NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 26, 2024.

Search: Author = H.F.Zhang

Found 94 matches.

Back to query form



2023LI51      Phys.Rev. C 108, 044604 (2023)

J.-X.Li, H.-F.Zhang

Possibility to synthesize Z > 118 superheavy nuclei with 54Cr projectiles

doi: 10.1103/PhysRevC.108.044604
Citations: PlumX Metrics


2023LI62      Chin.Phys.C 47, 124105 (2023)

J.-X.Li, H.-F.Zhang

Evaporation residue cross sections of superheavy nuclei based on optimized nuclear data

NUCLEAR REACTIONS 238U(48Ca, X), E not given; analyzed available data; deduced the evaporation residue σ in 3n and 4n channels using an optimized method for estimating atomic nucleus masses by combining the finite-range droplet model (FRDM) with the support vector machine algorithm.

doi: 10.1088/1674-1137/ad021f
Citations: PlumX Metrics


2023MA04      Phys.Rev. C 107, 014310 (2023)

N.-N.Ma, Ti.-L.Zhao, W.-Xi.Wang, H.-F.Zhang

Simple deep-learning approach for α-decay half-life studies

RADIOACTIVITY N=90-180(α); A=160-320(α); Z=80-120(α); calculated T1/2. The deep learning algorithm trained directly with sets of experimental α-decay half-lives.

doi: 10.1103/PhysRevC.107.014310
Citations: PlumX Metrics


2023ZH22      J.Phys.(London) G50, 045101 (2023)

T.L.Zhao, X.J.Bao, H.F.Zhang

Effect of deformation dependence and mirror nucleus corrections energy on multinucleon transfer reaction cross sections

NUCLEAR REACTIONS 208Pb(136Xe, X), E(cm)=450 MeV; 238U(64Ni, X), E(cm)=307.40 MeV; calculated σ using the dinuclear system (DNS) model, three macroscopic microscopic mass models. Comparison with available data.

doi: 10.1088/1361-6471/acb4b2
Citations: PlumX Metrics


2023ZH41      Phys.Rev. C 108, 024602 (2023)

T.L.Zhao, X.J.Bao, H.F.Zhang

Exploring the optimal way to produce Z=100-106 neutron-rich nuclei

NUCLEAR REACTIONS 238U(16O, X), E(cm)=70-160 MeV; calculated capture σ(E). 248Cm(18O, 4n), E*=28-60 MeV;248Cm(18O, 5n), E*=40-60 MeV;248Cm(18O, 6n), E*=46-60 MeV;244Pu(22Ne, 5n), E*=40-56 MeV; calculated evaporation residue σ(E). 248Cm(238U, X)239Bk/240Bk/241Bk/242Bk/243Bk/244Bk/245Bk/246Bk/247Bk/248Bk/249Bk/250Bk/251Bk/252Bk/253Bk/254Bk/255Bk/256Bk/257Bk/258Bk/259Bk/260Bk/240Cf/241Cf/242Cf/243Cf/244Cf/245Cf/246Cf/247Cf/248Cf/249Cf/250Cf/251Cf/252Cf/253Cf/254Cf/255Cf/256Cf/257Cf/258Cf/259Cf/260Cf/261Cf/262Cf/263Cf/241Es/242Es/243Es/244Es/245Es/246Es/247Es/248Es/249Es/250Es/251Es/252Es/253Es/254Es/255Es/256Es/257Es/258Es/259Es/260Es/261Es/262Es/263Es/264Es/248Fm/249Fm/250Fm/251Fm/252Fm/253Fm/254Fm/255Fm/256Fm/257Fm/258Fm/259Fm/260Fm/261Fm/262Fm/263Fm/264Fm/265Fm/266Fm/267Fm/250Md/251Md/252Md/253Md/254Md/255Md/256Md/257Md/258Md/259Md/260Md/261Md/262Md/263Md/264Md/265Md/266Md, E(cm)=898.71 MeV; calculated primary and final fragments σ(E). 238U, 244Pu, 248Cm, 249Cf(22O, 2n), (22O, 3n), (22O, 4n), (22O, 5n), (22O, 6n), E*=24-60 MeV; calculated evaporation residue σ(E). 248Cm(238U, X)246Fm/247Fm/248Fm/249Fm/250Fm/251Fm/252Fm/253Fm/254Fm/255Fm/256Fm/257Fm/258Fm/259Fm/260Fm/261Fm/262Fm/263Fm/264Fm/265Fm/253No/254No/255No/256No/257No/258No/259No/260No/261No/262No/263No/264No/265No/266No/267No/258Rf/259Rf/260Rf/261Rf/262Rf/263Rf/264Rf/265Rf/266Rf/267Rf/268Rf/269Rf/265Sg/266Sg/267Sg/268Sg, E(cm)=898.71 MeV; calculated σ(E) of the multinucleon transfer reaction, fusion σ(E). Dinuclear system model (DNS) combined with GEMINI++ for calculating the evaporation residue cross section. Comparison to experimental data.

doi: 10.1103/PhysRevC.108.024602
Citations: PlumX Metrics


2022DE15      Chin.Phys.C 46, 061001 (2022)

J.-G.Deng, H.-F.Zhang, X.-D.Sun

New behaviors of α-particle preformation factors near doubly magic 100Sn

RADIOACTIVITY 104,106,108,110Te, 108,110,112Xe, 114Ba, 212,214,216,218Po, 212,214,216,218,220,222Rn, 214,216,218,220,222,224,226Ra(α); calculated T1/2 within the generalized liquid drop model. Comparison with available data.

doi: 10.1088/1674-1137/ac5a9f
Citations: PlumX Metrics


2022DE22      Eur.Phys.J. A 58, 165 (2022)

J.-G.Deng, H.-F.Zhang

Probing the robustness of N = 126 shell closure via the α decay systematics

RADIOACTIVITY 186,188,190,192,194,196,198,200,202,204,206,208,210,212,214,216,218Po, 194,196,198,200,202,204,206,208,210,212,214,216,218,220,222Rn, 202,204,206,208,210,212,214,216,218,220,222,224,226Ra, 208,210,212,214,216,218,220,222,224,226,228,230,232Th, 214,216,218,220,222,224,226,228,230,232,234,236,238U(α); calculated T1/2 within the generalized liquid drop model (GLDM); deduced α-particle preformation factors. Comparison with experimental data.

doi: 10.1140/epja/s10050-022-00813-8
Citations: PlumX Metrics


2022LI27      Phys.Rev. C 105, 054606 (2022)

J.-X.Li, H.-F.Zhang

Predictions for the synthesis of the Z=119 superheavy element

NUCLEAR REACTIONS 238U, 237Np, 242,244Pu, 243Am, 245,248Cm, 249Bk, 249Cf(48Ca, X), (48Ca, 2n), (48Ca, 3n), (48Ca, 4n), (48Ca, 5n), E*=20-60 MeV; calculated evaporation residue σ(E). 250Cf(45Sc, X), 244Cm(51V, X), 240Pu(55Mn, X), E*=30-60; calculated potential energy surface, evaporation residue σ(E). 248,249,250,251,252Cf(45Sc, 3n); calculated survival probability. 252,253,254Es(48Ca, 3n), E*=34 MeV;248,249,250,251,252Cf(45Sc, 3n), E*=38-40 MeV; 247,248,249Bk(50Ti, 3n), E*=35 MeV;242,244,243,244,245,246,247,248,249(51V, 3n), E*=35-38 MeV;241,242,243Am, E*=38 MeV;(54Cr, 3n), 236,238,239,240,241,242,243,244Pu(55Mn, 3n), E*=37-41 MeV; calculated evaporation residue σ(E) at maximum production energy. Calculations in the framework of dinuclear system (DNS) model. Comparison to available experimental data.

doi: 10.1103/PhysRevC.105.054606
Citations: PlumX Metrics


2022LI51      Phys.Rev. C 106, 034613 (2022)

J.-X.Li, H.-F.Zhang

Predictions for the synthesis of the Z=120 superheavy element

NUCLEAR REACTIONS 252Es(45Sc, X), (45Sc, 3n), (45Sc, 4n), E*=25-60 MeV; calculated evaporation residue σ(E), capture σ(Ε), survival probability, complete fusion probability, potential energy surface. 257Fm(50Ca, 3n), (50Ca, 4n), (50Ca, 5n), (51Ca, 3n), (51Ca, 4n), (51Ca, 5n), (52Ca, 3n), (52Ca, 4n), (52Ca, 5n), E*=34-54 MeV; 252Es(55Sc, 3n), (55Sc, 4n), (55Sc, 5n), (56Sc, 3n), (56Sc, 4n), (56Sc, 5n), (57Sc, 3n), (57Sc, 4n), (57Sc, 5n), E*=36-57 MeV; 251Cf(56Ti, 3n), (56Ti, 4n), (56Ti, 5n), (57Ti, 3n), (57Ti, 4n), (57Ti, 5n), (58Ti, 3n), (58Ti, 4n), (58Ti, 5n), E*=36-60 MeV; 249Bk(58V, 3n), (58V, 4n), (58V, 5n), (59V, 3n), (59V, 4n), (59V, 5n), (60V, 3n), (60V, 4n), (60V, 5n), E*=37-59 MeV; 248Cm(59Cr, 3n), (59Cr, 4n), (59Cr, 5n), (60Cr, 3n), (60Cr, 4n), (60Cr, 5n), (61Cr, 3n), (61Cr, 4n), (61Cr, 5n), E*=36-57 MeV; 243Am(64Mn, 3n), (64Mn, 4n), (64Mn, 5n), (65Mn, 3n), (65Mn, 4n), (65Mn, 5n), (66Mn, 3n), (66Mn, 4n), (66Mn, 5n), E*=37-58 MeV;E*=34-60; calculated evaporation residue σ(E) at maximum production energy. Calculations in the framework of dinuclear system (DNS) model. Comparison to available experimental data.

doi: 10.1103/PhysRevC.106.034613
Citations: PlumX Metrics


2022LI57      Phys.Rev. C 106, 044601 (2022)

J.-X.Li, W.-X.Wang, H.-F.Zhang

Properties and synthesis of the superheavy nucleus 298114Fl

NUCLEAR REACTIONS 238U(64Ti, X), E*=32-60 MeV;242Pu(48Ca, X), E*=25-60 MeV; calculated capture σ(E), fusion probabilities, fusion barrier, potential-energy surfaces, survival probabilities in the 4n channels. 238U(64Ti, 4n)298Fl, E*=33-60 MeV; 242Pu, 244Pu(48Ca, 2n), (48Ca, 3n), (48Ca, 4n), E*=30-60 MeV; calculated evaporation residue σ(E). Dinuclear system model. Suggested 238U(64Ti, 4n) at 43 MeV excitation energy as preferred way for the synthesis of 298Fl. Comparison with available experimental data.

NUCLEAR STRUCTURE 284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304Fl, 292HS, 293Mt, 294Ds, 295Rg, 296Cn, 297Nh, 299Mc, 300Lv, 301Ts, 302Og, 303119, 304120; calculated S(n), S(2n). Finite-range droplet model (FRDM2012). Discuss the evidence that 298Fl could be spherical double-magic nucleus and also the center of the stability island of superheavy nuclei.

RADIOACTIVITY 284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304Fl, 292HS, 293Mt, 294Ds, 295Rg, 296Cn, 297Nh, 299Mc, 300Lv, 301Ts, 302Og, 303119, 304120(α), (SF); calculated Q-value, T1/2. Finite-range droplet model (FRDM2012).

doi: 10.1103/PhysRevC.106.044601
Citations: PlumX Metrics


2022XI05      Nucl.Phys. A1023, 122443 (2022)

Y.-Z.Xing, W.-X.Wang, H.-F.Zhang, Y.-M.Zheng

General chaotic behaviors of heavy ion collisions at intermediate energy based on dynamical transport model

NUCLEAR REACTIONS 40Ca(40Ca, X), E=800 MeV/nucleon; analyzed available data; deduced the multifragmentation entropy, information dimension and the dynamical fluctuations of fragment mass distribution in the final state of the reaction.

doi: 10.1016/j.nuclphysa.2022.122443
Citations: PlumX Metrics


2022ZH38      Chin.Phys.C 46, 044103 (2022)

T.-L.Zhao, H.-F.Zhang

A neural network approach based on more input neurons to predict nuclear mass

NUCLEAR STRUCTURE Z=1-118; calculated atomic masses using the neural network (NN) approach. Comparison with available data.

doi: 10.1088/1674-1137/ac3e5b
Citations: PlumX Metrics


2022ZH47      Nucl.Phys. A1027, 122510 (2022)

T.L.Zhao, X.J.Bao, H.F.Zhang

Improvement of evaporation residual cross sections for superheavy nuclei using a neural network method

NUCLEAR REACTIONS 248Cm(18O, X), 242,244Pu(22Ne, X), 238U(26Mg, X), 249Cf(15N, X), 249Bk(16O, X), 248Cm(19F, X), 241Am(22Ne, X), 238U(30Si, X), 249Cf(18O, X), 248Cm(22Ne, X), 249Bk(22Ne, X), 248Cm(26Mg, X), 238U(36S, X), (34S, X), 226Ra(48Ca, X), 232Th(48Ca, X), 238U(48Ca, X), 237Np(48Ca, X), 239,240,242,244Pu(48Ca, X), 243Am(48Ca, X), 245,248Cm(48Ca, X), 249Bk(48Ca, X), 249Cf(48Ca, X)Rf/Db/Sg/Bh/Ds/Hs/Nh/Cn/Fl/Mc/Lv/Ts/Og, E not given; calculated evaporation residual cross section (ERCS) using the neural network method. Comparison with available data.

doi: 10.1016/j.nuclphysa.2022.122510
Citations: PlumX Metrics


2022ZH55      J.Phys.(London) G49, 105104 (2022)

T.L.Zhao, H.F.Zhang

Unified description of α decay and cluster radioactivity using the neural network approach and universal decay law

RADIOACTIVITY 256Fm(46Ar), (48Ar), (48Ca), (50Ca), (52Ca), 252No(44Ar), 254No(44Ar), (46Ar), (48Ca), 256No(44Ar), (46Ar), (48Ar), (48Ca), (50Ca), 240,242Cf(30Si), (32Si), 242Cf(34Si), (36S), 244Cf(32Si), (34Si), (36S), (38Si), 246Cf(34Si), (36S), (38Si), (40Si), 248Cf(38Si), (40S), (42S), (44Ar), 250Cf(40S), (42S), (44Ar), (46Ar), 252Cf(42S), (44Ar), (46Ar), (48Ar), 254Cf(46Ar), (48Ar), 254Cf(46Ar), (48Ar), 246,248Fm(36S), (38S), 248Fm(40S), 250Fm(38S), (40S), (42S), (44Ar), 252Fm(40S), (42S), (44Ar), (46Ar), (48Ca), 254Fm(42S), (44Ar), (46Ar), (48Ca), (50Ca); calculated cluster radioactivity T1/2 using three UDL formulas as well as two neural network methods.

doi: 10.1088/1361-6471/ac8b26
Citations: PlumX Metrics


2021DE07      Chin.Phys.C 45, 024104 (2021)

J.-G.Deng, H.-F.Zhang

Systematic study of α decay half-lives within the Generalized Liquid Drop Model with various versions of proximity energies

RADIOACTIVITY 148Gd, 150,154Dy, 154Er, 154,158Yb, 158,162Hf, 160,164,168W, 162,168,172,186Os, 168,174,178,182,190Pt, 174,178,182,186Hg, 180,186,190Pb, 186,194,198,202,206,212,216Po, 194,200,204,208,212,216,220Rn, 202,208,216,220,224Ra, 208,214,218,222,226,230Th, 218,224,230,234U, 228,232,236,240,244Pu, 236,240,244,248,252Cf, 244,252,256Fm, 256No, 256,260Rf, 264,270Hs, 286Fl, 290Lv, 294Og(α); calculated T1/2.

doi: 10.1088/1674-1137/abcc5a
Citations: PlumX Metrics


2021HE09      Chin.Phys.C 45, 014110 (2021)

Y.He, X.Yu, H.-F.Zhang

Improved empirical formula for α particle preformation factor

RADIOACTIVITY 186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220Po, 191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221At, 194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226Rn, 206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225Ac, 209Th, 224,225,226,227,228,229,230,231,232Th, 217,218,219,220,221,222,223,224,225,226,227,228,229,230,231Pa, 219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238U, 229,230,231,232,233,234,235,236,237,238,239,240,241,242,243Am, 233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250Cm, 245,247Bk, 237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255Cf, 246,247,248,249,250,251,252,253,254,255Es, 244,245,246,247,248,249,250,251,252,253,254,255,256,257Fm, 247,248,249,250,251,252,253,254,255,256,257Md, 251,252,253,254,255,256,257,258No, 253,255,257,259Lr(α); calculated T1/2. Comparison with available data.

doi: 10.1088/1674-1137/abc684
Citations: PlumX Metrics


2021MA17      Chin.Phys.C 45, 024105 (2021)

N.-N.Ma, X.-J.Bao, H.-F.Zhang

Diffuseness effect and radial basis function network for optimizing α decay calculations

RADIOACTIVITY 256Rf, 258Rf, 263Rf, 257,258,259Db, 263Db, 259,260,261,262Sg, 269Sg, 271Sg, 260Bh, 261Bh, 264Bh, 266,267Bh, 270Bh, 272Bh, 274Bh, 264,265,266,267Hs, 270Hs, 273Hs, 268Mt, 274,275,276Mt, 278Mt, 267Ds, 269,270,271Ds, 273Ds, 277Ds, 281Ds, 272Rg, 274Rg, 278,279,280Rg, 281Cn, 285Cn, 278Nh, 282,283,284,285,286Nh, 286,287,288,289Fl, 287,288,289,290Mc, 290,291,292,293Lv, 293,294Ts, 294Og, 252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288Rf, 272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310Fl, 286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316119, 292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318120(α); calculated T1/2. Comparison with available data.

doi: 10.1088/1674-1137/abcc5c
Citations: PlumX Metrics


2021WE04      Chin.Phys.C 45, 024109 (2021)

K.Wei, H.-F.Zhang, Z.-X.He, X.-Y.Wang, S.-Q.Guo, B.T.Hu

Multi-parameter global calculations of fission fragments using a simplified two-dimensional scission-point model

NUCLEAR REACTIONS 233,235U(n, F), E=6.54 MeV; 239Pu(n, F), E=6.84 MeV; calculated charge and mass distributions, yields. Comparison with available data.

doi: 10.1088/1674-1137/abd083
Citations: PlumX Metrics


2020DE08      Phys.Rev. C 101, 034307 (2020)

J.-G.Deng, H.-F.Zhang, G.Royer

Improved empirical formula for α-decay half-lives

RADIOACTIVITY A=146-294, Z=62-118(α); calculated α-decay half-lives for even-even nuclei; A=147-285, Z=62-112(α); calculated α-decay half-lives of even Z-odd N nuclei; A=145-261, Z=61-107(α); calculated α-decay half-lives of odd Z-even N nuclei; A=148-256, Z=63-101(α); calculated α-decay half-lives for odd-odd nuclei, in all cases isomers included. 279,281,283,285,287,289,291,293,295,297,299,301,303,305,307,309,311,313,315,317Ts, 281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318Og, 285,287,289,291,293,295,297,299,301,303,305,307,309,311,313,315,317,319119, 287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320120(α); calculated Qα, half-lives. Improved Royer formulas and WS3+ mass model. Comparison with available experimental values, and with other theoretical predictions.

doi: 10.1103/PhysRevC.101.034307
Citations: PlumX Metrics


2020DE37      Phys.Rev. C 102, 044314 (2020)

J.-G.Deng, H.-F.Zhang

Analytic formula for estimating the α-particle preformation factor

RADIOACTIVITY 148Eu, 148,150Gd, 149,151Tb, 150,151,152,153,154Dy, 151,151m,152,152m,153m,154Ho, 152,153,154,155,156Er, 153,153m,154,154m,155,156Tm, 154,155,156,157,158Yb, 155,155m,156m,157mLu, 156,157,158,160,162Hf, 157m,158,158m,159,159mTa, 158,159,160,161,162,163,164,166,168,180W, 159m,160,161m,162,162m,163,163m,164m,165,165m,167m,169,169mRe, 161,162,163,165,166,167,168,169,170,172,174,186Os, 164m,165m,166,166m,167,167m,168,168m,169,169m,170,170m,171,171m,172,172m,173m,174,174m,175,177Ir, 166,167,168,171,172,173,174,175,176,177,178,179,180,181,182,183,184,190Pt, 170,170m,171m,173,173m,175,175m,176,177,177m,179,181,183,185,186Au, 171,172,173,174,176,177,178,179,180,181,182,183,184,185,186Hg, 177,177m,179,179m,180,181m,183,183m,186m,187mTl, 178,179,180,183m,184,185m,186,187,187m,188,189,190,191m,192Pb, 186,186m,187,187m,189,190,190m,191,191m,192,192m,193,193m,194,194m,195,195m,196,196m,209,211,212,213,214Bi, 186,187,189,190,194,195,195m,196,197,197m,198,199,199m,200,201,201m,202,203,203m,204,205,206,207,208,209,211m,212,213,214,215,216,218,219Po, 191,191m,192,192m,193,193m,194,194m,195,197,197m,199,199m,200,200m,201,202,202m,203,204,205,206,207,208,209,210,211,212,213,215,217,218,219,220At(α); calculated T1/2 and α-preformation factors using an analytical formula as a bridge between the α-decay energy and α-particle preformation factor for even-even, odd-A and odd-odd α emitters. Comparison with experimental half-lives.

RADIOACTIVITY 193,194,195,195m,196,197,197m,200,202,203,203m,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223Rn, 197,199,199m,200m,201,201m,203,203m,205,207,209,211,212,213,214,215,218,218m,219,220,221,223Fr, 201,201m,202,203,203m,204,207,208,209,213,214,215,216,217,218,219,220,221,222,223,224,226Ra, 205,207,211,215,216,216m,217,217m,218,219,221,222,223,225,226,227Ac, 208,209m,212,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231Th, 213,215,217,220,221,223,224,227,228,229,230Pa, 216,218,219,221,222,224,225,226,227,229,230,231,232,233,234,236U, 227,229,231,235,237,239Np, 228,230,231,232,233,234,235,236,238,239,240,241,242,244Pu, 229,233,235,237,239,241,242m,243Am, 233,234,236,237,238,240,241,242,243,244,245,246,248Cm, 247Bk, 238,240,241,242,243,244,245,246,247,248,250,251,252,254Cf, 245,246,247,248,249,252,253,254m,255Es, 243,244,247,247m,248,252,253,254,256,257Fm, 247,247m,251,256m,258Md, 251,251m,253,254,255,256,258,259No, 253,253m,255,257,259Lr, 255,256,257m,258,259,260,261,263Rf, 259Db, 259,259m,260,261,263Sg, 261Bh, 264,265,268,269,270Hs, 267,269,270,271,271m,273,277Ds, 277,281Cn, 286,288,289Fl, 290,292Lv, 294Og(α); calculated T1/2 and α-preformation factors using an analytical formula as a bridge between the α-decay energy and α-particle preformation factor for even-even, odd-A and odd-odd α emitters. Comparison with experimental half-lives.

doi: 10.1103/PhysRevC.102.044314
Citations: PlumX Metrics


2020WE11      Phys.Rev. C 102, 034318 (2020)

K.Wei, H.F.Zhang

α decay and cluster radioactivity within the redefined preformed cluster method

RADIOACTIVITY 221,222,223,224,226Ra, 225Ac(α), (14C); 276Ds(α), (68Ni); 228Th(α), (20O); 230U(α), (22Ne); 230Th, 231Pa, 232,234U(α), (24Ne); 231Pa(α), (23F); 233U(α), (25Ne); 234U(α), (26Ne), (28Mg); 238Pu(α), (30Mg), (32Si); 242Cm(α), (34Si); 244Cm(α), (36Si); 246Cf(α), (38S); 248Cf(α), (40S); 250Cf(α), (42S); 252Fm(α), (44Ar); 254Fm(α), (46Ar); 256No(α), (48Ca); 258Md(α), (50K); 259Db(α), (51V); 261Rf(α), (53Ti); 262Rf(α), (54Ti); 264Rf(α), (56Ti); 266Bh(α), (58Mn); 267Bh(α), (59Mn); 269Hs(α), (61Fe); 268Hs(α), (60Fe); 270Hs(α), (62Fe); 271Ds(α), (63Ni); 273Hs(α), (65Fe); 276Mt(α), (68Co); 278Rg(α), (70Cu); 280Rg(α), (72Cu); 273Hs(α), (65Fe); 282Cn(α), (74Ga); 283Cn(α), (75Ga); 284Cn(α), (76Ga); 285Cn(α), (77Ga); 286Cn(α), (78Ga); 287Fl(α), (79Ge); 288Fl(α), (80Ge); 289Fl(α), (81Ge); 290Lv(α), (79Ge); calculated preformation factors, and half-lives of α and cluster decays. Generalized liquid drop model (GLDM) framework, with redefined preformed cluster method, and the preformation factor from WKB approximation. Comparison with available experimental values.

doi: 10.1103/PhysRevC.102.034318
Citations: PlumX Metrics


2020XI05      Nucl.Phys. A1004, 122034 (2020)

Y.-Z.Xing, W.-C.Fu, X.-B.Liu, F.-P.Lu, H.-F.Zhang, Y.-M.Zheng

Sensitivity of the mean field dynamics within quantum molecular dynamics

doi: 10.1016/j.nuclphysa.2020.122034
Citations: PlumX Metrics


2020ZH36      Phys.Rev. C 102, 044308 (2020)

J.Zhang, H.F.Zhang

Effects of shell correction on α-decay systematics

RADIOACTIVITY 105,106,107,108,109Te, 110,111I, 109,110,111,112,113Xe, 114Cs, 114Ba, 144Nd, 145Pm, 146,147,148Sm, 147,148Eu, 148,149,150,151,152Gd, 151Tb, 150,151,152,153,154Dy, 151,152,153,154Ho, 152,153,154,155,156Er, 153,154,155,156Tm, 154,155,156,157,158Yb, 155,158Lu, 156,157,158,159,160,162,174Hf, 158,159,163Ta, 158,159,160,161,162,163,164,166,167,168,180W, 160,162,163,165,166Re, 161,162,163,164,165,166,167,168,169,170,171,172,173,174,186Os, 166,167,168,169,175,177Ir, 166,167,168,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,186,188,190Pt, 170,173,174,175,176,177,179,181,182,183,185Au, 172,173,174,176,177,178,179,180,181,182,183,184,185,186,188Hg, 177,179Tl, 178,180,182,184,186,188,190,192,194,210Pb, 194Bi, 186,189,190,194,195,196,197,198,199,200,201,202,204,205,206,207,208,210,212,213,214,215,216,218,219Po, 191,192,193,197,199,200,201,202,203,204,205,206,207,208,209,210,211,213,214,215,216,217,218,219,220At(α); calculated T1/2, shell correction energies of the spherical parent and daughter nuclei. Generalized liquid drop model (GLDM), with the effects of the Strutinsky shell correction. Comparison with experimental data.

RADIOACTIVITY 193,194,195,196,197,200,202,203,204,206,207,208,209,210,212,214,215,216,217,218,220,222Rn, 198,199,200,201,203,204,205,206,207,208,209,210,211,213,215,216,217,218,219,220Fr, 201,202,203,204,206,207,208,209,210,212,214,216,217,218,220,222,224,226Ra, 205,206,207,211,215,218,219,221,222,223,227Ac, 208,212,214,215,216,218,219,220,222,224,226,228,230,232Th, 212,213,214,215,217,219,220,221,223,225,226,227,231Pa, 216,218,221,222,224,225,226,229,230,232,233,234,236,238U, 225,226,227,229,231,233Np, 228,230,231,232,233,234,235,236,238,240,242,244Pu, 233,235,236,237Am, 233,234,236,238,240,242,244,246,248Cm, 237,238,240,242,244,245,246,248,250,252,253,254Cf, 243,247,251,253,255Es, 243,246,248,249,250,252,254,256Fm, 251,252,254,256No, 253,259Lr, 256,258,261Rf, 260,263Sg, 264,265,268,269,270,275Hs, 278Mt, 267,270Ds, 285Cn, 285,286,287,288,289Fl, 287,289,290Mc, 290,291,292Lv, 294Og(α); calculated T1/2, shell correction energies of the spherical parent and daughter nuclei. Generalized liquid drop model (GLDM), with the effects of the Strutinsky shell correction. Comparison with experimental data.

doi: 10.1103/PhysRevC.102.044308
Citations: PlumX Metrics


2019GU09      Nucl.Phys. A986, 18 (2019)

W.Guo, J.M.Dong, X.Shang, H.F.Zhang, W.Zuo, M.Colonna, U.Lombardo

Proton-proton 1S0 pairing in neutron stars

doi: 10.1016/j.nuclphysa.2019.02.008
Citations: PlumX Metrics


2019GU31      Phys.Rev. C 100, 054616 (2019)

S.Q.Guo, X.J.Bao, H.F.Zhang, J.Q.Li, N.Wang

Effect of dynamical deformation on the production distribution in multinucleon transfer reactions

NUCLEAR REACTIONS 208Pb(136Xe, X), E(cm)=526, 617, 450 MeV; 198Pt(136Xe, X), E(cm)=643; calculated potential energy surfaces (PES), σ for mass distribution of primary products, cross sections of target-like fragments with Z=78-86 and Z=50-58, production cross sections of the N=126 isotones as a function of the atomic number; deduced influences of dynamical deformation on the PES and the mass distribution of the multi-nucleon transfer (MNT) reactions. Calculations based on the framework of the dinuclear system concept. Comparison with experimental data.

doi: 10.1103/PhysRevC.100.054616
Citations: PlumX Metrics


2019MA25      Chin.Phys.C 43, 044105 (2019)

N.-N.Ma, H.-F.Zhang, X.-Ju.Bao, H.-F.Zhang

Basic characteristics of nuclear landscape by improved Weizsacker-Skyrme-type nuclear mass model

NUCLEAR STRUCTURE Z=8-128; calculated binding energies, quadrupole deformations, One-neutron and one-proton separation energies, α and β decay Q-values, pairing gaps. Comparison with Atomic Mass Evaluation (AME2016).

doi: 10.1088/1674-1137/43/4/044105
Citations: PlumX Metrics


2018AL10      Nucl.Phys. A972, 18 (2018)

J.L.Albacete, F.Arleo, G.G.Barnafoldi, G.Biro, D.d'Enterria, B.Ducloue, K.J.Eskola, E.G.Ferreiro, M.Gyulassy, S.M.Harangozo, I.Helenius, Z.-B.Kang, P.Kotko, S.A.Kulagin, K.Kutak, J.P.Lansberg, T.Lappi, P.Levai, Z.-W.Lin, G.Ma, Y.-Q.Ma, H.Mantysaari, H.Paukkunen, G.Papp, R.Petti, A.H.Rezaeian, P.Ru, S.Sapeta, B.Schenke, S.Schlichting, H.-S.Shao, P.Tribedy, R.Venugopalan, I.Vitev, R.Vogt, E.Wang, X.-N.Wang, R.Xing, R.Xu, B.-W.Zhang, H.-F.Zhang, W.-N.Zhang

Predictions for cold nuclear matter effects in p+Pb collisions at √ SNN = 8.16 TeV

doi: 10.1016/j.nuclphysa.2017.11.015
Citations: PlumX Metrics


2018BA09      Phys.Rev. C 97, 024617 (2018)

X.Bao, S.Q.Guo, H.F.Zhang, J.Q.Li

Dynamics of complete and incomplete fusion in heavy ion collisions

NUCLEAR REACTIONS 248Cm(48Ca, X), E(296Lv*)=33 MeV; 238U(48Ca, X), E(286Cn*)=38 MeV; 244Pu(48Ca, X), E(292Fl*)=42 MeV; calculated mass yield of the quasifission products as function of the mass number of the fragment for the hot fusion reaction. 238U(64Ni, X), E(cm)=307.4 MeV; 248Cm(48Ca, X), E(cm)=192-248 MeV; calculated σ(E) for transfer of protons and multinucleons, and compared with available experimental data. 248Cm(48Ca, X), E(cm)=215.93 MeV; calculated production cross sections for light neutron rich nuclei. 238U, 244Pu, 248Cm(48Ca, xn), E(compound nucleus)=25-60 MeV; calculated evaporation residue σ(E) for x=3n, 4n and 5n channels, and compared with experimental data. Dinuclear system (DNS) model with new four-variable master equation (ME). Relevance to formation of superheavy nuclei (SHNs).

doi: 10.1103/PhysRevC.97.024617
Citations: PlumX Metrics


2018LI52      Chin.Phys.C 42, 114103 (2018)

P.-C.Li, H.-F.Zhang, Y.-J.Wang

Stability of super heavy nuclei associated with the updated nuclear data

NUCLEAR STRUCTURE Z=104-126; analyzed available data; deduced stability of super heavy nuclei based on binding energy, the α-decay energy Q-value, two-proton separation energy, and two-neutron separation energy.

doi: 10.1088/1674-1137/41/11/114103
Citations: PlumX Metrics


2018MA07      Phys.Rev. C 97, 014909 (2018)

Y.-Q.Ma, R.Venugopalan, K.Watanabe, H.-F.Zhang

ψ(2S) versus J/ψ suppression in proton-nucleus collisions from factorization violating soft color exchanges

doi: 10.1103/PhysRevC.97.014909
Citations: PlumX Metrics


2018SU09      J.Phys.(London) G45, 075106 (2018)

X.-D.Sun, H.-F.Zhang

α decay preformation probabilities across the N = 126 shell closure based on the single particle energy spectra

RADIOACTIVITY 192,194,196,198,200,202,204,206,208,210,212,214,216,218Po, 198,200,202,204,206,208,210,212,214,216,218,220,222Rn, 206,208,210,212,214,216,218,220,222,224,226Ra, 214,216,218,220,222,224,226,228,230,232Th(α); calculated partial neutron and proton single particle energy spectra, microscopic valence neutron (hole) and proton numbers, α decay preformation probabilities, T1/2, quadrupole deformation parameters. The relativistic Hartree-Bogoliubov model.

doi: 10.1088/1361-6471/aac981
Citations: PlumX Metrics


2018ZH27      Chin.Phys.C 42, 074103 (2018)

Y.-W.Zhao, S.-Q.Guo, H.-F.Zhang

α particle preformation and shell effect for heavy and superheavy nuclei

NUCLEAR STRUCTURE Z=84-92; calculated α particle preformation factor;deduced another subshell closure after Z = 124 in the superheavy nuclei.

doi: 10.1088/1674-1137/42/7/074103
Citations: PlumX Metrics


2018ZH35      Chin.Phys.C 42, 094101 (2018)

J.Zhang, E.De-Jun, H.-F.Zhang

Effects of shell correction on α decay properties

RADIOACTIVITY 178,179,180Pb, 184,185,186,187,188,189,190,191,192,193,194Pb, 210Pb, 186,187Po, 189,190Po, 194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216Po, 218,219Po, 193,194,195,196,197Rn, 200Rn, 202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222Rn, 201,202,203,204Ra, 207,208,209Ra, 213,214,215,216,217,218,219,220,221,222,223,224Ra, 226Ra, 208Th, 212Th, 214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230Th, 232Th, 216U, 218,219U, 221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238U, 270Db, 274Bh, 278Hs, 282Rg, 285,286Nh, 286Fl, 289Md, 290Lv, 293,294Ts, 294Og, 290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310119, 290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310120(α); calculated T1/2. Comparison with experimental data.

doi: 10.1088/1674-1137/42/9/094101
Citations: PlumX Metrics


2017BA07      J.Phys.(London) G44, 045105 (2017)

X.J.Bao, S.Q.Guo, H.F.Zhang, J.Q.Li

Influence of proton shell closure on the evaporation residue cross sections of superheavy nuclei

NUCLEAR REACTIONS 249Cf(48Ca, xn)296Og, 248Cf(48Ca, xn)295Og, 245Cf(48Ca, xn)292Og, 249Bk(48Ca, xn)296Ts, 244Pu(48Ca, xn)291Fl, 243Am(48Ca, xn)290Mc, 237Np(48Ca, xn)284Nh, 238U(48Ca, xn)285Cn, E<50 MeV; calculated σ. Comparison with available data.

doi: 10.1088/1361-6471/aa53e8
Citations: PlumX Metrics


2017BA08      Phys.Rev. C 95, 034323 (2017)

X.Bao, S.Q.Guo, H.F.Zhang, J.Q.Li

Theoretical predictions for the decay chain of the nuclei 293, 295-297Og

RADIOACTIVITY 294Og, 293,294Ts, 290,291,292,293Lv, 287,288,289,290Mc, 286,287,288,289Fl, 282,283,284,285,286Nh, 281,283,285Cn, 278,279,280,281,282Rg, 277,279,281Ds, 274,275,276,278Mt, 273,275Hs, 270,271,272,274Bh, 269,271Sg(α); calculated Q(α) and T1/2. Comparison with other theoretical calculations, and experimental data. 293,295,296,297Og, 289Lv(α); calculated T1/2 for α decay using Q(α) values from other theoretical calculations. Generalized liquid drop model (GLDM) and Royer's analytical formula used in the calculations.

doi: 10.1103/PhysRevC.95.034323
Citations: PlumX Metrics


2017BA27      Phys.Rev. C 96, 024610 (2017)

X.Bao, S.Q.Guo, H.F.Zhang, J.Q.Li

Influence of entrance channel on production cross sections of superheavy nuclei

NUCLEAR REACTIONS 248Cm, 249Cf(18O, 3n), (18O, 4n), (18O, 5n), 241Am, 242,244Pu, 248Cm, 249Bk(22Ne, 3n), (22Ne, 4n), (22Ne, 5n), 238U, 248Cm(26Mg, 3n), (26Mg, 4n), (26Mg, 5n), 249Cf(15N, 3n), (15N, 4n), (15N, 5n), 249Bk(16O, 3n), (16O, 4n), (16O, 5n), 249Bk, 249Cf(18O, 3n), (18O, 4n), (18O, 5n), 248Cm(19F, 3n), (19F, 4n), (19F, 5n), 238U(30Si, 3n), (30Si, 4n), (30Si, 5n), (36S, 3n), (36S, 4n), (36S, 5n), (34S, 3n), (34S, 4n), (34S, 5n), 226Ra, 232Th, 238U, 237Np, 239,240,242,244Pu, 243Am, 245,248Cm, 249Bk, 249Cf(48Ca, 3n), (48Ca, 4n), (48Ca, 5n), E(*)=20-70 MeV; calculated evaporation residue cross sections (ERCs) to produce superheavy nuclei (SHN)using dinuclear system (DNS) model. 259,260,261,262,263Rf, 258,259,260,261,262,263,264Db, 262,263,264,265,266,267Sg, 266,267,268Bh, 267,268,269,270,271Hs, 275,276,277Ds, 282,283Cn, 281,282Nh, 283,284,285,286,287,288,289Fl, 286,287,288Mc, 288,289,290,291,292,293Lv, 292,293,294Ts, 293,294Og; calculated production σ, and compared with available experimental data.

doi: 10.1103/PhysRevC.96.024610
Citations: PlumX Metrics


2017CH24      Eur.Phys.J. A 53, 95 (2017)

P.-H.Chen, Z.-Q.Feng, F.Niu, Y.-F.Guo, H.-F.Zhang, J.-Q.Li, G.-M.Jin

Production of proton-rich nuclei around Z = 84-90 in fusion-evaporation reactions

NUCLEAR REACTIONS 165Ho, 169Tm, 170,171,172,173,174Yb, 175,176Lu, 175,176,177,178,179,180Hf, 181Ta(28Si, x), (32S, x), (40Ar, x), E*=30-100 MeV; calculated proton-rich nuclei around Z=84-90 production σ using dinuclear system model. Compared with available data.

doi: 10.1140/epja/i2017-12281-x
Citations: PlumX Metrics


2017GU30      Phys.Rev. C 96, 044622 (2017)

S.Q.Guo, Y.Gao, J.Q.Li, H.F.Zhang

Dynamical deformation in heavy ion reactions and the characteristics of quasifission products

NUCLEAR REACTIONS 248Cm(48Ca, X), E(cm)=205 MeV; calculated potential energy surface for the reaction as a function of quadrupole deformations in the entrance channel, evolution of the distribution function and the mass yield as a function of fragment deformations, relative quasifission yield distribution, TKE, and relative mass yield of quasi fission (QF) products. Dinuclear system (DNS), including the deformation variables of fragments in addition to mass numbers of the fragments. Comparison with available experimental data.

doi: 10.1103/PhysRevC.96.044622
Citations: PlumX Metrics


2017GU33      Chin.Phys.C 41, 104104 (2017)

Y.-F.Guo, P.-H.Chen, F.Niu, H.-F.Zhang, G.-M.Jin, Z.-Q.Feng

Isospin splitting of nucleon effective mass and symmetry energy in isotopic nuclear reactions

NUCLEAR REACTIONS 112Sn(112Sn, X), E=50 MeV/nucleon;124Sn(124Sn, X), E=120 MeV/nucleon; analyzed available data; deduced constraining the isospin splitting of nucleon effective mass and the symmetry energy at subsaturation densities.

doi: 10.1088/1674-1137/41/10/104104
Citations: PlumX Metrics


2017LI19      Chin.Phys.C 41, 074106 (2017)

J.-H.Liu, S.-Q.Guo, X.-J.Bao, H.-F.Zhang

Predictions of decay modes for the superheavy nuclei most suitable for synthesis

RADIOACTIVITY 294Og, 294,293Ts, 293,292,291,290Lv, 290,289,288,287Mc, 289,288,287,286,285Fl, 286,285,284,283,282Nh, 285,284,283,282,281Cn(SF), 298120, 294,290Og, 290,286,294,289,286,285Lv, 286,282,290,285,282,281Fl, 282,278,277Cn, 291,287Ts, 287,283Mc, 279Nh, 275Rg, 271Mt, 267Bh(SF), (α), 284,283Mc, 280,279Nh, 276,275,276,273Rg, 272,271,272,269,265Mt, 268,267,268,265,261Bh, 264Db, 260Lr, 283,282Fl, 279,278,280,275,274Cn, 275,272,270,268Ds, 271,268Hs, 280Nh, 264Hs(SF), (α); calculated T1/2. Comparison with experimental data.

doi: 10.1088/1674-1137/41/7/074106
Citations: PlumX Metrics


2017LI43      Chin.Phys.C 41, 114103 (2017)

P.-C.Li, H.-F.Zhang, Y.-J.Wang

Stability of super heavy nuclei associated with the updated nuclear data

NUCLEAR STRUCTURE Z=104-126; analyzed available data; deduced α-decay Q-values, two-neutron and proton separation energies, magic numbers.

doi: 10.1088/1674-1137/41/11/114103
Citations: PlumX Metrics


2017MA48      Phys.Rev. C 96, 024302 (2017)

N.N.Ma, H.F.Zhang, P.Yin, X.Ju.Bao, H.F.Zhang

Weizsacker-Skyrme-type nuclear mass formula incorporating two combinatorial radial basis function prescriptions and their application

NUCLEAR STRUCTURE Z=10-118, N=10-180; calculated binding energies, odd-even staggering (OES) of nuclear binding energies, S(n), S(2n), S(p), S(2p), Q(α), Q(β-), Q(β+), Q(EC) of 2267 nuclei using WS-LZ, WS-LZ1, and WS-LZ2 mass formulas, and compared with experimental values. Z=8, A=26-28; Z=9, A=27-31; Z=10, A=30-34; Z=11, A=33-37; Z=12, A=35-40; Z=13, A=21, 22, 38-43; Z=14, A=22, 23, 40-45; Z=15, A=24-26, 42-47; Z=16, A=26-28, 45-49; Z=17, A=28-30, 44, 46-51; Z=18, A=30, 31, 48-53; Z=19, A=32-34, 52-56; Z=20, A=34, 35, 53-58; Z=21, A=36-38, 53-61; Z=22, A=38-40, 55, 57-63; Z=23, A=40-42, 44, 56, 57, 59-66; Z=24, A=42-44, 58-60, 63-68; Z=25, A=44-46, 48, 62, 67-71; Z=26, A=45-48, 67-74; Z=27, A=47-49, 52, 69-76; Z=28, A=48-52, 74-79; Z=29, A=52-56, 77-82; Z=30, A=54-57, 82-85; Z=31, A=56-60, 84-87; Z=32, A=58-62, 86-90; Z=33, A=60-64, 88-92; Z=34, A=64-66, 90-95; Z=35, A=67, 68, 93-98; Z=36, A=69, 70, 98-101; Z=37, A=71-73, 100-103; Z=38, A=73-75, 103-107; Z=39, A=76-79, 104-109; Z=40, A=78-82, 106-112; Z=41, A=81-84, 109-115; Z=42, A=83, 84, 112-117; Z=43, A=85, 86, 114-120; Z=44, A=87-89, 117-124; Z=45, A=89-91, 120-126; Z=46, A=91-93, 123-128; Z=47, A=93-95, 124-130; Z=48, A=95-97, 129-133; Z=49, A=97-101, 128, 133-135; Z=50, A=99-101, 136-138; Z=51, A=103, 137-140; Z=52, A=105, 141-143; Z=53, A=107, 114, 140-145; Z=54, A=109, 147, 148; Z=55, A=115, 116, 148-152; Z=56, A=115-120, 149-153; Z=57, A=116-123, 149-155; Z=58, A=119-125, 152-157; Z=59, A=121-127, 154, 156-159; Z=60, A=124-129, 156, 158-161; Z=61, A=126-132, 160-163; Z=62, A=128-135, 162-165; Z=63, A=130-137, 164-167; Z=64, A=133-139, 143, 164-169; Z=65, A=135-140, 142, 165, 167-171; Z=66, A=138-142, 169-173; Z=67, A=140-143, 171-175; Z=68, A=142-145, 173-177; Z=69, A=144-146, 149, 150, 177-179; Z=70, A=148-153, 179-181; Z=71, A=150-154, 181-185; Z=72, A=153-157, 187-189; Z=73, A=155-158, 178, 189-192; Z=74, A=157-161, 192-194; Z=75, A=159-162, 167, 194-198; Z=76, A=161-165, 197-202; Z=77, A=164-166, 170, 198, 200-204; Z=78, A=166-169, 203-206; Z=79, A=169, 170, 174, 204-210; Z=80, A=171-173, 209-216; Z=81, A=178, 190, 212, 214-218; Z=82, A=215-220; Z=83, A=185, 194, 219-224; Z=84, A=223-227; Z=85, A=198, 225-229; Z=86, A=230, 231; Z=87, A=202, 232, 233; Z=88, A=201, 235; Z=89, A=206, 237; Z=90, A=238, 239; Z=91, A=220, 222, 239-241; Z=92, A=217, 220-222, 241-243; Z=93, A=219-224, 226, 232, 242-245; Z=94, A=247; Z=95, A=230-234, 236, 237, 246-249; Z=96, A=232, 235, 252; Z=97, A=234-242, 248, 252-254; Z=98, A=238, 239, 241, 243, 255, 256; Z=99, A=239-246, 248-250, 256-258; Z=100, A=241-245, 247, 258-260; Z=101, A=245-250, 252-254, 256, 259-262; Z=102, A=248-251, 258-264; Z=103, A=251-254, 257-266; Z=104, A=253-255, 259, 260, 262-268; Z=105, A=255-258, 260-270; Z=106, A=258, 259, 263-273; Z=107, A=260-275; Z=108, A=263, 267-273; Z=109, A=265-279; Z=110, A=267, 268, 271-281; Z=111, A=272-283; Z=112, A=276-285; Z=113, A=278-287; Z=114, A=285-289; Z=115, A=287-291; Z=116, A=289-293; Z=117, A=291-294; Z=118, A=293-295; calculated binding energies, Q(α), Q(β-), Q(β+), Q(EC) based on the WS-LZ2 mass formula for 988 nuclei. Weizsacker-Skyrme (WS)-type nuclear mass formulas.

doi: 10.1103/PhysRevC.96.024302
Citations: PlumX Metrics


2017WA18      Phys.Lett. B 770, 83 (2017)

F.Wang, B.H.Sun, Z.Liu, R.D.Page, C.Qi, C.Scholey, S.F.Ashley, L.Bianco, I.J.Cullen, I.G.Darby, S.Eeckhaudt, A.B.Garnsworthy, W.Gelletly, M.B.Gomez Hornillos, T.Grahn, P.T.Greenlees, D.G.Jenkins, G.A.Jones, P.Jones, D.T.Joss, R.Julin, S.Juutinen, S.Ketelhut, S.Khan, A.Kishada, M.Leino, M.Niikura, M.Nyman, J.Pakarinen, S.Pietri, Z.Podolyak, P.Rahkila, S.Rigby, J.Saren, T.Shizuma, J.Sorri, S.Steer, J.Thomson, N.J.Thompson, J.Uusitalo, P.M.Walker, S.Williams, H.F.Zhang, W.Q.Zhang, L.H.Zhu

Spectroscopic factor and proton formation probability for the d3/2 proton emitter 151mLu

RADIOACTIVITY 151Lu(p) [from 96Ru(58Ni, X)151Lu, E=266, 274 MeV]; measured decay products, Ep, Ip, Eγ, Iγ; deduced γ-ray energies and intensities, spectroscopic factors, proton-decay formation amplitudes, Q-value, T1/2. Comparison with theoretical calculations.

doi: 10.1016/j.physletb.2017.04.034
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2017WE10      Phys.Rev. C 96, 021601 (2017)

K.Wei, H.F.Zhang

Cluster preformation law for heavy and superheavy nuclei

RADIOACTIVITY 222Ra(14C); 276Ds(68Ni); calculated potential barriers, preformation factors to include clusters with atomic numbers larger than 28 emitted by the superheavy nuclei, and breakdown of the previous cluster preformation law. Proposed new empirical preformation formulas for cluster decays of heavy and superheavy nuclei.

doi: 10.1103/PhysRevC.96.021601
Citations: PlumX Metrics


2017XI02      Nucl.Phys. A957, 135 (2017)

Y.-Z.Xing, H.F.Zhang, X.-B.Liu, Y.-M.Zheng

Pauli-blocking effect in two-body collisions dominates the in-medium effects in heavy-ion reactions near Fermi energy

NUCLEAR REACTIONS 58Ni(58Ni, x), E=15-100 MeV/nucleon;129Xe(129Sn, x), E=15-100 MeV/nucleon; calculated isotropy ratio of free protons using IQMD (Isospin-dependent QMD); deduced sensitivity to Pauli blocking effect in two-body collisions. Compared with INDRA data.

doi: 10.1016/j.nuclphysa.2016.08.006
Citations: PlumX Metrics


2017XI05      Int.J.Mod.Phys. E26, 1750010 (2017)

Y.-Z.Xing, X.-X.Liu, X.-B.Liu, H.F.Zhang, Y.-M.Zheng

Nuclear stopping power evaluated via free protons emitted in reaction Xe+Sn near fermi energy

NUCLEAR REACTIONS 129Sn(129Xe, X)1H, E<105 MeV; calculated isotropy ratio with respect to the incident energy for free protons, stopping power. Comparison with available data.

doi: 10.1142/S0218301317500100
Citations: PlumX Metrics


2017ZH11      J.Phys.(London) G44, 045110 (2017)

H.F.Zhang, L.H.Wang, J.P.Yin, P.H.Chen, H.F.Zhang

Performance of the Levenberg-Marquardt neural network approach in nuclear mass prediction

NUCLEAR STRUCTURE A<270; calculated binding energies, rms radii, one-neutron and two-neutron separation energies, masses. FRDM, WS4, Bhagwat, LMNN models. Comparison with available data.

doi: 10.1088/1361-6471/aa5d78
Citations: PlumX Metrics


2016BA20      Phys.Rev. C 93, 044615 (2016)

X.J.Bao, Y.Gao, J.Q.Li, H.F.Zhang

Possibilities for synthesis of new isotopes of superheavy nuclei in cold fusion reactions

NUCLEAR REACTIONS 209Bi(54Cr, n)262Bh, 208Pb(56Fe, n)263Hs, 208Pb(58Fe, n)265Hs, 209Bi(58Fe, n)266Mt, 208Pb(62Ni, n)269Ds, 207Pb(64Ni, n)270Ds, 208Pb(64Ni, n)271Ds, 209Bi(64Ni, n)272Rg, 208Pb(68Zn, n)275Cn, 208Pb(70Zn, n)277Cn, 209Bi(70Zn, n)278Nh, E not given; calculated evaporation residue cross section (ERCS) for cold fusion reactions and compared with experimental data. 207Pb(58Fe, n), (64Ni, n), (70Zn, n), 208Pb, 209Bi(56Fe, n), (58Fe, n), (59Fe, n), (60Fe, n), (61Fe, n), (58Ni, n), (59Ni, n), (60Ni, n), (61Ni, n), (62Ni, n), (64Ni, n), (65Ni, n), 208Pb(66Zn, n), (67Zn, n), (68Zn, n), (70Zn, n), (71Zn, n), E not given; calculated evaporation residue cross section (ERCS) for cold fusion reactions for production A=262-278, Z=108-112 superheavy nuclides (SHN), isospin dependence. 208Pb(58Mn, n), (61Fe, n), (58Co, n), (65Ni, n), (66Cu, n), (74Ga, n), (78As, n), (85Se, n), (89Br, n), (91Kr, n), 209Bi(66Cu, n), (80Ga, n), E not given; calculated evaporation residue cross section (ERCS) for cold fusion reactions for production of Z=107-118, A=265-298 and compared with other theoretical calculations. 136Xe(136Xe, n)271Hs, E not given; calculated cross section. Dinuclear system (DNS) model via cold fusion reactions.

doi: 10.1103/PhysRevC.93.044615
Citations: PlumX Metrics


2016CH36      Chin.Phys.C 40, 091002 (2016)

P.-H.Chen, Z.-Q.Feng, J.-Q.Li, H.-F.Zhang

A statistical approach to describe highly excited heavy and superheavy nuclei

NUCLEAR REACTIONS 198Pt(28Si, X)223U/219Th/215Ra/221U/217Th/220Pa/216Ac/222Pa/222U/218Th/214Ra/220U/216Th/219Pa/215Ac/221Th, E not given; calculated partial σ for excited states. Comparison with experimental data.

doi: 10.1088/1674-1137/40/9/091002
Citations: PlumX Metrics


2016XI15      Chin.Phys.Lett. 33, 122501 (2016)

Y.Z.Xing, X.-B.Liu, Y.-L.Shi, H.-F.Zhang, Y.-M.Zheng

Nuclear Stopping and Pauli Blocking in Heavy-Ion Reactions near Fermi Energy

NUCLEAR REACTIONS 129Sn(129Xe, X), E=65 MeV/nucleon; calculated the reduced impact parameter with respect to the multiplicity; deduced a feasible value of the Pauli-blocking factor.

doi: 10.1088/0256-307X/33/12/122501
Citations: PlumX Metrics


2015BA03      Phys.Rev. C 91, 011603 (2015)

X.J.Bao, Y.Gao, J.Q.Li, H.F.Zhang

Influence of the nuclear dynamical deformation on production cross sections of superheavy nuclei

NUCLEAR REACTIONS 238U, 237Np, 242,244Pu, 245,248Cm, 249Bk, 249,251Cf, 252,254Es(48Ca, 3n), (48Ca, 4n), (48Ca, 5n), at E(compound nucleus)=20-60 MeV; calculated evaporation residue cross sections as function of the excitation energy of the compound nucleus. Z=119, 120; predicted production σ. Calculations based on Dinuclear system with deformations of the two nuclei described by a Fokker-Planck equation. Comparison with experimental data.

doi: 10.1103/PhysRevC.91.011603
Citations: PlumX Metrics


2015BA19      Phys.Rev. C 91, 064612 (2015)

X.J.Bao, Y.Gao, J.Q.Li, H.F.Zhang

Theoretical study of the synthesis of superheavy nuclei using radioactive beams

NUCLEAR REACTIONS 244Pu(34S, X), (48Ca, X), E not given; calculated contour plot of driving potential as function of neutron and proton numbers of fragment. 154Sm(40Ca, X)194Pb*, E(*)=56-75 MeV; 154Sm(48Ca, X)202Pb*, E(*)=49-95 MeV; 182W(32S, X)214Th*, E(*)=56-136 MeV; 208Pb(19F, X)227Pa*, E(*)=51-124 MeV; 208Pb(24Mg, X)232Pu*, E(*)=52-114 MeV; 154Sm(40Ca, X)194Pb*, E(*)=56-75 MeV; 208Pb(28Si, X)236Cm*, E(*)=50-138 MeV; 208Pb(32S, X)240Cf*, E(*)=66-111 MeV; 238U(36S, X)274Hs*, E(*)=36-56 MeV; 248Cm(26Mg, X)274Hs*, E(*)=37-64 MeV; calculated fusion probability and compared with experimental values. 249Bk, 252Cf(14N, 3n), (14N, 4n), (14N, 5n), 249Bk(19F, 3n), (19F, 4n), (19F, 5n), 246Cm, 249Bk, 250Cf(30Si, 3n), (30Si, 4n), (30Si, 5n), 252Cf, 253Es(22Ne, 3n), (22Ne, 4n), (22Ne, 5n), 253Es(18O, 3n), (18O, 4n), (18O, 5n), 238U, 237Np, 242,244Pu, 243Am, 245,248Cm, 249Cf, 249Bk(48Ca, 3n), (48Ca, 4n), (48Ca, 5n), 237Np, 244Pu, 248Cm, 249Bk, 252Cf, 253Es(24Na, 4n), (24Na, 5n), 252Cf(21O, 4n), (21O, 5n), 238U, 244Pu(42K, 4n), (42K, 5n), 237Np, 249Bk(43K, 4n), (43K, 5n), 248Cm(46Ar, 4n), (46Ar, 5n), 248Cm, 252Cf, 253Es(46K, 4n), (46K, 5n), E not given; calculated formation σ for evaporation residues and compared with available experimental values and previous calculations. Dinuclear system (DNS) model for the formation of Z=108-118 superheavy (SHE) compound nuclei.

doi: 10.1103/PhysRevC.91.064612
Citations: PlumX Metrics


2015BA24      J.Phys.(London) G42, 085101 (2015)

X.J.Bao, S.Q.Guo, H.F.Zhang, Y.Z.Xing, J.M.Dong, J.Q.Li

Competition between α-decay and spontaneous fission for superheavy nuclei

RADIOACTIVITY 232Th, 234,236,238U, 236,238,240,242,244Pu, 240,242,244,246,248,250Cm, 242,244,246,248,250,252,254Cf, 246,248Fm, 256,258,260Rf, 264,266,270Hs, 270Ds, 284Cn, 286,288Fl, 290,292Lv, 294Og, 235U, 239Pu, 243,245Cm, 237,249Cf, 255,257,259Fm, 253,255,259Rf, 293,294Ts, 287,289,290Mc, 282,283,285,286Nh, 275,278Mt, 271,274Bh, 291,293Lv, 287,289Fl, 283,285Cn, 278,279,280,281,282Rg, 279,281Ds, 274,275,276Mt, 275Hs, 270,272Bh, 266,267,268,270Db(α); calculated T1/2. Comparison with experimental data.

doi: 10.1088/0954-3899/42/8/085101
Citations: PlumX Metrics


2015BA30      Phys.Rev. C 92, 014601 (2015)

X.J.Bao, Y.Gao, J.Q.Li, H.F.Zhang

Influence of nuclear basic data on the calculation of production cross sections of superheavy nuclei

NUCLEAR REACTIONS 237Np, 238U, 242,244Pu, 243Am, 245,248Cm, 249Cf, 249Bk(48Ca, 3n), (48Ca, 4n), E not given; calculated survival probabilities of superheavy nuclei (SHN) as function of mass number of compound nucleus, and compared with experimental cross sections. 243Am(48Ca, 3n), (48Ca, 4n), (48Ca, 5n), E*(CN)=20-60 MeV; calculated capture cross sections, fusion probabilities, and survival probabilities, evaporation residue cross sections as function of excitation energy leading to nuclei with Z=112-118. 249Cf(50Ti, 3n), (50Ti, 4n), (50Ti, 5n), E*=20-60 MeV; 248Cm(54Cr, 3n), (54Cr, 4n), (54Cr, 5n), E*=20-60 MeV; calculated evaporation residue cross sections as function of excitation energy and Z=120 production. Calculations based on the DNS concept, and use of three nuclear data tables (FRDM-1995, KTUY-2005, WS-2010).

doi: 10.1103/PhysRevC.92.014601
Citations: PlumX Metrics


2015BA42      Phys.Rev. C 92, 034612 (2015)

X.J.Bao, Y.Gao, J.Q.Li, H.F.Zhang

Isotopic dependence of superheavy nuclear production in hot fusion reactions

NUCLEAR REACTIONS 237Np, 238U, 242,244Pu, 243Am, 245,248Cm, 249Bk, 249Cf(48Ca, 2n), (48Ca, 3n), (48Ca, 4n), (48Ca, 5n), E*=20-60 MeV; calculated evaporation residue cross section (ERCSs) for nuclei of SHE of Z=112-118. 232,233,234,235,236,237,238U, 236,237,238,239,240,241,242,243,244Pu, 242,243,244,245,246,247,248,249,250Cm, 249,250,251,252Cf(48Ca, 3n), (48Ca, 4n), (50Ti, 3n), (50Ti, 4n), (50Ca, 3n), (50Ca, 4n), 235,236,237Np, 241,242,243Am, 247,248,249Bk(48Ca, 3n), (48Ca, 4n), (50Ti, 3n), (50Ti, 4n), E not given; calculated evaporation residue cross section (ERCSs) for nuclei of SHE region. Dinuclear system (DNS) model. Comparison with available experimental data.

doi: 10.1103/PhysRevC.92.034612
Citations: PlumX Metrics


2015HU06      Phys.Rev. C 91, 065202 (2015)

Y.Huang, J.He, X.-R.Chen, R.Wang, J.-J.Xie, H.-F.Zhang

Theoretical investigation of the decay of the N(2120) resonance to nucleon resonances near 1.7 GeV

doi: 10.1103/PhysRevC.91.065202
Citations: PlumX Metrics


2015MA45      J.Phys.(London) G42, 095107 (2015)

N.N.Ma, H.F.Zhang, X.J.Bao, P.H.Chen, J.M.Dong, J.Q.Li, H.F.Zhang

Weizsacker-Skyrme-type mass formula by considering radial basis function correction

NUCLEAR STRUCTURE N<180; calculated nuclear masses, α-decay Q-values and T1/2. Comparison with experimental data.

doi: 10.1088/0954-3899/42/9/095107
Citations: PlumX Metrics


2014BA23      Phys.Rev. C 89, 067301 (2014)

X.-J.Bao, H.-F.Zhang, J.-M.Dong, J.-Q.Li, H.-F.Zhang

Competition between α decay and cluster radioactivity for superheavy nuclei with a universal decay-law formula

RADIOACTIVITY Z=104-120, N=140-202(α); 222,224,226Ra, 228,230Th, 230,232,234U, 236Ra, 240,242Cm, 256,258Rf, 260,262Sg, 264,266Hs, 270Ds(α); calculated branching ratios for α-decay and cluster radioactivity. Comparison with available experimental data. 282Ds(76Zn); 284Ds(78Zn); 286Ds(82Ge); 288Ds(84Ge); 284Cn(76Zn), (80Zn); 286Cn(80Ge), (82Ge); 288Cn(82Ge); 290Cn(82Ge), (84Ge), (86Se); 292Cn(84Se), (88Se); 286Fl(78Ge), (80Ge), (84Se); 288Fl(80Ge), (84Se); 290Fl(82Ge), (84Se); 292Fl(86Se); 294Fl(88Se); 294Fl(88Se); 296Fl(88Se), (92Kr); 298Fl(94Kr); 288Lv(82Se); 288,290,292Lv(84Se); 294Lv(86Se); 288,290,292,294Og(86Kr); 296Og(88Kr); 298Og(90Kr); 290,292,294120(88Sr); 296,298120(90Sr); 300120(92Sr); calculated branching ratios and half-lives for the most probable cluster decay using Universal Decay Law formalism, and AME-2012, FRDM95, KTUV05, and WS2011 mass tables.

doi: 10.1103/PhysRevC.89.067301
Citations: PlumX Metrics


2014WA16      J.Phys.(London) G41, 065102 (2014)

J.M.Wang, H.F.Zhang, J.Q.Li

Competition between α-decay and proton radioactivity within a generalized liquid drop model

RADIOACTIVITY 105Sb, 155,156,157Ta, 159,160,161,162,163Re, 164,165,166,167Ir, 170,171,172,173Au, 176,177,178,179Tl, 184,185,187Bi(α), (p); calculated T1/2. Generalized Liquid Drop Model, WKB approximation.

doi: 10.1088/0954-3899/41/6/065102
Citations: PlumX Metrics


2014WA19      J.Phys.(London) G41, 075109 (2014)

J.-Mei.Wang, H.F.Zhang, J.Q.Li

Predictions for α-decay half-lives of heavy and superheavy elements with a generalized liquid drop model

RADIOACTIVITY 247,248,250Fm, 246,247,249Md, 253No, 253,254Lr, 258,261Rf, 256,257,258,259Db, 259,261,271Sg, 260,261,262,270,272,274Bh, 265,268,275Hs, 274,275,276Mt, 269,270,271,273,279,281Ds, 278,279,280,282Rg, 285Cn, 282,283,284,285,286Nh, 286,287,288,289Fl, 287,288,289Mc, 290,291,292,293Lv, 293,294Ts, 294Og(α); calculated T1/2, Q-value. FRDM and MMM methods, comparison with experimental data.

doi: 10.1088/0954-3899/41/7/075109
Citations: PlumX Metrics


2014WA51      Phys.Rev. C 90, 055801 (2014)

S.Wang, H.F.Zhang, J.M.Dong

Neutron star properties in density-dependent relativistic mean field theory with consideration of an isovector scalar meson

doi: 10.1103/PhysRevC.90.055801
Citations: PlumX Metrics


2013WA07      J.Phys.(London) G40, 045103 (2013)

J.M.Wang, H.F.Zhang, J.Q.Li

α decay half-lives for Z = 108, 114, 120, 126 isotopes and N = 162, 184 isotones

RADIOACTIVITY 298Fl, 270Hs(α); calculated T1/2; deduced double magic nuclei. Generalized Liquid Drop Model (GLDM).

doi: 10.1088/0954-3899/40/4/045103
Citations: PlumX Metrics


2012BA35      J.Phys.(London) G39, 095103 (2012)

X.J.Bao, H.F.Zhang, B.S.Hu, G.Royer, J.Q.Li

Half-lives of cluster radioactivity with a generalized liquid-drop model

RADIOACTIVITY 221Fr, 221,222,223,224,226Ra, 225Ac, 226Th(14C), 226Th(18O), 228Th(20O), 230Th(24Ne), 232Th(26Ne), 231Pa(24Ne), (23F), 230U(22Ne), (24Ne), 232U(28Mg), (24Ne), 233U(24Ne), (25Ne), (28Mg), 234U(24Ne), (26Ne), (28Mg), 235U(24Ne), (25Ne), (28Mg), 236U, 247Np(30Mg), 236Pu(28Mg), 238Pu(28Mg), (30Mg), (32Si), 220Rn(12C), 221Rn(15N), 222Rn(18O), 223Ra(18O), 226Ra(20O), 225Ac(18O), 224Th(15N), 224Th(24Ne), 226Th(15N), 226,228Th(24Ne), 229Th(21O), (24Ne), 231Pa(27Na), 232Pa(25Ne), (28Mg), 230U(20O), (24Ne), (32Si), 232U(28Mg), 233,234U(27Na), 225Np(12C), (16O), 227Np(16O), (18O), 231Np(20O), 233Np(22Ne), (25Ne), 234Np(28Mg), 235Np(29Mg), 236Np(29Mg), 237Np(32Si), 234Pu(27Na), (29Al), 236Pu(24Ne), (29Al), 237Pu(29Mg), (32Si), 237Am(28Mg), (32Si), 238Am(29Mg), (33Si), 239Am(32Si), (34Si), 240Am(34Si), 241Am(34Si), 238Cm(32Si), 240Cm(30Mg), (34Si), 242Cm(32Si), 243Cm(34Si), 242Cf(32Si), (34Si), 244Cf(34Si), 246Cf(38S), 249Cf(46Ar), (50Ca), 250,252,253,254,255,256,257,258No(48Ca), 258Rf(49Ca), (51Ti), (53Ti); calculated T1/2 for cluster radioactivity. WKB barrier-penetrating probabilities, generalized liquid drop model, comparison with available data.

doi: 10.1088/0954-3899/39/9/095103
Citations: PlumX Metrics


2012ZH02      Phys.Rev. C 85, 014325 (2012)

H.F.Zhang, Y.Gao, N.Wang, J.Q.Li, E.G.Zhao, G.Royer

Double magic nuclei for Z>82 and N>126

NUCLEAR STRUCTURE Z=101-118, N=140-194; calculated binding energies, Q(α). Z=101-129, N=162, 184; calculated S(p), Q(α) using Macroscopic-microscopic model (MMM). 270Hs, 298Fl; calculated potential energy in the constrained relativistic mean-field (CRMF) theory with effective interaction NL3. Comparison with experimental data.

RADIOACTIVITY 269Sg, 274Bh, 273Hs, 278Mt, 277,281Ds, 282Rg, 281,285Cn, 285,286Nh, 285,288,289Fl, 289,290Mc, 293,294Ts(α); Z=108, N=148-172(α); Z=114, N=160-190(α); calculated α decay half-lives. Macroscopic-microscopic model (MMM). Comparison with experimental data.

doi: 10.1103/PhysRevC.85.014325
Citations: PlumX Metrics


2011ZH24      Phys.Rev. C 84, 027303 (2011)

H.F.Zhang, G.Royer, J.Q.Li

Assault frequency and preformation probability of the α emission process

RADIOACTIVITY 188,190,192,194,196,198,200,202,204,206,208,210,212,214,216,218Po(α); calculated penetration probabilities, assault frequencies. Z=52-116(α); N=54, 58, 84-176(α); comparison of experimental and previously calculated half-lives for 131 even-even nuclides. N=86-178(α); calculated assault frequencies for 154 even-even nuclei. WKB approximation and Generalized liquid-drop model (GLDM) for penetration probability calculation. Classical and quantum-mechanical approach for assault frequencies.

doi: 10.1103/PhysRevC.84.027303
Citations: PlumX Metrics


2011ZH45      Chin.Phys.Lett. 28, 112102 (2011)

L.Zhang, Y.Gao, H.-F.Zhang, X.-M.Chen, M.-L.Yu.J.-Q.Li

Symmetry Energy Effects in a Statistical Multifragmentation Model

doi: 10.1088/0256-307X/28/11/112102
Citations: PlumX Metrics


2010DO09      Chin.Phys.C 34, 182 (2010)

J.-M.Dong, H.-F.Zhang, W.Zuo, J.-Q.Li

Unified fission model for proton emission

NUCLEAR STRUCTURE 105Sb, 145,147Tm, 150,151Lu, 155,156,157Ta, 159,160,161Re, 164,165,166,176Ir, 171Au, 177Tl, 185Bi; calculated proton radioactivity T1/2 for spherical emitters. Comparison with experimental data.

doi: 10.1088/1674-1137/34/2/005
Citations: PlumX Metrics


2010GA12      Chin.Phys.Lett. 27, 062102 (2010)

Y.Gao, H.-F.Zhang, L.Zhang, X.-M.Chen, J.-Q.Li, W.-J.Guo

Relativistic Mean Field Study of the Z = 117 Isotopic Chain

NUCLEAR STRUCTURE Z=117; calculated binding energies, deformations, α-decay energies, lifetimes. Relativistic mean field theory in the blocked BCS approximation.

doi: 10.1088/0256-307X/27/6/062102
Citations: PlumX Metrics


2010LI32      Nucl.Phys. A834, 353c (2010)

J.-Q.Li, Z.-Q.Feng, Z.-G.Gan, X.-H.Zhou, H.-F.Zhang, W.Scheid

Production of Superheavy Nuclei in Massive fusion reactions

NUCLEAR REACTIONS 208Pb, 209Bi(48Ca, n), (50Ti, n), (54Cr, n), (58Fe, n), (64Ni, n), (70Zn, n), (76Ge, n), (82Se, n), (86Kr, n), (88Sr, n), E not given; 232Th, 238U, 237Np, 242,244Pu, 243Am, 245,248Cm, 247Bk, 249Cf, 254Es, 257Fm(48Ca, 3n), (48Ca, 4n), E not given; calculated maximum σ systematics of Z=102-120 superheavy elements using master equation within di-nuclear system model. Comparison with data.

doi: 10.1016/j.nuclphysa.2010.01.038
Citations: PlumX Metrics


2010MA69      Eur.Phys.J. A 46, 403 (2010)

L.Ma, H.F.Zhang, X.H.Zhou, Z.G.Gan, J.Q.Li, W.Scheid

Systematic study of properties of Hs nuclei

NUCLEAR STRUCTURE 257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,289,290,291,292,293,294,295,296,297,298Hs; calculated mass excess, Qα, β2, proton separation energy, two-neutron separation energy. 254,255,270Hs; calculated levels, J, π. Relativistic mean-field theory, DDDI (density-dependent delta interaction), GLDM (generalized liquid drop model). Comparison with data and other calculations.

RADIOACTIVITY 260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278Hs(α), (SF); calculated T1/2 using relativistic mean field, generalized liquid drop model. Comparison to data.

doi: 10.1140/epja/i2010-11057-2
Citations: PlumX Metrics


2010WA14      Chin.Phys.Lett. 27, 062103 (2010)

Y.-J.Wang, H.-F.Zhang, W.Zuo, J.-Q.Li

Improvement of a Fission-Like Model for Nuclear α Decay

doi: 10.1088/0256-307X/27/6/062103
Citations: PlumX Metrics


2010WA23      Phys.Rev. C 81, 067301 (2010)

Y.Z.Wang, J.M.Dong, B.B.Peng, H.F.Zhang

Fine structure of α decay to rotational states of heavy nuclei

RADIOACTIVITY 172,174,186Os, 180,182,184,186,188,190Pt, 186,188Hg, 228,230,232Th, 230,232,234,236,238U, 232,234,236,238,240,242,244Pu, 238,240,242,244,246,248,250,252,254Cm, 246,248,250,252,254,256Fm, 252,254,256No, 256Rf, 260Sg(α); calculated Q-values, α branches to 2+ and 4+ states using generalized liquid drop model and improved Royer's formula calculations. Comparison with experimental data.

doi: 10.1103/PhysRevC.81.067301
Citations: PlumX Metrics


2010ZH16      J.Phys.(London) G37, 085107 (2010)

H.F.Zhang, Y.J.Wang, J.M.Dong, J.Q.Li, W.Scheid

Concise methods for proton radioactivity

RADIOACTIVITY 103,104,105Sb, 155,156,109I, 112,113Cs, 117La, 121Pr, 130,131,132Eu, 135Tb, 140,141Ho, 145,146,147Tm, 150,151Lu, 157Ta, 159,160,161,162,163Re, 164,165,166,167Ir, 169,170,171Au, 176,177Tl, 184,185Bi(p); calculated proton radioactivity T1/2, spectroscopic factors for deformed and microscopic factors for spherical emitters. Comparison with other calculations.

doi: 10.1088/0954-3899/37/8/085107
Citations: PlumX Metrics


2010ZH25      Phys.Rev. C 82, 015805 (2010)

H.F.Zhang, U.Lombardo, W.Zuo

Transport parameters in neutron stars from in-medium NN cross sections

doi: 10.1103/PhysRevC.82.015805
Citations: PlumX Metrics


2009DO06      Phys.Rev. C 79, 054330 (2009)

J.M.Dong, H.F.Zhang, G.Royer

Proton radioactivity within a generalized liquid drop model

RADIOACTIVITY 105Sb, 145,147Tm, 150,151Lu, 155,156,157Ta, 159,160,161Re, 164,166,167Ir, 171Au, 177Tl, 185Bi(p); calculated proton decay half-lives and penetration probabilities using generalized liquid drop model (GLDM) calculations and WKB approximation. Comparison with experimental data.

doi: 10.1103/PhysRevC.79.054330
Citations: PlumX Metrics


2009DO16      Eur.Phys.J. A 41, 197 (2009)

J.M.Dong, H.F.Zhang, J.Q.Li, W.Scheid

Cluster preformation in heavy nuclei and radioactivity half-lives

RADIOACTIVITY 226Th(14C), 226Th(18O), 230U(22Ne), (24Ne), 232Th(24Ne), (26Ne), 236U(26Ne), 232U, 233U, 235U(28Mg), 237Np(30Mg), 240Pu, 241Am(34Si); calculated T1/2 for cluster decay using unified fission model; deduced cluster preformation factors. Comparison with data. A=114-124(12C), (16O); A=215-252(8Be), (12C), (14C), (15N), (16O), (17O), (18O), (20O), (22O), (22Ne), (24Ne), (25Ne), (26Ne), (23F), (28Mg), (29Mg), (30Mg), (32Si), (33Si), (34Si), (36S), (38S), (42S), (46Ar), (48Ca), (50Ca); calculated T1/2 for cluster decay using unified fission model.

doi: 10.1140/epja/i2009-10819-1
Citations: PlumX Metrics


2009DO21      Chin.Phys.C 33, 633 (2009)

J.-M.Dong, H.-F.Zhang, Y-Z.Wang, W.Zuo, X.-N.Su, J.-Q.Li

α-decay half-lives of superheavy nuclei and general predictions

NUCLEAR STRUCTURE Z=105-118; calculated α-decay T1/2. Generalized liquid drop model (GLDM).

doi: 10.1088/1674-1137/33/8/007
Citations: PlumX Metrics


2009GA43      Chin.Phys.C 33, 848 (2009)

Y.Gao, J.-M.Dong, H.-F.Zhang, W.Zuo, J.-Q.Li

Properties and structure of N = Z nuclei within relativistic mean field theory

NUCLEAR STRUCTURE 84Mo; calculated proton and neutron density distributions, single-particle spectra, Fermi energy levels, binding energy, one and two nucleon separation energy, quadrupole deformation, rms radii. Axially deformed RMF.

doi: 10.1088/1674-1137/33/10/006
Citations: PlumX Metrics


2009WA01      Phys.Rev. C 79, 014316 (2009)

Y.Z.Wang, H.F.Zhang, J.M.Dong, G.Royer

Branching ratios of α decay to excited states of even-even nuclei

RADIOACTIVITY 180,182,184Hg(α), 186,188Pb(α), 190,194,196,198Po(α), 202Rn(α), 226,228,230,232Th(α), 230,232,234,236U(α), 236,238,240,242Pu(α), 242,244Cm(α), 246Cf(α); calculated branching ratios for decays to ground excited states in the framework of generalized liquid-drop model. Comparison with experimental data.

doi: 10.1103/PhysRevC.79.014316
Citations: PlumX Metrics


2009WA08      Chin.Phys.Lett. 26, 062101 (2009)

Y-Z.Wang, H.-F.Zhang, J.-M.Dong, X.-N.Su, W.Zuo, J.-Q.Li

Branching Ratios of α Decay for Nuclei near Deformed Shell Closures

RADIOACTIVITY 270Hs(α); Z=102-112; Calculated α-branching. Generalized Liquid Drop Model (GLDM).

doi: 10.1088/0256-307X/26/6/062101
Citations: PlumX Metrics


2009ZH18      Chin.Phys.Lett. 26, 072301 (2009)

H.-F.Zhang, J.-M.Dong, Y.-Z.Wang, X.-N.Su, Y.-J.Wang, L.-Z.Cai, T.-B.Zhu, B.-T.Hu, W.Zuo, J.-Q.Li

Theoretical Analysis and New Formulae for Half-Lives of Proton Emission

NUCLEAR STRUCTURE 105Sb, 145,147Tm, 150,151Lu, 155,156,157Ta, 159,160,161Re, 164,165,166,167Ir, 171Au, 177Tl, 185Bi; calculated proton radioactivity T1/2; deduced formulae for T1/2. comparison with experiment.

doi: 10.1088/0256-307X/26/7/072301
Citations: PlumX Metrics


2009ZH28      Phys.Rev. C 80, 037307 (2009)

H.F.Zhang, J.M.Dong, G.Royer, W.Zuo, J.Q.Li

Preformation of clusters in heavy nuclei and cluster radioactivity

RADIOACTIVITY 212,213,214Po, 215At, 238Pu(α), 221Fr, 221,222,223,224Ra, 225Ac, 226Ra(14C), 228Th(20O), 230U(22Ne), 230Th, 231Pa, 232,233,234U(24Ne), 233U(25Ne), 234U(26Ne), 234U, 236,238Pu(28Mg), 238Pu(30Mg), 238Pu(32Si), 242Cm(34Si); calculated preformation factor P0 of cluster decay. 223Ac, 224,226Th(14C), 223Ac(15N), 224Th(16O), 226Th(16O), 232Th, 236U(24Ne), 232Th(26Ne), 233U(28Mg), 237Np(30Mg), 240Pu, 241Am(34Si); calculated half-lives. 114,115,116,117,118,119Ba, 121La(12C), 114,115,116,117,118Ba, 119,120,121,122,124Ce, 125Pr(16O); calculated half-lives. Preformed cluster approach and generalized liquid drop model (GLDM). Comparison with experimental data.

doi: 10.1103/PhysRevC.80.037307
Citations: PlumX Metrics


2009ZH38      Phys.Rev. C 80, 057301 (2009)

H.F.Zhang, G.Royer, Y.J.Wang, J.M.Dong, W.Zuo, J.Q.Li

Analytic expressions for α particle preformation in heavy nuclei

RADIOACTIVITY N=82-178(α); analyzed α particle preformation factors from experimental Eα and half-lives; deduced analytical expressions for preformation factors.

doi: 10.1103/PhysRevC.80.057301
Citations: PlumX Metrics


2009ZH46      Chin.Phys.C 33, Supplement 1, 95 (2009)

H.-F.Zhang, Z.-K.Wang, X.-M.Cheng, W.Zuo, J.-Q.Li

Alpha decay half-lives of heavy nuclei within a generalized liquid drop model

RADIOACTIVITY 271Sg, 275Hs, 279Ds, 283,285Cn, 286,287,288,289Fl, 290,291,292,293Lv, 294Og, 275,276Mt, 279,280Rg, 283,284Nh, 287,288Mc, 272Bh(α); calculated T1/2 using experimental Q-values. Generalized liquid drop model. Comparison with experimental data.

doi: 10.1088/1674-1137/33/S1/031
Citations: PlumX Metrics


2008DO27      Chin.Phys.Lett. 25, 4230 (2008)

J.-M.Dong, H.-F.Zhang, W.Zuo, J.Q.Li

Half-Lives of Superheavy Nuclei in Z = 113 Alpha Decay Chain

RADIOACTIVITY 284,283,282,278Nh; 280,279,278,274Rg;276,275,274Mt;272,270,266Bh; calculated α-decay half-lives using a generalized liquid drop model.

doi: 10.1088/0256-307X/25/12/012
Citations: PlumX Metrics


2008MA55      Int.J.Mod.Phys. E17, Supplement 1, 97 (2008)

L.Ma, H.F.Zhang, X.H.Zhou, Z.G.Gan, J.Q.Li, W.Scheid

Ground-state and alpha-decay properties of even Hs Isotopes

doi: 10.1142/S0218301308011781
Citations: PlumX Metrics


2008RO06      Phys.Rev. C 77, 037602 (2008)

G.Royer, H.F.Zhang

Recent α decay half-lives and analytic expression predictions including superheavy nuclei

RADIOACTIVITY 105Te, 156Er, 158Yb, 160,174Hf, 158,168W, 162,164Os, 166,168,170Pt, 172,174,188Hg, 178,180,184,186,188,190,192,194Pb, 188,189,190,192,210Po, 196,198Rn, 202,204Ra, 210,212Th, 218,220,224,226U, 228,230Pu, 238Cm, 258No, 253,254,255,256,257,258,259,260,262,263,264,265,267,268Rf, 255,256,257,258,259,261,262,263,264,265,266,267,268,269,270Db, 258,259,261,262,264,267,268,269,270,271,272Sg, 260,261,262,263,264,265,266,267,268,269,270,271,272,273,274Bh, 263,266,267,268,269,270,271,273,274,275,276,277Hs, 265,266,267,268,269,270,271,272,273,274,275,276,277,278,279Mt, 267,268,270,271,272,273,274,275,276,277,278,279,281Ds, 273,274,275,276,277,278,279,280,281,282,283Rg, 277,278,279,280,281,282,283,284,285Cn, 282,283,284,285,286,287Nh, 285,286,287,288,289Fl, 287,288,289,290,291Mc, 289,290,291,292,293Lv, 291,292Ts, 293,294Og(α); calculated half-lives, Qα using density dependent effective interaction and Viola-Seaborg-Sobiczewski formulas. Comparison with experimental data for known isotopes.

doi: 10.1103/PhysRevC.77.037602
Citations: PlumX Metrics


2008ZH12      Phys.Rev. C 77, 054318 (2008)

H.F.Zhang, G.Royer

α particle preformation in heavy nuclei and penetration probability

RADIOACTIVITY 178,180,182,184,186,188,190,192,194,210Pb, 188,190,192,194,196,198,200,202,204,206,208,210,212,214,216,218Po, 198,200,202,204,206,208,210,212,214,216,218,220,222Rn, 202,204,206,208,210,212,214,216,218,220,222,224,226Ra, 210,212,214,216,218,220,222,224,226,228,230,232Th, 218,220,222,224,226,228,230,232,234,236,238U, 260,266Sg, 264,266Hs, 270Ds, 286,288Fl, 290,292Lv, 294118(α); calculated α-particle preformation, penetration probabilities, Qα. Generalized Liqiud Drop model. Z=52-118, A=108-295; calculated α-preformation factors for 180 even-even nuclides.

doi: 10.1103/PhysRevC.77.054318
Citations: PlumX Metrics


2007ZH41      Phys.Rev. C 76, 047304 (2007)

H.F.Zhang, G.Royer

Theoretical and experimental α decay half-lives of the heaviest odd-Z elements and general predictions

RADIOACTIVITY 253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268Rf, 255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270Db, 258,259,260,261,262,263,264,265,266,267,268,269,270,271,272Sg, 260,261,262,263,264,265,266,267,268,269,270,271,272,273,274Bh, 263,264,265,266,267,268,269,270,271,272,273,274,275,276,277Hs, 265,266,267,268,269,270,271,272,273,274,275,276,277,278,279Mt, 267,268,269,270,271,272,273,274,275,276,277,278,279,280,281Ds, 272,273,274,275,276,277,278,279,280,281,282,283Rg, 277,278,279,280,281,282,283,284,285Cn, 283,284,285,286,287Nh, 285,286,287,288,289Fl, 287,288,289,290,291Mc, 289,290,291,292Lv, 291,292Ts, 293Og(α); calculated half-lives, Q(α), comparison with experimental values.

doi: 10.1103/PhysRevC.76.047304
Citations: PlumX Metrics


2007ZH44      Phys.Rev. C 76, 054001 (2007)

H.F.Zhang, Z.H.Li, U.Lombardo, P.Y.Luo, F.Sammarruca, W.Zuo

Nucleon-nucleon cross sections in dense nuclear matter

doi: 10.1103/PhysRevC.76.054001
Citations: PlumX Metrics


2006ZH15      Chin.Phys.Lett. 23, 1723 (2006)

H.-F.Zhang, W.Zuo, J.-Q.Li, S.Im, Z.-Yu.Ma, B.-Q.Chen

Anomaly in the Charge Radii and Nuclear Structure

NUCLEAR STRUCTURE A=118-150; calculated isotope shifts, radii, quadrupole deformations for Pr isotopes. 139,140,141,142Pr; calculated single-particle energy levels, proton and neutron density distributions. Relativistic mean field approach.

doi: 10.1088/0256-307X/23/7/019
Citations: PlumX Metrics


2006ZH16      Chin.Phys.Lett. 23, 1734 (2006)

H.-F.Zhang, J.-Q.Li, W.Zuo, B.-Q.Chen, Z.-Yu.Ma, S.Im, G.Royer

Alpha Decay Half-Lives of New Superheavy Elements through Quasimolecular Shapes

RADIOACTIVITY 294Og, 290,291,292,293Lv, 286,287,288,289Fl, 283,285Cn, 279Ds, 275Hs, 271Sg(α); calculated T1/2. WKB approximation, comparison with data and other models.

doi: 10.1088/0256-307X/23/7/022
Citations: PlumX Metrics


2006ZH40      Int.J.Mod.Phys. E15, 1613 (2006)

H.F.Zhang, J.Q.Li, W.Zuo, X.H.Zhou, Z.G.Gan, N.Wang

Ground state properties of superheavy nuclei in relativistic mean field theory

NUCLEAR STRUCTURE Z=102-130; calculated binding energies. 267Db, 271Bh, 275Mt, 279Rg, 283Nh, 287Mc; calculated binding energies, radii, β2, ground-state J, π. 287Mc; calculated single-particle level energies.

doi: 10.1142/S0218301306004922
Citations: PlumX Metrics


2004LI32      Chin.Phys.Lett. 21, 636 (2004)

W.-F.Li, Z.-Z.Wang, H.-S.Xu, Y.Ma, H.-F.Zhang, W.Zuo, J.-Q.Li, N.Wang, E.-G.Zhao, W.Scheid

Odd-Even Effects of the Survival Probability for Superheavy Compound Nuclei

NUCLEAR STRUCTURE 284,285,286,287,288,289,290,291Fl; calculated neutron separation energies, fission barriers, survival probability for neutron evaporation; deduced odd-even effects. Statistical model.

NUCLEAR REACTIONS 241,242,243Pu(48Ca, X), E not given; calculated driving potential vs mass asymmetry.

doi: 10.1088/0256-307X/21/4/013
Citations: PlumX Metrics


Back to query form