ma

Microscopic optical potential for α-nucleus elastic scattering in a Dirac-Brueckner-Hartree-Fock approach

NUCLEAR REACTIONS 12C(α, α), E=104, 120, 145, 166, 172.5 MeV; 16O(α, α), E=48.7, 54.1, 69.5, 80.7, 104 MeV; 28Si(α, α), E=104, 166, 240 MeV; 40Ca(α, α), E=40.05, 47, 53.9, 80, 104, 141.7 MeV; calculated density dependence of optical model potentials, normalization factors, σ(θ). DBHF calculations. Comparison with experimental data.

doi: 10.1103/PhysRevC.78.064613
Citations: PlumX Metrics


2007MA02      Chin.Phys.Lett. 24, 69 (2007)

Y.-Q.Ma, Y.Tian, Z.-Y.Ma

Influence of D-state in 4He on S Factor for the 2H(d, γ)4He Reaction

NUCLEAR REACTIONS 2H(d, γ), E(cm)=10-1000 keV; calculated astrophysical S-factors; deduced sensitivity to 4He D-state.

doi: 10.1088/0256-307X/24/1/019
Citations: PlumX Metrics


2006TI10      Chin.Phys.Lett. 23, 3226 (2006)

Y.Tian, Z.-Y.Ma

A Separable Pairing Force in Nuclear Matter

doi: 10.1088/0256-307X/23/12/029
Citations: PlumX Metrics


1991CA26      Chin.J.Nucl.Phys. 13, No 1, 45 (1991)

C.Cai, D.Liu, Q.Shen, Y.Tian, Y.Zhuo

Comparison between Phenomenological and Microscopic Optical Potential in Nuclear Data Evaluations

NUCLEAR REACTIONS 27Al, 31P, S, Cl, K, Ca, Fe, 59Co, Cu, Ag, In, Sb, W, Pb(n, n), E ≈ 0.083-24 MeV; calculated σ. Comparison with data. Different models chi square fits, phenomenological optimal, global and microscopic optical potentials.


1988TI04      Chin.J.Nucl.Phys. 10, 183 (1988)

Tian Ye, Han Yinlu, Shen Qingbiao, Cai Chonghai

Calculation and Analysis of Fast Neutron Cross Sections on Mo with Microscopic Optical Potential

NUCLEAR REACTIONS 98Mo(n, p), (n, γ), (n, α), (n, np), 100Mo(n, 2n), E=threshold-20 MeV; calculated σ(E). 98Mo(n, n), E=0.5-26 MeV; calculated σ(θ). Hauser-Feshbach, preequilibrium exciton (with evaporation) models, microscopic optical potential.


1986SH37      Chin.J.Nucl.Phys. 8, 376 (1986)

Shen Qingbiao, Tian Ye

Empirical Formula of Nuclear Density fitting Experimental Data of Charge Radii and Charge Distributions

NUCLEAR STRUCTURE A ≤ 208; calculated charge radii, distributions; deduced model parameters. Fermi type empirical formula.


1986TI05      Chin.J.Nucl.Phys. 8, 28 (1986)

Tian Ye, Wang Chang, Han Yinlu, Shen Qingbiao, Zhuo Yizhong

An Application of the Microscopic Optical Potential (S-MOP) to Non Even-Even Nuclei in Calculations of Cross Sections

NUCLEAR REACTIONS 6,7Li, 9Be, 10,11B, 14N, 23Na, 27Al, 51V, 53Cr, 55Mn, 59Co, 63,65Cu, 93Nb, 181Ta, 197Au, 235U, 239Pu(n, n), E ≈ 1-200 MeV; calculated total σ, σ(θ). Microscopic optical potential.


1986YE02      Chin.J.Nucl.Phys. 8, 214 (1986)

Ye Weilei, Yuan Haiji, Gao Qin, Zheng Chunkai, Tian Ye, Shen Qingbiao

Calculations of Neutron Skin for Spherical Nuclei using the Hartree-Fock Method with Skyrme Forces

NUCLEAR STRUCTURE 16O, 28Si, 32S, 40,48Ca, 60Ni, 90Zr, 120Sn; calculated proton, neutron density distributions, rms radii. Hartree-Fock method, Skyrme force.


1985TA26      Chin.J.Nucl.Phys. 7, 263 (1985)

Tang Xuetian, Gao Liangjun, Tian Ye

Generalization of the Goldhaber Theory

NUCLEAR STRUCTURE 11C, 19O; calculated momentum distribution widths. Generalized Goldhaber theory.


1985TI06      Chin.J.Nucl.Phys. 7, 207 (1985)

Tian Ye, Han Yinlu, Shen Qingbiao, Zhuo Yizhong, Liu Wei, Guo Dongmin Lifei

A Global Analysis of Proton Differential Elastic Cross Section Calculations with the Microscopic Optical Potential S-MOP

NUCLEAR REACTIONS 184W, 120Sn, 90Zr, 58,60,62,64Ni(p, p), E=16 MeV; 120Sn, 60Ni, 56Fe(p, p), E=30.3 MeV; 90Zr, 58Ni, 40Ca(p, p), E=40 MeV; 68Zn, 58Ni, 40Ca, 12C(p, p), E=61.4 MeV; 208Pb(p, p), E=16-61.4 MeV; analyzed σ(θ). Microscopic optical potential, extended Skyrme force.


1985TI07      Chin.J.Nucl.Phys. 7, 154 (1985)

Tian Ye, Han Yinlu, Shen Qingbiao, Zhuo Yizhong, Liu Wei, Guo Dongmin, Li Fei

A Global Analysis of Integral Cross Section Calculations with the Microscopic Optical Potential

NUCLEAR REACTIONS 12C(n, n), E ≤ 100 MeV; 44,40Ca(n, n), E ≤ 15 MeV; 60Ni(n, n), E ≤ 30 MeV; 242Pu, 98Mo(n, n), E ≤ 100 MeV; 140Ce(n, n), E ≤ 60 MeV; 238U, 232Th(n, n), E ≤ 15 MeV; calculated elastic, nonelastic, total σ(E). Effective Skyrme force, microscopic optical potential.


1985TI08      Chin.J.Nucl.Phys. 7, 344 (1985)

Tian Ye, Han Yinlu, Shen Qingbiao, Zhuo Yizhong, Liu Wei, Guo Dongmin, Li Fei

A Global Analysis of Neutron Differential Elastic Cross Section Calculations with the Microscopic Optical Potential

NUCLEAR REACTIONS 4He, 12C, 16O, 24Mg, 28Si, 32S, 40Ca, 50,52,54Cr, 54,56Fe, 58,60,62,64Ni, 64,66,68Zn, 90,92,94Zr, 92,94,96,98,100Mo, 118,120,122,124Sn, 182,184,186W, 208Pb, 232Th, 238U, 240Pu(n, n), E=1-26 MeV; calculated σ(θ). Microscopic optical potential.


1984SH38      Chin.J.Nucl.Phys. 6, 245 (1984)

Shen Qingbiao, Tian Ye, Wang Shunuan, Gao Liangjun, Zhuo Yizhong, Zhao Fujian

Exciton Transition Rate Calculations Based on the Optical Model Potentials

NUCLEAR STRUCTURE 40Ca, 120Sn, 238U; calculated exciton transition rates. Optical potential, Skyrme interaction.


1980YU01      Chin.J.Nucl.Phys. 2, 19 (1980)

Yu Jusheng, Wang Sufang, Tian Yuhong, Hou Mingdong, Miao Degui, Zeng Wenbing, Li Guangwei

Study of the Fission of the Excited Nuclei near Radium

NUCLEAR REACTIONS, Fission 197Au, Pb, 209Bi(12C, F), E=72.5 MeV; measured (fragment)(fragment)-coin; deduced symmetric fission dominance, fragment shape at scission.


Back to query form