NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 27, 2024.

Search: Author = Z.Y.Ma

Found 68 matches.

Back to query form



2023HA08      Phys.Rev. A 107, L020803 (2023)

P.Hao, K.Deng, F.F.Wu, Z.Y.Ma, W.Z.Wei, W.H.Yuan, Y.B.Du, H.L.Liu, H.X.Zhang, L.R.Pang, B.Wang, J.Zhang, Z.H.Lu

Precision measurement of 25Mg+-ion D1 and D2 transition frequencies

ATOMIC PHYSICS 25Mg; measured frequencies; deduced precise values of doublet transition frequencies using the decoherence-assisted spectroscopy method with the full use of spontaneous emission signals to improve the detection sensitivity.

doi: 10.1103/PhysRevA.107.L020803
Citations: PlumX Metrics


2019ZH39      Nucl.Phys. A990, 1 (2019)

Z.Zhang, R.R.Xu, Z.Y.Ma, Z.G.Ge, Y.Tian, D.Y.Pang, X.D.Sun, Y.L.Jin, X.Tao, Y.Zhang, J.M.Wang

Global α-nucleus optical model based on an Dirac Brueckner Hartree Fock approach

doi: 10.1016/j.nuclphysa.2019.06.013
Citations: PlumX Metrics


2018TI06      Phys.Rev. C 97, 064615 (2018)

Y.Tian, D.Y.Pang, Z.-y.Ma

Effects of nonlocality of nuclear potentials on direct capture reactions

NUCLEAR REACTIONS 48Ca(n, γ), E=0.01-0.4 MeV; 7Li(n, γ), E=0.01-2 MeV; 12C(p, γ), E=0-1.2 MeV; calculated local and non-local potential parameters, s-wave phase shifts of target nuclides as function of incident energy, and σ(E) with the Perey-Buck-type nonlocal potentials using a potential model; deduced effects of potential nonlocality in direct radiative capture reactions. Comparison with experimental values.

doi: 10.1103/PhysRevC.97.064615
Citations: PlumX Metrics


2013YA23      Chin.Phys.C 37, 124102 (2013)

D.Yang, L.-G.Cao, Z.-Y.Ma

Collective multipole excitations of exotic nuclei in relativistic continuum random phase approximation

NUCLEAR STRUCTURE 34,40,48,60Ca, 16,28O, 100,132Sn; calculated isoscalar and isovector collective multipole excitations, strength functions. Comparison with available data.

doi: 10.1088/1674-1137/37/12/124102
Citations: PlumX Metrics


2011RU13      J.Korean Phys.Soc. 59, 1729s (2011)

X.C.Ruan, G.C.Chen, H.X.Huang, X.Li, Y.B.Nie, B.Zhou, Z.Y.Ma, J.Bao, Q.P.Zhong, Z.Y.Zhou, H.Q.Tang, J.S.Zhang, C.L.Lan, Y.L.Zhang, Y.M.Li

Measurement of the Secondary Neutron Emission Differential and Double-Differential Cross Sections between 20 and 30 MeV

NUCLEAR REACTIONS 9Be(n, n), (n, xn), E=21.65 MeV; measured In, En using TOF and BC501A; deduced σ, σ(θ), σ(E, θ); calculated TOF neutron spectra using Monte Carlo code STREUER, σ by LUNF code. Compared with other data.

doi: 10.3938/jkps.59.1729
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset32682.


2010MA35      Nucl.Phys. A834, 50c (2010)

Z.-y.Ma, Y.Tian, P.Ring

Density functional theory with a separable pairing force in finite nuclei

NUCLEAR STRUCTURE 102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136Sn; calculated E2, B(E2), pairing gap using separable and Gogny D1S forces. 128,130,132,134,136,138,140,142,144,146,148,150,152,154,156,158,160,162,164,166,168,170,172,174,176,178,180,182,184,186,188Sm; calculated deformation using RMF+BCS, HFB, RHB (relativistic Hartree-Bogoliubov). Comparison with data.

doi: 10.1016/j.nuclphysa.2010.01.015
Citations: PlumX Metrics


2010NI06      Phys.Rev. C 81, 054318 (2010)

T.Niksic, P.Ring, D.Vretenar, Y.Tian, Z.-y.Ma

3D relativistic Hartree-Bogoliubov model with a separable pairing interaction: Triaxial ground-state shapes

NUCLEAR STRUCTURE 134,136,138,140,142,144,146,148,150,152,154,156Sm, 190,192,194,196,198,200Pt; calculated triaxial quadrupole binding-energy contour maps, neutron and proton pairing energy maps in β-γ plane, quadrupole deformations. 192Pt; calculated proton and neutron canonical single-particle energy levels. Relativistic Hartree-Bogoliubov (RHB) model.

doi: 10.1103/PhysRevC.81.054318
Citations: PlumX Metrics


2010YA20      Phys.Rev. C 82, 054305 (2010)

D.Yang, L.-G.Cao, Y.Tian, Z.-Y.Ma

Importance of self-consistency in relativistic continuum random-phase approximation calculations

NUCLEAR STRUCTURE 40Ca, 132Sn, 208Pb; calculated inverse energy-weighted moments and strength distributions of isoscalar giant-monopole resonances (ISGMR), isovector giant-monopole resonances (IVGMR), isoscalar giant-quadrupole resonances (ISGQR), isovector giant-quadrupole resonances (IVGQR) using relativistic continuum random phase approximation (RCRPA) method.

doi: 10.1103/PhysRevC.82.054305
Citations: PlumX Metrics


2010ZH11      Phys.Rev. C 81, 044319 (2010)

D.-D.Zhang, Z.-Y.Ma, B.-Q.Chen, S.-F.Shen

α-decay half-lives of superheavy elements with the Dirac-Brueckner-Hartree-Fock (DBHF) nucleon effective interaction

RADIOACTIVITY 261,263Sg, 264,267,272Bh, 264,265,275Hs, 268Mt, 270,279,281Ds, 272Rg, 283,285Cn, 283,284Nh, 286,287,288,289Fl, 287,288Mc, 290,291,292,293Lv, 294Og; calculated half-lives using microscopic NN effective interaction based on the Dirac-Brueckner-Hartree-Fock (DBHF) approach and the M3Y effective interaction. Comparison with experimental data.

doi: 10.1103/PhysRevC.81.044319
Citations: PlumX Metrics


2010ZH19      Chin.Phys.C 34, 334 (2010)

D.-D.Zhang, B.-Q.Chen, Z.-Y.Ma

Systematic studies on α-decay half-lives for super heavy nuclei

NUCLEAR STRUCTURE Z=102-120; calculated T1/2; deduced nucleus-nucleus potential. Performed cluster model (PCM).

doi: 10.1088/1674-1137/34/3/006
Citations: PlumX Metrics


2010ZO02      Chin.Phys.C 34, 56 (2010)

W.-H.Zou, Y.Tian, S.-F.Shen, J.-Z.Gu, B.-B.Peng, D.-D.Zhang, Z.-Y.Ma

Nuclear structure around 80Zr

NUCLEAR STRUCTURE 80,82,84Zr; calculated potential energy surfaces, ground state bands. Projected shell model (PSM) and relativistic Hartee-Bogoliubov (RHB) theory.

doi: 10.1088/1674-1137/34/1/010
Citations: PlumX Metrics


2010ZO03      Phys.Rev. C 82, 024309 (2010)

W.-h.Zou, Y.Tian, J.-z.Gu, S.-f.Shen, J.-m.Yao, B.-b.Peng, Z.-y.Ma

Microscopic description of nuclear structure around 80Zr

NUCLEAR STRUCTURE 80,82,84Zr; calculated ground-state total binding energies and angular momentum projected potential energy surfaces (AMPPES) using projected shell model with a quadrupole constrained relativistic Hartree-Bogoliubov (RHB) theory and NL3 effective interaction and Gogny D1S interaction for the pairing force. Shape coexistence and shape transitions, and decay out of superdeformed rotational bands.

doi: 10.1103/PhysRevC.82.024309
Citations: PlumX Metrics


2009DO20      Chin.Phys.C 33, 532 (2009)

H.-F.Dong, Y.-Q.Ma, Z.-Y.Ma

Elastic scattering of 6He from 12C at 38.3 MeV/nucleon

NUCLEAR REACTIONS 12C(6He, 6He), E=38.3 MeV/nucleon; analyzed elastic scattering data within standard optical model; calculated σ(θ). Comparison with theoretical models and experimental data.

doi: 10.1088/1674-1137/33/7/006
Citations: PlumX Metrics


2009TI03      Phys.Lett. B 676, 44 (2009)

Y.Tian, Z.Y.Ma, P.Ring

A finite range pairing force for density functional theory in superfluid nuclei

NUCLEAR STRUCTURE Sn, Pb; calculated pairing energy and associated matrix elements using the relativistic Hartree?Bogoliubov approach.

doi: 10.1016/j.physletb.2009.04.067
Citations: PlumX Metrics


2009TI04      Phys.Rev. C 79, 064301 (2009)

Y.Tian, Z.-y.Ma, P.Ring

Separable pairing force for relativistic quasiparticle random-phase approximation

NUCLEAR STRUCTURE 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136Sn, 122Zr, 124Mo, 126Ru, 128Pd, 130Cd, 132Sn, 134Te, 136Xe, 138Ba, 140Ce, 142Nd, 144Sm, 146Gd, 148Dy, 150Er, 152Yb; calculated energies of first 2+, first and second 3-, B(E2), proton average gap, and isoscalar giant monopole resonance (ISGMR) using Relativistic Hartree-Bogoliubov (RHB) and relativistic quasiparticle random phase approximation (RQRPA). Comparison with experimental data.

doi: 10.1103/PhysRevC.79.064301
Citations: PlumX Metrics


2009TI07      Phys.Rev. C 80, 024313 (2009)

Y.Tian, Z.-y.Ma, P.Ring

Axially deformed relativistic Hartree Bogoliubov theory with a separable pairing force

NUCLEAR STRUCTURE 164Er, 128,130,132,134,136,138,140,142,144,146,148,150,152,154,156,158,160,162,164,166,168,170,172,174,176,178,180,182,184,186,188Sm, 240Pu; calculated binding energies, neutron and proton pairing energies using axially symmetric relativistic Hartree-Bogoliubov calculations. Comparison with experimental data.

doi: 10.1103/PhysRevC.80.024313
Citations: PlumX Metrics


2009YA02      Chin.Phys.Lett. 26, 022101 (2009)

D.Yang, L.-G.Cao, Z.-Yu.Ma

Isoscalar Giant Monopole Resonance in Relativistic Continuum Random Phase Approximation

NUCLEAR STRUCTURE 120Sn, 208Pb; calculated Isoscalar Giant Monopole resonance strength in the framework of relativistic continuum random phase approximation.

doi: 10.1088/0256-307X/26/2/022101
Citations: PlumX Metrics


2008CA10      Chin.Phys.Lett. 25, 1625 (2008)

Li.-G.Cao, Z.-Y.Ma

Symmetry Energy and Isovector Giant Dipole Resonance in Finite Nuclei

NUCLEAR STRUCTURE 90Zr, 132Sn, 144Sm, 208Pb; calculated IVGDR energies as a function of symmetry energy using relativistic mean field theory.

doi: 10.1088/0256-307X/25/5/028
Citations: PlumX Metrics


2008ZO03      Phys.Rev. C 78, 064613 (2008)

W.Zou, Y.Tian, Z.-Y.Ma

Microscopic optical potential for α-nucleus elastic scattering in a Dirac-Brueckner-Hartree-Fock approach

NUCLEAR REACTIONS 12C(α, α), E=104, 120, 145, 166, 172.5 MeV; 16O(α, α), E=48.7, 54.1, 69.5, 80.7, 104 MeV; 28Si(α, α), E=104, 166, 240 MeV; 40Ca(α, α), E=40.05, 47, 53.9, 80, 104, 141.7 MeV; calculated density dependence of optical model potentials, normalization factors, σ(θ). DBHF calculations. Comparison with experimental data.

doi: 10.1103/PhysRevC.78.064613
Citations: PlumX Metrics


2007GR21      Phys.Rev. C 76, 044319 (2007)

M.Grasso, Z.Y.Ma, E.Khan, J.Margueron, N.Van Giai

Evolution of the proton sd states in neutron-rich Ca isotopes

NUCLEAR STRUCTURE 48,52,70,78Ca; calculated excitation energies. Skyrme-Hartree-Fock equations used.

doi: 10.1103/PhysRevC.76.044319
Citations: PlumX Metrics


2007LI26      Phys.Rev. C 75, 054320 (2007)

J.Liang, Li-G.Cao, Z.-Yu.Ma

Pygmy and giant dipole resonances in Ni isotopes

NUCLEAR STRUCTURE Ni; calculated properties of the isovector giant and pigmy dipole resonances for even-even Ni isotopes within the framework of a relativistic random phase approximation built on a relativistic mean field ground state.

doi: 10.1103/PhysRevC.75.054320
Citations: PlumX Metrics


2007MA02      Chin.Phys.Lett. 24, 69 (2007)

Y.-Q.Ma, Y.Tian, Z.-Y.Ma

Influence of D-state in 4He on S Factor for the 2H(d, γ)4He Reaction

NUCLEAR REACTIONS 2H(d, γ), E(cm)=10-1000 keV; calculated astrophysical S-factors; deduced sensitivity to 4He D-state.

doi: 10.1088/0256-307X/24/1/019
Citations: PlumX Metrics


2006LI30      Chin.Phys.Lett. 23, 1719 (2006)

J.Liang, Z.-Yu.Ma, B.-Q.Chen

Ground-State Properties of Ca Isotopes and the Density Dependence of the Symmetry Energy

NUCLEAR STRUCTURE 52,54,60,70Ca; calculated neutron and proton density distributions, radii, single-particle energies. Relativistic mean field approach.

doi: 10.1088/0256-307X/23/7/018
Citations: PlumX Metrics


2006MA82      Int.J.Mod.Phys. E15, 1347 (2006)

Z.-Yu.Ma, B.-Q.Chen, J.Liang, L.-G.Cao

Giant resonances and asymmetry energy

NUCLEAR STRUCTURE 70,72,74,76,78,80,82,84,86,88,90,92,94,96Ni; calculated GDR energies. 132Sn, 208Pb; calculated asymmetry energy, giant resonance strength. Relativistic quasiparticle RPA.

doi: 10.1142/S0218301306004934
Citations: PlumX Metrics


2006RO03      Phys.Rev. C 73, 014614 (2006)

J.Rong, Z.-Y.Ma, N.Van Giai

Isospin-dependent optical potentials in Dirac-Brueckner-Hartree-Fock approach

NUCLEAR REACTIONS 40Ca, 208Pb(p, p), E=10-200 MeV; calculated σ(θ), Ay(θ), spin-rotation functions. Relativistic microscopic optical model, comparison with data.

doi: 10.1103/PhysRevC.73.014614
Citations: PlumX Metrics


2006TI10      Chin.Phys.Lett. 23, 3226 (2006)

Y.Tian, Z.-Y.Ma

A Separable Pairing Force in Nuclear Matter

doi: 10.1088/0256-307X/23/12/029
Citations: PlumX Metrics


2006ZH15      Chin.Phys.Lett. 23, 1723 (2006)

H.-F.Zhang, W.Zuo, J.-Q.Li, S.Im, Z.-Yu.Ma, B.-Q.Chen

Anomaly in the Charge Radii and Nuclear Structure

NUCLEAR STRUCTURE A=118-150; calculated isotope shifts, radii, quadrupole deformations for Pr isotopes. 139,140,141,142Pr; calculated single-particle energy levels, proton and neutron density distributions. Relativistic mean field approach.

doi: 10.1088/0256-307X/23/7/019
Citations: PlumX Metrics


2006ZH16      Chin.Phys.Lett. 23, 1734 (2006)

H.-F.Zhang, J.-Q.Li, W.Zuo, B.-Q.Chen, Z.-Yu.Ma, S.Im, G.Royer

Alpha Decay Half-Lives of New Superheavy Elements through Quasimolecular Shapes

RADIOACTIVITY 294Og, 290,291,292,293Lv, 286,287,288,289Fl, 283,285Cn, 279Ds, 275Hs, 271Sg(α); calculated T1/2. WKB approximation, comparison with data and other models.

doi: 10.1088/0256-307X/23/7/022
Citations: PlumX Metrics


2005CA15      Phys.Rev. C 71, 034305 (2005)

Li-G.Cao, Z.-Y.Ma

Low-lying dipole modes in 26, 28Ne in the quasiparticle relativistic random phase approximation

NUCLEAR STRUCTURE 26,28Ne; calculated isovector dipole strength distributions, resonance features. Quasiparticle relativistic RPA.

doi: 10.1103/PhysRevC.71.034305
Citations: PlumX Metrics


2005CH09      Chin.Phys.Lett. 22, 302 (2005)

B.-Q.Chen, Z.Yu.Ma, Z.-Y.Zhu, H.-Q.Song, Y.-L.Zhao

Deformed Potential Energy of Super Heavy Element Z = 120 in a Generalized Liquid Drop Model

NUCLEAR REACTIONS 244Pu(58Fe, X), 208Pb(88Sr, X), (94Sr, X), 166Dy(136Xe, X), 252Fm(50Ca, X), E not given; calculated deformed potential energies for fusion reactions. Generalized liquid drop model.

doi: 10.1088/0256-307X/22/2/010
Citations: PlumX Metrics


2004CA17      Chin.Phys.Lett. 21, 810 (2004)

L.-G.Cao, Z.-Y.Ma

Isoscalar Giant Resonances of 120Sn in the Quasiparticle Relativistic Random Phase Approximation

NUCLEAR STRUCTURE 120Sn; calculated giant resonance response functions. Quasiparticle relativistic RPA.

doi: 10.1088/0256-307X/21/5/013
Citations: PlumX Metrics


2004CA44      Eur.Phys.J. A 22, 189 (2004)

L.-G.Cao, Z.-Yu.Ma

Effect of resonant continuum on pairing correlations in the relativistic approach

NUCLEAR STRUCTURE 68,70,72,74,76,78,80,82,84,86,88,90,92,94,96,98Ni; calculated pairing energies, binding energies, two-neutron separation energies, radii. Relativistic approach, role of resonant continuum discussed.

doi: 10.1140/epja/i2004-10029-5
Citations: PlumX Metrics


2004LI19      Phys.Rev. C 69, 034326 (2004)

Z.H.Liu, M.Ruan, Y.L.Zhao, H.Q.Zhang, F.Yang, Z.Y.Ma, C.J.Lin, B.Q.Chen, Y.W.Wu, W.L.Zhan, Z.Y.Guo, G.Q.Xiao, H.S.Xu, Z.Y.Sun, J.X.Li, Z.J.Chen

Evidence for enhancement of the total reaction cross sections for 27, 28P with a 28Si target and examination of possibly relevant mechanisms

NUCLEAR REACTIONS Si(23Na, X), (24Mg, X), (25Mg, X), (25Al, X), (26Al, X), (26Si, X), (27Si, X), (27P, X), (28P, X), E ≈ 20-40 MeV/nucleon; measured reaction σ; deduced reaction mechanism features. Secondary beams from 36Ar fragmentation. Modified Glauber model analysis.

doi: 10.1103/PhysRevC.69.034326
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetA0802.


2004LI57      Chin.Phys.Lett. 21, 1711 (2004)

Z.-H.Liu, M.Ruan, Y.-L.Zhao, H.-Q.Zhang, F.Yang, Z.-Y.Ma, C.-J.Lin, B.-Q.Chen, Y.-W.Wu, W.-L.Zhan, Z.-Y.Guo, G.-Q.Xiao, H.-S.Xu, Z.-Y.Sun, J.-X.Li, Z.-Q.Chen

Possible Experimental Evidence of a Moderate Proton Halo in 29S

NUCLEAR REACTIONS 28Si(29Si, X), (27Si, X), (28P, X), (27P, X), E ≈ 40 MeV/nucleon; measured reaction σ. 29S deduced proton halo features. Modified Glauber theory analysis.

doi: 10.1088/0256-307X/21/9/009
Citations: PlumX Metrics


2004MA44      Eur.Phys.J. A 20, 429 (2004)

Z.-Y.Ma, B.-Q.Chen, N.Van Giai, T.Suzuki

The Gamow-Teller resonance in finite nuclei in the relativistic random phase approximation

NUCLEAR STRUCTURE 48Ca, 90Zr, 208Pb; calculated Gamow-Teller response functions, resonance energies. Relativistic RPA.

doi: 10.1140/epja/i2003-10167-2
Citations: PlumX Metrics


2004MA90      Phys.Lett. B 604, 170 (2004)

Z.-Y.Ma, J.Rong, B.-Q.Chen, Z.-Y.Zhu, H.-Q.Song

Isospin dependence of nucleon effective mass in Dirac Brueckner-Hartree-Fock approach

doi: 10.1016/j.physletb.2004.11.004
Citations: PlumX Metrics


2003CA33      Chin.Phys.Lett. 20, 1459 (2003)

L.-G.Cao, Z.-Y.Ma

Isovector Giant Dipole Resonance of Stable Nuclei in a Consistent Relativistic Random-phase Approximation

NUCLEAR STRUCTURE 40Ca, 90Zr, 116Sn, 208Pb; A=10-250; calculated isovector GDR energies. Relativistic RPA, comparisons with data.

doi: 10.1088/0256-307X/20/9/314
Citations: PlumX Metrics


2003CH81      Chin.Phys.Lett. 20, 1936 (2003)

B.-Q.Chen, Z.-Y.Ma, Y.-L.Zhao

Deformed Potential Energy of 236Db in a Generalized Liquid Drop Model

NUCLEAR REACTIONS 241Am(22Ne, 4n), E not given; calculated potential barrier, shape evolution in cold fusion reaction. Generalized liquid drop model, quasi-molecular shape.

NUCLEAR STRUCTURE 263Db calculated deformed potential energy. Generalized liquid drop model, quasi-molecular shape.

doi: 10.1088/0256-307X/20/11/009
Citations: PlumX Metrics


2003MA26      Chin.Phys.Lett. 20, 1025 (2003)

Z.-Y.Ma, B.-Q.Chen

Gamow-Teller Resonance of 90Zr in a Relativistic Approach

NUCLEAR STRUCTURE 90Zr; calculated Gamow-Teller resonance response function. Relativistic RPA approach.

doi: 10.1088/0256-307X/20/7/315
Citations: PlumX Metrics


2003ZH03      Chin.Phys.Lett. 20, 53 (2003)

Y.-L.Zhao, Z.-Y.Ma, B.-Q.Chen, W.-Q.Shen

Halo Structure of Nucleus 23Al

NUCLEAR REACTIONS 12C(23Al, X), E ≈ 30 MeV/nucleon; calculated reaction σ vs projectile core radius, diffuseness parameter. Glauber model, comparison with data.

doi: 10.1088/0256-307X/20/1/316
Citations: PlumX Metrics


2002LI09      Chin.Phys.Lett. 19, 190 (2002)

L.Liu, Z.-Y.Ma

A New Decomposition Approach of Dirac Brueckner Hartree-Fock G Matrix for Asymmetric Nuclear Matter

doi: 10.1088/0256-307X/19/2/315
Citations: PlumX Metrics


2002MA27      Nucl.Phys. A703, 222 (2002)

Z.-Y.Ma, A.Wandelt, V.G.Nguyen, D.Vretenar, P.Ring, L.-G.Cao

Collective Multipole Excitations in a Microscopic Relativistic Approach

NUCLEAR STRUCTURE 16O, 40,48Ca, 90Zr, 208Pb; calculated giant resonance strength distributions. 208Pb; calculated transitions B(Eλ). Relativistic RPA, comparisons with data.

doi: 10.1016/S0375-9474(01)01598-6
Citations: PlumX Metrics


2002MA54      Phys.Rev. C66, 024321 (2002)

Z.Y.Ma, L.Liu

Effective Dirac Brueckner-Hartree-Fock method for asymmetric nuclear matter and finite nuclei

NUCLEAR STRUCTURE 16O, 40,48Ca, 48,56,68Ni, 90Zr, 100,132Sn, 208Pb; calculated binding energies, radii. 16O, 40,48Ca, 48Ni; calculated spin-orbit splitting. Dirac-Brueckner-Hartree-Fock approach.

doi: 10.1103/PhysRevC.66.024321
Citations: PlumX Metrics


2001CH84      Chin.Phys.Lett. 18, 1561 (2001)

B.-Q.Chen, Z.-Y.Ma

One Neutron Halo in a 12B Excited State

NUCLEAR STRUCTURE 11,12B; calculated single-particle energies, radii, density distributions. 12B; deduced excited state halo. Relativistic mean field approach.

doi: 10.1088/0256-307X/18/12/306
Citations: PlumX Metrics


2001MA30      Nucl.Phys. A686, 173 (2001)

Z.-Y.Ma, V.G.Nguyen, A.Wandelt, D.Vretenar, P.Ring

Isoscalar Compression Modes in Relativistic Random Phase Approximation

NUCLEAR STRUCTURE 144Sm, 208Pb; calculated isoscalar giant monopole and dipole resonance features. Fully consistent relativistic RPA.

doi: 10.1016/S0375-9474(00)00523-6
Citations: PlumX Metrics


2001MA43      Nucl.Phys. A687, 64c (2001)

Z.-Y.Ma, V.G.Nguyen, A.Wandelt, D.Vretenar, P.Ring

A Consistent Approach in Relativistic Random Phase Approximation

NUCLEAR STRUCTURE 208Pb; calculated isoscalar giant monopole resonance strength distribution. Relativistic Random Phase Approximation, comparison between different interaction potentials.

doi: 10.1016/S0375-9474(01)00602-9
Citations: PlumX Metrics


2001RI17      Nucl.Phys. A694, 249 (2001)

P.Ring, Z.-Y.Ma, V.G.Nguyen, D.Vretenar, A.Wandelt, L.-G.Cao

The Time-Dependent Relativistic Mean-Field Theory and the Random Phase Approximation

NUCLEAR STRUCTURE 116Sn; calculated isoscalar giant monopole resonance strength distribution. Relativistic RPA, time-dependent relativistic mean field theory.

doi: 10.1016/S0375-9474(01)00986-1
Citations: PlumX Metrics


2001TA21      Chin.Phys.Lett. 18, 1030 (2001)

Y.-H.Tan, Y.-A.Luo, P.-Z.Ning, Z.-Y.Ma

Static Properties of Λ-Hypernuclei

NUCLEAR STRUCTURE 12C, 16O, 51V, 89Y, 139La, 208Pb; calculated hyperon single-particle energies. 12C, 16O, 40Ca, 208Pb; calculated hypernucleus binding energies, radii. Self-consistent relativistic mean-field model, comparisons with data.

doi: 10.1088/0256-307X/18/8/311
Citations: PlumX Metrics


2000NG05      Trans.Bulg.Nucl.Soc. 5, 151 (2000)

V.G.Nguyen, Z.-Y.Ma

The Giant Monopole Resonance in Relativistic Random Phase Approximation

NUCLEAR STRUCTURE 208Pb; calculated giant monopole resonance strength distributions. RPA approach.


2000ZH08      Chin.Phys.Lett. 17, 185 (2000)

Y.Zhou, Z.-Y.Ma, B.-Q.Chen, J.-Q.Li

Ground-State Properties of Z = 59 Nuclei in the Relativistic Mean-Field Theory

NUCLEAR STRUCTURE Z=59, A=120-198; calculated ground-state deformation, related properties. 118,119,185,186Pr; calculated levels, J, π. Relativistic mean-field model, blocking approximation method.

doi: 10.1088/0256-307X/17/3/011
Citations: PlumX Metrics


1999CH15      Phys.Lett. 455B, 13 (1999)

B.Q.Chen, Z.Y.Ma, F.Grummer, S.Krewald

Neutron Rich Nuclei in Density Dependent Relativistic Hartree-Fock Theory with Isovector Mesons

NUCLEAR STRUCTURE Ca; calculated binding energies, radii for A=30-70. 40,70Ca; calculated neutron densities; deduced Fock exchange term effects, meson contributions. Density-dependent relativistic Hartree-Fock theory.

doi: 10.1016/S0370-2693(99)00428-1
Citations: PlumX Metrics


1998CH01      J.Phys.(London) G24, 97 (1998)

B.Q.Chen, Z.Y.Ma, F.Grummer, S.Krewald

Relativistic Mean-Field Theory Study of Proton Halos in the 2s1d Shell

NUCLEAR STRUCTURE 24,25,26,27,28,29P, 26,27,28,29,30,31S; calculated one-, two-proton separation energies, density distributions; 31P, 24,25,26,27,28,30Si; calculated density distributions; deduced proton halo candidates. Relativistic mean-field theory.

doi: 10.1088/0954-3899/24/1/013
Citations: PlumX Metrics


1998CH30      Acta Phys.Pol. B29, 2223 (1998)

B.Q.Chen, Z.Y.Ma, F.Grummer, S.Krewald

The Role of Fock Terms and Isovector Mesons in Relativistic Hartree-Fock Calculations for Neutron Rich Nuclei

NUCLEAR STRUCTURE Ca; calculated binding energies, proton, neutron radii for A=30-70; deduced Fock term, vector mesons contributions.


1998CH31      Chin.Phys.Lett. 15, 636 (1998)

B.-Q.Chen, Z.Y.Ma, S.Krewald, F.Grummer

Contribution of Fock Term to Properties of Exotic Nuclei

NUCLEAR STRUCTURE Z=40; A=30-70; calculated binding energies, proton, neutron radii. 40,70Ca; calculated neutron density distributions; deduced Fock exchange term contributions for exotic nuclei. Density-dependent relativistic Hartree-Fock theory.

doi: 10.1088/0256-307X/15/9/005
Citations: PlumX Metrics


1998LE23      Phys.Rev. C58, 1551 (1998)

T.-S.H.Lee, Z.-Y.Ma, B.Saghai, H.Toki

Photoproduction of a Λ on 12C

NUCLEAR REACTIONS 12C(γ, K+), E=0.7-1.2 GeV; calculated hypernucleus production σ(θ); deduced dependence on pγ amplitudes, possible medium effects. Comparison with data.

doi: 10.1103/PhysRevC.58.1551
Citations: PlumX Metrics


1997GR31      Bull.Rus.Acad.Sci.Phys. 61, 1925 (1997)

F.Grummer, B.Q.Chen, Z.Y.Ma, S.Krewald

Bulk Properties of Light Deformed Nuclei Derived from a Medium-Modified Meson-Exchange Interaction

NUCLEAR STRUCTURE Z=6-12; calculated radii, charge density, deformations for even-even nuclei. Medium-modified meson-exchange interaction.


1996GR21      Phys.Lett. 387B, 673 (1996)

F.Grummer, B.Q.Chen, Z.Y.Ma, S.Krewald

Bulk Properties of Light Deformed Nuclei Derived from a Medium-Modified Meson-Exchange Interaction

NUCLEAR STRUCTURE 8,10,12,14,16,18,20,22C, 16,18,20,22,24,26,28,30,32Ne, 12,14,16,18,20,22,24,26O, 20,22,24,26,28,30,32,34,36Mg; calculated energy per nucleon, nucleon charge densities rms radii, deformations in some cases. Deformed HFB, medium modified meson exchange interaction.

doi: 10.1016/0370-2693(96)01126-4
Citations: PlumX Metrics


1996MA45      Nucl.Phys. A608, 305 (1996)

Z.-Y.Ma, J.Speth, S.Krewald, B.-Q.Chen, A.Reuber

Hypernuclei with Meson-Exchange Hyperon-Nucleon Interactions

NUCLEAR STRUCTURE A=12-208; calculated Λ hypernuclei single particle levels, other aspects. Relativistic mean field theory.

doi: 10.1016/S0375-9474(96)00169-8
Citations: PlumX Metrics


1995CH68      J.Phys.(London) G21, 1759 (1995)

B.Q.Chen, Z.Y.Ma, S.Krewald, F.Grummer

Properties of Proton and Neutron Rich Nuclei in the Vicinity of 100Sn in Relativistic Mean Field Theory

NUCLEAR STRUCTURE 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134Sn, 78Ni, 80Zn, 82Ge, 84Se, 86Kr, 88Sr, 90Zr, 92Mo, 94Ru, 96Pd, 98Cd; calculated binding energy per nucleon, nucleon rms radii. Relativistic mean field theory, effective interactions.

doi: 10.1088/0954-3899/21/12/011
Citations: PlumX Metrics


1995MA18      J.Phys.(London) G21, 79 (1995)

Z.Y.Ma, D.-C.Feng, B.-Q.Chen, W.-Q.Liu

Does the Longitudinal Suppression of Quasielastic Electron Scattering Exist ( Question )

NUCLEAR REACTIONS 40Ca(e, e'X), E=407.8-840.7 MeV; calculated σ(θ) vs energy transfer. Relativistic mean field, nonrelativistic quasiparticle approaches.

doi: 10.1088/0954-3899/21/1/009
Citations: PlumX Metrics


1995SH19      Phys.Rev. C52, 144 (1995)

H.-L.Shi, B.-Q.Chen, Z.-Y.Ma

Relativistic Density-Dependent Hartree-Fock Approach for Finite Nuclei

NUCLEAR STRUCTURE 16O, 40,48Ca, 90Zr, 208Pb; calculated binding energy per nucleon, charge radii. Relativistic density-dependent Hartree-Fock approach.

doi: 10.1103/PhysRevC.52.144
Citations: PlumX Metrics


1991MA10      Phys.Lett. 256B, 1 (1991)

Z.Y.Ma, J.Wambach

Quasiparticle Properties of Protons in 208Pb

NUCLEAR STRUCTURE 208Pb; calculated charge density, proton quasiparticle properties. Quasiparticle hamiltonian, phenomenological approach, correlations.

doi: 10.1016/0370-2693(91)90207-7
Citations: PlumX Metrics


1988MA55      Nucl.Phys. A490, 619 (1988)

Z.-Y.Ma, P.Zhu, Y.-Q.Gu, Y.-Z.Zhuo

Optical Potentials in Relativistic Meson-Nucleon Model

NUCLEAR REACTIONS 12C, 16O, 40Ca, 58Ni, 90Zr, 118Sn, 208Pb(polarized p, p), E=65 MeV; calculated σ(θ), analyzing power vs θ. Relativistic microscopic optical potentials.

doi: 10.1016/0375-9474(88)90017-6
Citations: PlumX Metrics


1983MA01      Nucl.Phys. A394, 60 (1983)

Z.Y.Ma, K.C.Tam, T.T.S.Kuo

Perturbative Derivation of Realistic Energy-Independent Optical Potentials

NUCLEAR REACTIONS 40Ca(n, n), E=30.5 MeV; calculated energy independent optical potentials. Empirical potential input, perturbative method.

doi: 10.1016/0375-9474(83)90161-6
Citations: PlumX Metrics


1983MA25      Nucl.Phys. A402, 275 (1983)

Z.Y.Ma, J.Wambach

Implicatons of a Dynamical Effective Mass on the Nuclear Shell Model

NUCLEAR REACTIONS 51V(e, e'), E not given; calculated transverse form factors, M7 multipole transition contribution. Shell model, dynamical effective mass.

NUCLEAR STRUCTURE 40Ca, 208Pb; calculated single particle levels, ground state mass density distributions. Shell model, dynamical effective mass.

doi: 10.1016/0375-9474(83)90499-2
Citations: PlumX Metrics


1983PR05      Phys.Lett. 128B, 141 (1983)

M.Prakash, J.Wambach, Z.Y.Ma

Effective Mass in Nuclei and the Level Density Parameter

NUCLEAR STRUCTURE A=20-260; calculated level density parameter vs mass; deduced volume, surface, curvature coefficients. Local quasiparticle effective mass, surface effects.

doi: 10.1016/0370-2693(83)90377-5
Citations: PlumX Metrics


1981MA31      Phys.Lett. 106B, 159 (1981)

Z.-Y.Ma, X.-Z.Wu, J.-S.Zhang, Y.-Z.Zhuo, J.O.Rasmussen

Calculation of Muon Final Probabilities after Muon-Induced Fission in a Four-State basis

NUCLEAR REACTIONS, Fission 238U(μ-, F), E at rest; calculated muon orbital occupation probability vs fragment separation energy. Four basis state calculation.

ATOMIC PHYSICS, Mesic-Atoms 68Zn, 80Se, 88Sr, 98Mo, 108Pd, 120Sn, 132Xe, 142Ce, 152Sm, 164Dy; calculated 1s-, 2p-state muonic binding energies.

doi: 10.1016/0370-2693(81)90898-4
Citations: PlumX Metrics


1980MA38      Nucl.Phys. A348, 446 (1980)

Z.Y.Ma, X.Z.Wu, G.S.Zhang, Y.C.Cho, Y.S.Wang, J.H.Chiou, S.T.Sen, F.C.Yang, J.O.Rasmussen

Calculation of Muon Final-State Probabilities after Muon-Induced Fission

NUCLEAR REACTIONS, Fission 238U(μ-, F), E at rest; calculated muon-fragment binding probability. Time dependent perturbation, different fission asymmetries, fragment dynamical conditions.

doi: 10.1016/0375-9474(80)90264-X
Citations: PlumX Metrics


Back to query form