NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 27, 2024.

Search: Author = X.Bao

Found 60 matches.

Back to query form



2023BA29      Nucl.Phys. A1039, 122739 (2023)

X.Bao, G.J.Li

Systematics of Coulomb barriers deduced from experimental capture cross sections and then used to predict the capture cross sections

NUCLEAR STRUCTURE Z=45-102; analyzed available data using a simple formula derived by assuming the Gaussian shape of the barrier distribution function; deduced he empirical values of the barrier height, barrier radius and width of the barrier distribution by fitting the experimental data.

doi: 10.1016/j.nuclphysa.2023.122739
Citations: PlumX Metrics


2023HU15      Phys.Rev. C 108, 024608 (2023)

D.-y.Huo, Z.Wei, K.Wu, C.Han, Y.-n.Han, Y.-x.Wang, P.-q.Zhang, Y.He, X.-j.Bao, Z.-y.Deng, Z.-e.Yao

Effect of octupole deformation of fragments on mass-asymmetric yields of fission of actinide nuclei

NUCLEAR REACTIONS 235,236,238,239U, 232Th, 239,240Pu, 237Np(n, F), E=1-10 MeV; calculated mass distributions of fission fragments, quadrupole and octupole deformations of scission configurations as a function of mass number of the fission fragments, neutron-charge ratio of fragments. Scission-point model with considering octupole deformation of fragments. Comparison to experimental data.

doi: 10.1103/PhysRevC.108.024608
Citations: PlumX Metrics


2023LI12      Phys.Rev. C 107, 024611 (2023)

G.Li, X.Bao

Theoretical calculations for the capture cross section of the formation of heavy and superheavy nuclei

NUCLEAR REACTIONS 204,206,208Pb, 194,198Pt(12C, X), E(cm)=45-95 MeV;204,206,208Pb(36S, X), E(cm)=130-180 MeV;208Pb(40Ca, X), (48Ca, X), E(cm)=160-210 MeV;238U(12C, X), 232Th(14N, X), 209Bi(15N, X), E(cm)=55-105 MeV;237Np(12C, X), E(cm)=45-105 MeV;238U(14N, X), 204,208Pb(16O, X), 208Pb(18O, X), E(cm)=65-115 MeV;208Pb(19F, X), E(cm)=75-120 MeV;208Pb(26Mg, X), E(cm)=100-150 MeV; 208Pb(28Si, X), E(cm)=120-160 MeV;208Pb(32S, X), 204,206,208Pb(34S, X), E(cm)=135-180 MeV; 192Os, 194Pt(40Ca, X), E(cm)=160-200 MeV;197Au(40Ca, X), (48Ca, X), E(cm)=165-210 MeV;168Er, 170Er(48Ca, X), E(cm)=140-200 MeV;186Os, 194Pt, 197Au(16O, X), E(cm)=60-110;209Bi, 232Th, 238U(16O, X), E(cm)=65-125;208Pb(28Si, X), E(cm)=110-160 MeV;204,206,208Pb(34S, X), 208Pb(32S, X), E(cm)=130-180 MeV;188Os, 197Au, 209Bi(19F, X), E(cm)=72-120 MeV;238U(20Ne, X), E(cm)=90-145 MeV;197Au(27Al, X), (29Al, X), (31Al, X), E(cm)=72-120 MeV;198Pt(28Si, X), E(cm)=115-160 MeV;186W(30Si, X), E(cm)=105-150 MeV;182,184W(32S, X), E(cm)=120-175 MeV;168Er(34S, X), E(cm)=110-150 MeV;180Hf(40Ar, X), E(cm)=135-200 MeV;181Ta(39K, X), (46K, X), E(cm)=140-190 MeV;208Pb(50Ti, X), E(cm)=180-230 MeV;208Pb(52Cr, X), E(cm)=200-250 MeV;238U(36S, X), E(cm)=140-180 MeV;238U(40Ca, X), (48Ca, X), E(cm)=170-220 MeV;246Cm, 248Cm, (48Ca, X), E(cm)=180-230 MeV;209Bi(50Ti, X), E(cm)=190-230 MeV;244Pu(50Ti, X), E(cm)=200-250 MeV;248Cm(26Mg, X), E(cm)=110-150;238U(27Al, X), (30Si, X), E(cm)=120-170 MeV;238U(32S, X), E(cm)=140-195 MeV;238U(35Cl, X), E(cm)=160-210 MeV; calculated capture σ(E) for formation of compound nucleus. Comparison to experimental data.

doi: 10.1103/PhysRevC.107.024611
Citations: PlumX Metrics


2023XI13      Chin.Phys.C 47, 124102 (2023)

M.-X.Xiao, X.-J.Bao, Zh.Wei, Z.-E.Yao

Bayesian evaluation of energy dependent neutron induced fission yields

NUCLEAR REACTIONS 238U(n, F), E=0.5, 1.6, 3, 5.8 MeV; 243Am(n, F), E=0.5 MeV; analyzed available data; deduced the Bayesian neural network (BNN) approach fission yields.

doi: 10.1088/1674-1137/acf7b5
Citations: PlumX Metrics


2023ZH22      J.Phys.(London) G50, 045101 (2023)

T.L.Zhao, X.J.Bao, H.F.Zhang

Effect of deformation dependence and mirror nucleus corrections energy on multinucleon transfer reaction cross sections

NUCLEAR REACTIONS 208Pb(136Xe, X), E(cm)=450 MeV; 238U(64Ni, X), E(cm)=307.40 MeV; calculated σ using the dinuclear system (DNS) model, three macroscopic microscopic mass models. Comparison with available data.

doi: 10.1088/1361-6471/acb4b2
Citations: PlumX Metrics


2023ZH33      Phys.Rev. C 108, 014604 (2023)

S.H.Zhu, X.Bao

Possibility to synthesize Z=120 superheavy nuclei with Z > 20 projectiles

NUCLEAR REACTIONS 238U(48Ca, 3n)283Cn, E*=33-55 MeV; 238U(48Ca, 4n)282Cn, E*=35-60 MeV; 238U(48Ca, 5n)281Cn, E*=50-60 MeV; 244Pu(48Ca, 3n)289Fl, E*=35-54 MeV; 244Pu(48Ca, 4n)288Fl, E*=35-60 MeV; 244Pu(48Ca, 5n)287Fl, E*=42-60 MeV; 248Cm(48Ca, 3n)293Lv, E*=32-49 MeV; 248Cm(48Ca, 4n)292Lv, E*=33-58 MeV; 248Cm(48Ca, 5n)291Lv, E*=43-60 MeV; 238U(64Ni, 3n)299120, E*=29-43 MeV; 238U(64Ni, 4n)298120, E*=39-46 MeV; 238U(48Ca, 3n)283Cn, E*=32-60 MeV; 238U(48Ca, 4n)282Cn, E*=34-60 MeV; 244Pu(48Ca, 3n)289Fl, E*=35-60 MeV; 244Pu(48Ca, 4n)288Fl, E*=35-60 MeV; 244Pu(48Ca, 5n)287Fl, E*=42-60 MeV; 244Pu(58Fe, 3n)299120, E*=25-52 MeV; 244Pu(58Fe, 4n)298120, E*=35-60 MeV; 248Cm(54Cr, 3n)299120, E*=25-55 MeV; 248Cm(54Cr, 4n)298120, E*=34-60 MeV; 248Cm(54Cr, 5n)297120, E*=48-60 MeV; 248Cm(48Ca, 3n)293Lv, E*=32-60 MeV; 248Cm(48Ca, 4n)292Lv, E*=33-60 MeV; 248Cm(48Ca, 5n)291Lv, E*=42-60 MeV; 248Cm(54Cr, 3n)299120, E*=24-59 MeV; 248Cm(54Cr, 4n)298120, E*=34-60 MeV; 248Cm(54Cr, 5n)297120, E*=45-60 MeV; 249Cf(50Ti, 3n)297120, E*=28-60 MeV; 249Cf(50Ti, 4n)296120, E*=36-60 MeV; 249Cf(50Ti, 5n)297120, E*=49-60 MeV; calculated evaporation residue σ(E). 248Cm(54Cr, X), E*=21-60 MeV; 244Pu(58Fe, X), E*=24-60 MeV; 238U(64Ni, X), E*=28-60 MeV; calculated fusion σ(E), fusion probability, survival probability. 238U(48Ti, X), E(cm)=190-230 MeV; 232Th(52Cr, X), E(cm)=208-250 MeV; 248Cm(52Cr, X), E(cm)=238-260 MeV; calculated capture σ(E). Dinuclear system model (DNS) calculations. Comparison to available experimental data.

doi: 10.1103/PhysRevC.108.014604
Citations: PlumX Metrics


2023ZH41      Phys.Rev. C 108, 024602 (2023)

T.L.Zhao, X.J.Bao, H.F.Zhang

Exploring the optimal way to produce Z=100-106 neutron-rich nuclei

NUCLEAR REACTIONS 238U(16O, X), E(cm)=70-160 MeV; calculated capture σ(E). 248Cm(18O, 4n), E*=28-60 MeV;248Cm(18O, 5n), E*=40-60 MeV;248Cm(18O, 6n), E*=46-60 MeV;244Pu(22Ne, 5n), E*=40-56 MeV; calculated evaporation residue σ(E). 248Cm(238U, X)239Bk/240Bk/241Bk/242Bk/243Bk/244Bk/245Bk/246Bk/247Bk/248Bk/249Bk/250Bk/251Bk/252Bk/253Bk/254Bk/255Bk/256Bk/257Bk/258Bk/259Bk/260Bk/240Cf/241Cf/242Cf/243Cf/244Cf/245Cf/246Cf/247Cf/248Cf/249Cf/250Cf/251Cf/252Cf/253Cf/254Cf/255Cf/256Cf/257Cf/258Cf/259Cf/260Cf/261Cf/262Cf/263Cf/241Es/242Es/243Es/244Es/245Es/246Es/247Es/248Es/249Es/250Es/251Es/252Es/253Es/254Es/255Es/256Es/257Es/258Es/259Es/260Es/261Es/262Es/263Es/264Es/248Fm/249Fm/250Fm/251Fm/252Fm/253Fm/254Fm/255Fm/256Fm/257Fm/258Fm/259Fm/260Fm/261Fm/262Fm/263Fm/264Fm/265Fm/266Fm/267Fm/250Md/251Md/252Md/253Md/254Md/255Md/256Md/257Md/258Md/259Md/260Md/261Md/262Md/263Md/264Md/265Md/266Md, E(cm)=898.71 MeV; calculated primary and final fragments σ(E). 238U, 244Pu, 248Cm, 249Cf(22O, 2n), (22O, 3n), (22O, 4n), (22O, 5n), (22O, 6n), E*=24-60 MeV; calculated evaporation residue σ(E). 248Cm(238U, X)246Fm/247Fm/248Fm/249Fm/250Fm/251Fm/252Fm/253Fm/254Fm/255Fm/256Fm/257Fm/258Fm/259Fm/260Fm/261Fm/262Fm/263Fm/264Fm/265Fm/253No/254No/255No/256No/257No/258No/259No/260No/261No/262No/263No/264No/265No/266No/267No/258Rf/259Rf/260Rf/261Rf/262Rf/263Rf/264Rf/265Rf/266Rf/267Rf/268Rf/269Rf/265Sg/266Sg/267Sg/268Sg, E(cm)=898.71 MeV; calculated σ(E) of the multinucleon transfer reaction, fusion σ(E). Dinuclear system model (DNS) combined with GEMINI++ for calculating the evaporation residue cross section. Comparison to experimental data.

doi: 10.1103/PhysRevC.108.024602
Citations: PlumX Metrics


2022BA05      Phys.Rev. C 105, 024610 (2022)

X.Bao, S.Q.Guo, P.H.Chen

Production of new neutron-rich isotopes with 92 ≤ Z ≤ 100 in multinucleon transfer reactions

NUCLEAR REACTIONS 248Cm(86Kr, X), E(cm)=286.1 MeV;248Cm(129Xe, X), E(cm)=513.1; 248Cm(132Xe, X), E(cm)=525.3 MeV; 248Cm(136Xe, X), E(cm)=519.89 MeV; 244Pu(136Xe, X), E(cm)=536.15 MeV; 248Cm(238U, X), E(cm)=898.7 MeV; calculated particular isotopes production σ. Dinuclear system (DNS) model + GEMINI++ calculations. Comparison to experimental data.

doi: 10.1103/PhysRevC.105.024610
Citations: PlumX Metrics


2022BA33      Phys.Lett. B 833, 137307 (2022)

X.J.Bao

Optimal condition for the production of heavy and superheavy neutron-rich isotopes with multinucleon transfer reaction

NUCLEAR REACTIONS 208Pb(58Ni, X), E(cm)=269.77 MeV; 208Pb(64Ni, X), E(cm)=267.64 MeV; 248Cm(86Kr, X), (136Xe, X), (238U, X), E not given; 208Pb, 198Pt(238U, X), (92Kr, X), (136Xe, X), E not given; calculated target-like fragments (TLFs) σ in the framework of the improved DNS model combined with statistical GEMINI++ model. Comparison with available data.

doi: 10.1016/j.physletb.2022.137307
Citations: PlumX Metrics


2022CH42      Chin.Phys.C 46, 094102 (2022)

Z.Cheng, X.J.Bao

Possibilities of synthesizing new proton-rich nuclei with 40 ≤ Z ≤ 60 using multinucleon transfer reactions

NUCLEAR REACTIONS 130Te(64Ni, X), E(cm)=184.27 MeV; analyzed available data; deduced mass distributions of final fragments using the DNS model+GEMINI++.

doi: 10.1088/1674-1137/ac6ed3
Citations: PlumX Metrics


2022HE11      Chin.Phys.C 46, 054102 (2022)

C.He, Z.-M.Niu, X.-J.Bao, J.-Y.Guo

Research on α-decay for the superheavy nuclei with Z = 118-120

RADIOACTIVITY 269,271Sg, 270,271,272,273,274Bh, 273,275Hs, 274,275,276Mt, 278Mt, 277,279,281Ds, 278,279,280,281,282Rg, 281,283,285Cn, 282,283,284,285,286Nh, 285,286,287,288,289Fl, 287,288,289,290Mc, 290,291,292,293Lv, 293,294Ts, 294Og, 281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304118, 284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306119, 287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308120(α); calculated T1/2. Comparison with available data.

doi: 10.1088/1674-1137/ac4c3a
Citations: PlumX Metrics


2022MA45      Phys.Rev. C 106, 064316 (2022)

L.Ma, H.B.Yang, Z.Y.Zhang, J.C.Pei, M.H.Huang, M.M.Zhang, C.Y.Qiao, X.J.Bao, Y.L.Tian, C.L.Yang, Y.S.Wang, Z.Zhao, X.Y.Huang, S.Y.Xu, W.X.Huang, Z.Liu, X.H.Zhou, Z.G.Gan

Attempts to produce new americium isotopes near N=126

NUCLEAR REACTIONS 191,193Ir(40Ar, xn)231Am*/233Am*, E=190-204 MeV; measured reaction products, Eα, (recoils)α-α-α correlated events, using SHANS gas-filled recoil separator, 16 position-sensitive Si-strip detectors (PSSDs) for evaporation residues, and eight side silicon detectors (SSDs) for α particles at the HRIFL-Lanzhou facility. 226,227,228Am; no evidence found for the detection of these nuclides, with upper limits of cross sections determined for the production of the compound nuclei of 231Am and 233Am; discussed nonobservation of new americium isotopes in terms of reduced survival probabilities of compound nuclei 231Am and 233Am due to their low fission barriers at high excitations.

NUCLEAR STRUCTURE 226,227,228,229Am; calculated excitation functions for the production of these nuclides in 191,193Ir(40Ar, xn) using the statistical model code HIVAP. 230,231,232,233,234,235,236Am; evaluated shell correction energies and fission barriers from FRDM2012, KTUY2005, and WS2010. 226U, 227Np, 231,233Am; calculated fission barrier heights as functions of excitation energy and quadrupole deformation parameter β2 using microscopic finite-temperature Skyrme Hartree-Fock+BCS theory.

doi: 10.1103/PhysRevC.106.034316
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2022ZH47      Nucl.Phys. A1027, 122510 (2022)

T.L.Zhao, X.J.Bao, H.F.Zhang

Improvement of evaporation residual cross sections for superheavy nuclei using a neural network method

NUCLEAR REACTIONS 248Cm(18O, X), 242,244Pu(22Ne, X), 238U(26Mg, X), 249Cf(15N, X), 249Bk(16O, X), 248Cm(19F, X), 241Am(22Ne, X), 238U(30Si, X), 249Cf(18O, X), 248Cm(22Ne, X), 249Bk(22Ne, X), 248Cm(26Mg, X), 238U(36S, X), (34S, X), 226Ra(48Ca, X), 232Th(48Ca, X), 238U(48Ca, X), 237Np(48Ca, X), 239,240,242,244Pu(48Ca, X), 243Am(48Ca, X), 245,248Cm(48Ca, X), 249Bk(48Ca, X), 249Cf(48Ca, X)Rf/Db/Sg/Bh/Ds/Hs/Nh/Cn/Fl/Mc/Lv/Ts/Og, E not given; calculated evaporation residual cross section (ERCS) using the neural network method. Comparison with available data.

doi: 10.1016/j.nuclphysa.2022.122510
Citations: PlumX Metrics


2021BA38      Phys.Rev. C 104, 034604 (2021)

X.Bao

Possibilities for synthesis of new transfermium isotopes in multinucleon transfer reactions

NUCLEAR REACTIONS 238U(238U, X), E(cm)=892.5 MeV; 248Cm(238U, X), E(cm)=898.7 MeV; 248Cm(136Xe, X), E(cm)=519.9 MeV; 249Cf(136Xe, X), E(cm)=525.8 MeV; 249Cf(238U, X), (248Cm, X), (134Xe, X), E not given; analyzed experimental production σ of A=136-168 Np, Pu, Am, Cm, Bk, Es, Fm, Md, No, Lr, Rf, Db, and Sg nuclei. 249Cf(248Cm, X)261Md/262Md/263Md/261No/263No/264No/265No/263Lr/264Lr/265Lr/266Lr/264Rf/264Db/265Db/268Sg/270Sg, E(cm)=840-1000 MeV; calculated production σ(E). Improved dinuclear system (DNS) model combined with statistical model code GEMINI++, with and without the exclusion of pairing correction energy.

doi: 10.1103/PhysRevC.104.034604
Citations: PlumX Metrics


2021CH10      Phys.Rev. C 103, 024613 (2021)

Z.Cheng, X.Bao

Formation of heavy neutron-rich nuclei by 48Ca-induced multinucleon transfer reactions

NUCLEAR REACTIONS 238U(48Ca, X), E=195.0 MeV; 248Cm(48Ca, X), E=226.41 MeV; calculated transfer σ for production of Z=81-91 nuclei for 238U+48Ca reaction, and Z=84-95 nuclei for 248Cm+48Ca reaction in transfer of up to 12 protons from the target nuclei. 208Pb(136Xe, X), E=450.0 MeV; 238U(48Ca, X), E=195.0 MeV; calculated production σ for the production of Z=83-91 and Z=70-81 neutron-rich nuclei in multinucleon transfer reactions. Improved dinuclear system model+GEMINI++. Comparison with available experimental data.

doi: 10.1103/PhysRevC.103.024613
Citations: PlumX Metrics


2021CH27      Phys.Rev. C 103, 064613 (2021)

Z.Cheng, X.Bao

Influence of entrance channel on multinucleon transfer cross sections

NUCLEAR REACTIONS 208Pb(58Ni, X), E(cm)=269.77 MeV; 208Pb(64Ni, X), E(cm)=267.64 MeV; 208Pb(64Ni, X), E(cm)=244.40 MeV; 198Pt(58Ni, X), (64Ni, X), (70Ni, X), E not given; 208Pb(86Kr, X), (91Kr, X), (102Kr, X), E not given; calculated production cross sections of target-like fragments (TLF) by the removal of 1-18 protons and by addition of 0-7 protons, maximum cross sections of multinucleon transfer (MNT) products as a function of their proton number Z, mass distributions of final products. Improved dinuclear system (DNS) model + GEMINI++. Comparison with experimental data.

doi: 10.1103/PhysRevC.103.064613
Citations: PlumX Metrics


2021GU08      Phys.Rev. C 103, 034613 (2021)

S.Guo, X.Bao, N.Wang

Selection of the optimal condition for the production of light neutron-rich isotopes in multinucleon transfer reactions

NUCLEAR REACTIONS 130Te(64Ni, X), E(cm)=184.27 MeV; 208Pb(64Ni, X), E(cm)=267.64 MeV; 238U(64Ni, X), E(cm)=307.40 MeV; 197Au(40Ar, X), E(cm)=180.37 MeV; 208Pb(40Ar, X), E(cm)=214.70 MeV; 238U(40Ar, X), E(cm)=226.87 MeV; calculated production cross sections of projectile-like fragments in multi-nucleon transfer (MNT) reactions. Dinuclear system model (DNS) with dynamic deformation. Comparison with experimental production cross sections.

doi: 10.1103/PhysRevC.103.034613
Citations: PlumX Metrics


2021HU29      Chin.Phys.C 45, 114104 (2021)

D.-Y.Huo, X.Yang, C.Han, C.-Q.Liu, K.Wu, X.-Y.Liu, C.Huang, Q.Xie, Y.He, X.J.Bao

Evaluation of pre-neutron-emission mass distributions of neutron-induced typical actinide fission using scission point model

NUCLEAR REACTIONS 235,238U, 237Np, 239Pu, 232Th(n, F), E=0.5, 1.08, 2.02, 3.51, 5.04, 15.50 MeV; analyzed available data; calculated pre-neutron-emission mass distributions.

doi: 10.1088/1674-1137/ac2298
Citations: PlumX Metrics


2021MA17      Chin.Phys.C 45, 024105 (2021)

N.-N.Ma, X.-J.Bao, H.-F.Zhang

Diffuseness effect and radial basis function network for optimizing α decay calculations

RADIOACTIVITY 256Rf, 258Rf, 263Rf, 257,258,259Db, 263Db, 259,260,261,262Sg, 269Sg, 271Sg, 260Bh, 261Bh, 264Bh, 266,267Bh, 270Bh, 272Bh, 274Bh, 264,265,266,267Hs, 270Hs, 273Hs, 268Mt, 274,275,276Mt, 278Mt, 267Ds, 269,270,271Ds, 273Ds, 277Ds, 281Ds, 272Rg, 274Rg, 278,279,280Rg, 281Cn, 285Cn, 278Nh, 282,283,284,285,286Nh, 286,287,288,289Fl, 287,288,289,290Mc, 290,291,292,293Lv, 293,294Ts, 294Og, 252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288Rf, 272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310Fl, 286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316119, 292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318120(α); calculated T1/2. Comparison with available data.

doi: 10.1088/1674-1137/abcc5c
Citations: PlumX Metrics


2021WA26      Nucl.Phys. A1011, 122196 (2021)

X.Wang, X.Bao

Multinucleon transfer reactions in the nearly symmetric reaction systems 204Hg+208Pb and 204Hg+198Pt

NUCLEAR REACTIONS 208Pb, 198Pt(204Hg, X), E(cm)=577.05, 619 MeV; calculated transfer σ using the improved dinuclear system (DNS) model. Comparison with available data.

doi: 10.1016/j.nuclphysa.2021.122196
Citations: PlumX Metrics


2021YA06      Nucl.Phys. A1008, 122137 (2021)

H.Yang, Z.Zhao, X.Li, H.Yang, X.Bao

Predictions for the α decay of proton-rich nuclei in the range of 86 ≤ Z ≤ 98

RADIOACTIVITY 186,188,190,192Rn, 191,195Fr, 193,195,197,199Ra, 195,199,203Ac, 199,201,203,205,207,209,211,213,215,217Th, 201,205,209,213Pa, 203,205,207,209,211,213,217U, 207,211,215,219,223Np, 210,212,214,216,218,220,222,224,226Pu, 213,217,221,225,231,237Am, 216,218,220,222,224,226,228,230,232Cm, 219,223,227,231,235,239Bk, 221,223,225,227,229,231,233,235Cf, 187,189,191Rn, 189,193Fr, 192,194,196,198,200Ra, 197,201Ac, 198,200,202,204,206,208,210,212,214,216,219Th, 203,207,211,215,219Pa, 204,206,208,210,212,214,220U, 209,213,217,221Np, 209,211,213,215,217,219,221,223,225,227Pu, 215,219,223,227,233Am, 215,217,219,221,223,225,227,229,231,235Cm, 221,225,229,233,237,241Bk, 222,224,226,228,230,232,234,236Cf(α); calculated T1/2 using Universal Decay Law (UDL) and MUDL.

doi: 10.1016/j.nuclphysa.2021.122137
Citations: PlumX Metrics


2021YA21      Nucl.Phys. A1014, 122250 (2021)

H.Yang, Z.Zhao, X.Li, Y.Cai, X.Bao

Predictions for the α decay of superheavy nuclei of Z=119-120 isotopes

RADIOACTIVITY 284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316119, 287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316120(α); calculated Q-values, T1/2 using unified fission model (UFM) with considering the preformation factor.

doi: 10.1016/j.nuclphysa.2021.122250
Citations: PlumX Metrics


2020BA55      Phys.Rev. C 102, 054613 (2020)

X.Bao

Role of neutron excess in the projectile for the production of heavy neutron-rich nuclei

NUCLEAR REACTIONS 208Pb(40Ca, xp), E(cm)=197.09 MeV; 208Pb(40Ar, xp), E(cm)=214.71 MeV; 208Pb(58Ni, xp), E(cm)=256.80, 270.56 MeV; 208Pb(64Ni, xp), E(cm)=267.64 MeV; 208Pb(136Xe, xp), E(cm)=450.00 MeV; calculated mean interaction times, proton transfer σ as function of neutron number using dinuclear system (DNS) model + GEMINI++ for the multinucleon transfer reactions. Relevance to synthesis of new heavy neutron-rich nuclei.

doi: 10.1103/PhysRevC.102.054613
Citations: PlumX Metrics


2020BA58      Phys.Rev. C 102, 064604 (2020)

X.J.Bao

Influence of the incident energy of the projectile and of different targets on the production of neutron-rich nuclei

NUCLEAR REACTIONS 198Pt, 208Pb(136Xe, X), E(cm)=451.0 MeV; calculated mass distributions and transfer cross sections in multinucleon transfer reactions involving removal or addition of protons, and production cross sections for neutron-deficient nuclei and moderately neutron-rich nuclei. Dinuclear system (DNS) model and statistical model code GEMINI++. Comparison with experimental data.

doi: 10.1103/PhysRevC.102.064604
Citations: PlumX Metrics


2020LI27      Chin.Phys.C 44, 094106 (2020)

H.-M.Liu, Y.-T.Zou, X.Pan, X.-J.Bao, X.-H.Li

Systematic study of the α decay preformation factors of the nuclei around the Z = 82, N = 126 shell closures within the generalized liquid drop model

RADIOACTIVITY 186,188,190,192,194Po, 196,198,200,202,204,206,208Po, 200,202,204,206,208,210,212Rn, 204Ra, 208Ra, 212Th, 214Th, 216U, 178,180Pb, 184,186,188,190,192,194Pb, 210Pb, 212,214,216,218Po, 214,216,218,220Rn, 216Ra, 218Ra, 216,218,220Th, 218U, 195,197,199,201,203,205,207Po, 197,199,201,203,205,207,209,211At, 195,197Rn, 203Rn, 207,209Rn, 199,201,203,205,207,209,211,213Fr, 203Ra, 209Ra, 205,207Ac, 211Ac, 213,215Pa, 177,179Tl, 213,215Po, 219Po, 213,215,217,219At, 215,217Rn, 215,217,219Fr, 217Ra, 215,217Ac, 219Th, 219Pa, 221Pa, 221U, 209Bi, 189Po, 203Po, 205,207,209,211,213Ra, 215Th, 187,189Pb, 213Bi, 213Rn, 219,221Rn, 215Ra, 219Ra, 217Th, 192At, 200,202,204,206,208At, 200Fr, 204,206,208Fr, 206Ac, 214,216,218At, 216,218Fr, 218Ac, 220Pa, 186Bi, 190,192,194Bi, 210At, 210,212Fr, 212Pa, 210,212,214Bi, 212At, 214Fr, 216Ac(α); calculated T1/2. Comparison with available data.

doi: 10.1088/1674-1137/44/9/094106
Citations: PlumX Metrics


2019BA19      Nucl.Phys. A986, 60 (2019)

X.Bao

Production of light neutron-rich nuclei in multinucleon transfer reactions

NUCLEAR REACTIONS 208Pb(40Ca, x), E(cm)=197.09, 208.84 MeV;208Pb(48Ca, x), E(cm)=193.74 MeV;208Pb(58Ni, x), E(cm)=256.80MeV;208Pb(64Ni, x), E=267.64 MeV;208Pb(70Ni, x), E(cm)=262.65 MeV; 238U(32S, x), (36S, x), E not given; calculated production σ (estimated production σ of unknown neutron-rich nuclei for reactions on 238U) for multinucleon transfer reactions to nuclei of Z=1-40 using improved DNS model with deformations. Some calculations compared with published GRAZING model ones.

doi: 10.1016/j.nuclphysa.2019.02.009
Citations: PlumX Metrics


2019BA20      Chin.Phys.C 43, 054105 (2019)

X.-J.Bao

Possibilities for synthesis of new neutron-deficient isotopes of superheavy nuclei

NUCLEAR REACTIONS 252Cf(36S, X), 248Cm(40Ar, X), 244Pu(44Ca, X), E(cm)<180 MeV; calculated fusion and capture σ.

doi: 10.1088/1674-1137/43/5/054105
Citations: PlumX Metrics


2019BA30      Phys.Rev. C 100, 011601 (2019)

X.J.Bao

Possibility to produce 293, 295, 296Og in the reactions 48Ca+249, 250, 251Cf

NUCLEAR REACTIONS 238U, 239,244Pu, 245,248Cm, 249,250,251Cf(48Ca, xn)282Cn/283Cn/283Fl/284Fl/288Fl/289Fl/289Lv/290Lv/292Lv/293Lv/293Og/294Og/295Og/296Og, E(cm)=180-220 MeV; calculated capture σ(E), evaporation residue σ(E), fusion probability, and potential energy surfaces in 244Pu target using dinuclear system model by taking into account influence of polarization effects and temperature effects on the deformations of projectile-like and target-like densities. Comparison with experimental data.

doi: 10.1103/PhysRevC.100.011601
Citations: PlumX Metrics


2019GU31      Phys.Rev. C 100, 054616 (2019)

S.Q.Guo, X.J.Bao, H.F.Zhang, J.Q.Li, N.Wang

Effect of dynamical deformation on the production distribution in multinucleon transfer reactions

NUCLEAR REACTIONS 208Pb(136Xe, X), E(cm)=526, 617, 450 MeV; 198Pt(136Xe, X), E(cm)=643; calculated potential energy surfaces (PES), σ for mass distribution of primary products, cross sections of target-like fragments with Z=78-86 and Z=50-58, production cross sections of the N=126 isotones as a function of the atomic number; deduced influences of dynamical deformation on the PES and the mass distribution of the multi-nucleon transfer (MNT) reactions. Calculations based on the framework of the dinuclear system concept. Comparison with experimental data.

doi: 10.1103/PhysRevC.100.054616
Citations: PlumX Metrics


2019MA25      Chin.Phys.C 43, 044105 (2019)

N.-N.Ma, H.-F.Zhang, X.-Ju.Bao, H.-F.Zhang

Basic characteristics of nuclear landscape by improved Weizsacker-Skyrme-type nuclear mass model

NUCLEAR STRUCTURE Z=8-128; calculated binding energies, quadrupole deformations, One-neutron and one-proton separation energies, α and β decay Q-values, pairing gaps. Comparison with Atomic Mass Evaluation (AME2016).

doi: 10.1088/1674-1137/43/4/044105
Citations: PlumX Metrics


2019RU05      J.Phys.(London) G46, 125108 (2019)

X.H.Ruan, J.T.Hu, T.Rong, X.Bao

Yields distribution of induced fission with improved scission point model

NUCLEAR REACTIONS 230,231,232,233,234U, 206,207,208,209,210,211,212Fr, 214,215,216,217,218,219,220,221,222,223,224,225,226Ac, 220,221,222,223,224,225,226,227,228,229Th(n, F), E not given; calculated charge distributions using an improved scission point model. Comparison with available data.

doi: 10.1088/1361-6471/ab4820
Citations: PlumX Metrics


2018BA09      Phys.Rev. C 97, 024617 (2018)

X.Bao, S.Q.Guo, H.F.Zhang, J.Q.Li

Dynamics of complete and incomplete fusion in heavy ion collisions

NUCLEAR REACTIONS 248Cm(48Ca, X), E(296Lv*)=33 MeV; 238U(48Ca, X), E(286Cn*)=38 MeV; 244Pu(48Ca, X), E(292Fl*)=42 MeV; calculated mass yield of the quasifission products as function of the mass number of the fragment for the hot fusion reaction. 238U(64Ni, X), E(cm)=307.4 MeV; 248Cm(48Ca, X), E(cm)=192-248 MeV; calculated σ(E) for transfer of protons and multinucleons, and compared with available experimental data. 248Cm(48Ca, X), E(cm)=215.93 MeV; calculated production cross sections for light neutron rich nuclei. 238U, 244Pu, 248Cm(48Ca, xn), E(compound nucleus)=25-60 MeV; calculated evaporation residue σ(E) for x=3n, 4n and 5n channels, and compared with experimental data. Dinuclear system (DNS) model with new four-variable master equation (ME). Relevance to formation of superheavy nuclei (SHNs).

doi: 10.1103/PhysRevC.97.024617
Citations: PlumX Metrics


2018GE06      Phys.Rev. C 98, 034312 (2018)

Z.Ge, C.Li, J.Li, G.Zhang, B.Li, X.Xu, C.A.T.Sokhna, X.Bao, H.Zhang, Yu.S.Tsyganov, F.-S.Zhang

Effect of shell corrections on the α-decay properties of 280-305Fl isotopes

RADIOACTIVITY 280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305Fl(α), (SF); calculated Q(α) and half-lives using GLDM, the GLDM with shell correction, the UFM and the Royer's formula, and shell correction energies of the even-even nuclei. 285,286,287,288,289Fl, 281,283,285Cn, 277,279,281Ds, 273,275Hs, 269,271Sg(α); calculated T1/2 using Royer's, UDL, UFM, and GLDM formulas, and by input of experimental Q(α) values. Comparison with experimental values.

doi: 10.1103/PhysRevC.98.034312
Citations: PlumX Metrics


2018ZH03      J.Phys.(London) G45, 025106 (2018)

T.L.Zhao, X.J.Bao, S.Q.Guo

The predictive accuracy of analytical formulas and semiclassical approaches for α decay half-lives of superheavy nuclei

RADIOACTIVITY 255,257,259,261Rf, 256,257,258,259,260,261,262,263Db, 259,260,261,263,265,266,271Sg, 261,262,264,266,267,272,274Bh, 264,265,266,267,268,269,270,275Hs, 266,268,270,275,276,278Mt, 267,269,270,271,273,279,281Ds, 272,274,279,280,282Rg, 277,283,285Cn, 278,283,284,285,286Nh, 286,287,288,289Fl, 287,288,288,289,290Mc, 290,291,292,293Lv, 293,294Ts, 294Og(α); calculated T1/2. Comparison with experimental data.

doi: 10.1088/1361-6471/aa9fbe
Citations: PlumX Metrics


2018ZH17      Phys.Rev. C 97, 044614 (2018)

L.Zhu, P.-W.Wen, C.-J.Lin, X.-J.Bao, J.Su, C.Li, C.-C.Guo

Shell effects in a multinucleon transfer process

NUCLEAR REACTIONS 198Pt(136Xe, X), E(cm)=643, 420 MeV; 208Pb(136Xe, X), E(cm)=450, 526 MeV; 186W(136Xe, X), E(cm)=408 MeV; 186W(150Nd, X), E(cm)=451 MeV; calculated potential energy surfaces, total kinetic energy losses (TKEL), and production σ with and without shell corrections using dinuclear system (DNS) model; deduced shell effects on producing trans-target nuclei. Comparison with experimental values.

doi: 10.1103/PhysRevC.97.044614
Citations: PlumX Metrics


2018ZH58      Phys.Rev. C 98, 064307 (2018)

T.L.Zhao, X.J.Bao

Predictions for decay modes for superheavy nuclei Z=118 - 124

RADIOACTIVITY 294Og, 293,294Ts, 290,291,292,293Lv, 287,288,289,290Mc, 285,286,287,288,289Fl, 282,283,284,285,286Nh, 281,282,283,284,285Cn, 278,279,280,281,282Rg, 277,279,281Ds, 274,275,276,277,278Mt, 273,275,277Hs, 270,271,272,274Bh, 269,271Sg, 266,267,268,270Db, 265,267Rf, 301,302,303,304,305,306,307,308,309,310,311,312124, 300,301,302,303,304,305,306,307,308,309,310,311123, 295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310122, 294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309121, 289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308120, 288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307119, 283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306Og, 288,289,290,291,292,293,294,295,296,297,298,299Ts, 285,286,287,288,289,290,291,292,293,294,295,296Lv, 284,285,286,287,288,289,290,291,292,293,294,295Mc, 281,282,283,284,285,286,287,288,289,290,291,292Fl, 280,281,282,283,284,285,286,287,288,289,290,291Nh, 277,278,279,280,281,282,283,284,285,286,287,288Cn, 276,277,278,279,280,281,282,283,284,285,286,287Rg, 273,274,275,276,277,278,279,280,281,282,283,284Ds, 272,273,274,275,276,277,278,279,280,281,282,283Mt, 269,270,271,272,273,274,275,276,277,278,279,280Hs, 268,269,270,271,272,273,274,275,276,277,278,279Bh, 265,266,267,268,269,270,271,272,273,274,275,276Sg, 264,265,266,267,268,269,270,271,272,273,274Db, 261,262,263,264,265,266,267,268,269,270,271,272Rf(α), (SF); calculated half-lives, and (α/SF) decay modes using a generalized liquid drop model (GLDM) with universal decay law (UDL) for α decay, and generalized Swiatecki's formulas (Bao, KPS and NAVK) for SF decay. Comparison with available experimental values.

doi: 10.1103/PhysRevC.98.064307
Citations: PlumX Metrics


2017BA07      J.Phys.(London) G44, 045105 (2017)

X.J.Bao, S.Q.Guo, H.F.Zhang, J.Q.Li

Influence of proton shell closure on the evaporation residue cross sections of superheavy nuclei

NUCLEAR REACTIONS 249Cf(48Ca, xn)296Og, 248Cf(48Ca, xn)295Og, 245Cf(48Ca, xn)292Og, 249Bk(48Ca, xn)296Ts, 244Pu(48Ca, xn)291Fl, 243Am(48Ca, xn)290Mc, 237Np(48Ca, xn)284Nh, 238U(48Ca, xn)285Cn, E<50 MeV; calculated σ. Comparison with available data.

doi: 10.1088/1361-6471/aa53e8
Citations: PlumX Metrics


2017BA08      Phys.Rev. C 95, 034323 (2017)

X.Bao, S.Q.Guo, H.F.Zhang, J.Q.Li

Theoretical predictions for the decay chain of the nuclei 293, 295-297Og

RADIOACTIVITY 294Og, 293,294Ts, 290,291,292,293Lv, 287,288,289,290Mc, 286,287,288,289Fl, 282,283,284,285,286Nh, 281,283,285Cn, 278,279,280,281,282Rg, 277,279,281Ds, 274,275,276,278Mt, 273,275Hs, 270,271,272,274Bh, 269,271Sg(α); calculated Q(α) and T1/2. Comparison with other theoretical calculations, and experimental data. 293,295,296,297Og, 289Lv(α); calculated T1/2 for α decay using Q(α) values from other theoretical calculations. Generalized liquid drop model (GLDM) and Royer's analytical formula used in the calculations.

doi: 10.1103/PhysRevC.95.034323
Citations: PlumX Metrics


2017BA27      Phys.Rev. C 96, 024610 (2017)

X.Bao, S.Q.Guo, H.F.Zhang, J.Q.Li

Influence of entrance channel on production cross sections of superheavy nuclei

NUCLEAR REACTIONS 248Cm, 249Cf(18O, 3n), (18O, 4n), (18O, 5n), 241Am, 242,244Pu, 248Cm, 249Bk(22Ne, 3n), (22Ne, 4n), (22Ne, 5n), 238U, 248Cm(26Mg, 3n), (26Mg, 4n), (26Mg, 5n), 249Cf(15N, 3n), (15N, 4n), (15N, 5n), 249Bk(16O, 3n), (16O, 4n), (16O, 5n), 249Bk, 249Cf(18O, 3n), (18O, 4n), (18O, 5n), 248Cm(19F, 3n), (19F, 4n), (19F, 5n), 238U(30Si, 3n), (30Si, 4n), (30Si, 5n), (36S, 3n), (36S, 4n), (36S, 5n), (34S, 3n), (34S, 4n), (34S, 5n), 226Ra, 232Th, 238U, 237Np, 239,240,242,244Pu, 243Am, 245,248Cm, 249Bk, 249Cf(48Ca, 3n), (48Ca, 4n), (48Ca, 5n), E(*)=20-70 MeV; calculated evaporation residue cross sections (ERCs) to produce superheavy nuclei (SHN)using dinuclear system (DNS) model. 259,260,261,262,263Rf, 258,259,260,261,262,263,264Db, 262,263,264,265,266,267Sg, 266,267,268Bh, 267,268,269,270,271Hs, 275,276,277Ds, 282,283Cn, 281,282Nh, 283,284,285,286,287,288,289Fl, 286,287,288Mc, 288,289,290,291,292,293Lv, 292,293,294Ts, 293,294Og; calculated production σ, and compared with available experimental data.

doi: 10.1103/PhysRevC.96.024610
Citations: PlumX Metrics


2017LI19      Chin.Phys.C 41, 074106 (2017)

J.-H.Liu, S.-Q.Guo, X.-J.Bao, H.-F.Zhang

Predictions of decay modes for the superheavy nuclei most suitable for synthesis

RADIOACTIVITY 294Og, 294,293Ts, 293,292,291,290Lv, 290,289,288,287Mc, 289,288,287,286,285Fl, 286,285,284,283,282Nh, 285,284,283,282,281Cn(SF), 298120, 294,290Og, 290,286,294,289,286,285Lv, 286,282,290,285,282,281Fl, 282,278,277Cn, 291,287Ts, 287,283Mc, 279Nh, 275Rg, 271Mt, 267Bh(SF), (α), 284,283Mc, 280,279Nh, 276,275,276,273Rg, 272,271,272,269,265Mt, 268,267,268,265,261Bh, 264Db, 260Lr, 283,282Fl, 279,278,280,275,274Cn, 275,272,270,268Ds, 271,268Hs, 280Nh, 264Hs(SF), (α); calculated T1/2. Comparison with experimental data.

doi: 10.1088/1674-1137/41/7/074106
Citations: PlumX Metrics


2017MA48      Phys.Rev. C 96, 024302 (2017)

N.N.Ma, H.F.Zhang, P.Yin, X.Ju.Bao, H.F.Zhang

Weizsacker-Skyrme-type nuclear mass formula incorporating two combinatorial radial basis function prescriptions and their application

NUCLEAR STRUCTURE Z=10-118, N=10-180; calculated binding energies, odd-even staggering (OES) of nuclear binding energies, S(n), S(2n), S(p), S(2p), Q(α), Q(β-), Q(β+), Q(EC) of 2267 nuclei using WS-LZ, WS-LZ1, and WS-LZ2 mass formulas, and compared with experimental values. Z=8, A=26-28; Z=9, A=27-31; Z=10, A=30-34; Z=11, A=33-37; Z=12, A=35-40; Z=13, A=21, 22, 38-43; Z=14, A=22, 23, 40-45; Z=15, A=24-26, 42-47; Z=16, A=26-28, 45-49; Z=17, A=28-30, 44, 46-51; Z=18, A=30, 31, 48-53; Z=19, A=32-34, 52-56; Z=20, A=34, 35, 53-58; Z=21, A=36-38, 53-61; Z=22, A=38-40, 55, 57-63; Z=23, A=40-42, 44, 56, 57, 59-66; Z=24, A=42-44, 58-60, 63-68; Z=25, A=44-46, 48, 62, 67-71; Z=26, A=45-48, 67-74; Z=27, A=47-49, 52, 69-76; Z=28, A=48-52, 74-79; Z=29, A=52-56, 77-82; Z=30, A=54-57, 82-85; Z=31, A=56-60, 84-87; Z=32, A=58-62, 86-90; Z=33, A=60-64, 88-92; Z=34, A=64-66, 90-95; Z=35, A=67, 68, 93-98; Z=36, A=69, 70, 98-101; Z=37, A=71-73, 100-103; Z=38, A=73-75, 103-107; Z=39, A=76-79, 104-109; Z=40, A=78-82, 106-112; Z=41, A=81-84, 109-115; Z=42, A=83, 84, 112-117; Z=43, A=85, 86, 114-120; Z=44, A=87-89, 117-124; Z=45, A=89-91, 120-126; Z=46, A=91-93, 123-128; Z=47, A=93-95, 124-130; Z=48, A=95-97, 129-133; Z=49, A=97-101, 128, 133-135; Z=50, A=99-101, 136-138; Z=51, A=103, 137-140; Z=52, A=105, 141-143; Z=53, A=107, 114, 140-145; Z=54, A=109, 147, 148; Z=55, A=115, 116, 148-152; Z=56, A=115-120, 149-153; Z=57, A=116-123, 149-155; Z=58, A=119-125, 152-157; Z=59, A=121-127, 154, 156-159; Z=60, A=124-129, 156, 158-161; Z=61, A=126-132, 160-163; Z=62, A=128-135, 162-165; Z=63, A=130-137, 164-167; Z=64, A=133-139, 143, 164-169; Z=65, A=135-140, 142, 165, 167-171; Z=66, A=138-142, 169-173; Z=67, A=140-143, 171-175; Z=68, A=142-145, 173-177; Z=69, A=144-146, 149, 150, 177-179; Z=70, A=148-153, 179-181; Z=71, A=150-154, 181-185; Z=72, A=153-157, 187-189; Z=73, A=155-158, 178, 189-192; Z=74, A=157-161, 192-194; Z=75, A=159-162, 167, 194-198; Z=76, A=161-165, 197-202; Z=77, A=164-166, 170, 198, 200-204; Z=78, A=166-169, 203-206; Z=79, A=169, 170, 174, 204-210; Z=80, A=171-173, 209-216; Z=81, A=178, 190, 212, 214-218; Z=82, A=215-220; Z=83, A=185, 194, 219-224; Z=84, A=223-227; Z=85, A=198, 225-229; Z=86, A=230, 231; Z=87, A=202, 232, 233; Z=88, A=201, 235; Z=89, A=206, 237; Z=90, A=238, 239; Z=91, A=220, 222, 239-241; Z=92, A=217, 220-222, 241-243; Z=93, A=219-224, 226, 232, 242-245; Z=94, A=247; Z=95, A=230-234, 236, 237, 246-249; Z=96, A=232, 235, 252; Z=97, A=234-242, 248, 252-254; Z=98, A=238, 239, 241, 243, 255, 256; Z=99, A=239-246, 248-250, 256-258; Z=100, A=241-245, 247, 258-260; Z=101, A=245-250, 252-254, 256, 259-262; Z=102, A=248-251, 258-264; Z=103, A=251-254, 257-266; Z=104, A=253-255, 259, 260, 262-268; Z=105, A=255-258, 260-270; Z=106, A=258, 259, 263-273; Z=107, A=260-275; Z=108, A=263, 267-273; Z=109, A=265-279; Z=110, A=267, 268, 271-281; Z=111, A=272-283; Z=112, A=276-285; Z=113, A=278-287; Z=114, A=285-289; Z=115, A=287-291; Z=116, A=289-293; Z=117, A=291-294; Z=118, A=293-295; calculated binding energies, Q(α), Q(β-), Q(β+), Q(EC) based on the WS-LZ2 mass formula for 988 nuclei. Weizsacker-Skyrme (WS)-type nuclear mass formulas.

doi: 10.1103/PhysRevC.96.024302
Citations: PlumX Metrics


2016BA20      Phys.Rev. C 93, 044615 (2016)

X.J.Bao, Y.Gao, J.Q.Li, H.F.Zhang

Possibilities for synthesis of new isotopes of superheavy nuclei in cold fusion reactions

NUCLEAR REACTIONS 209Bi(54Cr, n)262Bh, 208Pb(56Fe, n)263Hs, 208Pb(58Fe, n)265Hs, 209Bi(58Fe, n)266Mt, 208Pb(62Ni, n)269Ds, 207Pb(64Ni, n)270Ds, 208Pb(64Ni, n)271Ds, 209Bi(64Ni, n)272Rg, 208Pb(68Zn, n)275Cn, 208Pb(70Zn, n)277Cn, 209Bi(70Zn, n)278Nh, E not given; calculated evaporation residue cross section (ERCS) for cold fusion reactions and compared with experimental data. 207Pb(58Fe, n), (64Ni, n), (70Zn, n), 208Pb, 209Bi(56Fe, n), (58Fe, n), (59Fe, n), (60Fe, n), (61Fe, n), (58Ni, n), (59Ni, n), (60Ni, n), (61Ni, n), (62Ni, n), (64Ni, n), (65Ni, n), 208Pb(66Zn, n), (67Zn, n), (68Zn, n), (70Zn, n), (71Zn, n), E not given; calculated evaporation residue cross section (ERCS) for cold fusion reactions for production A=262-278, Z=108-112 superheavy nuclides (SHN), isospin dependence. 208Pb(58Mn, n), (61Fe, n), (58Co, n), (65Ni, n), (66Cu, n), (74Ga, n), (78As, n), (85Se, n), (89Br, n), (91Kr, n), 209Bi(66Cu, n), (80Ga, n), E not given; calculated evaporation residue cross section (ERCS) for cold fusion reactions for production of Z=107-118, A=265-298 and compared with other theoretical calculations. 136Xe(136Xe, n)271Hs, E not given; calculated cross section. Dinuclear system (DNS) model via cold fusion reactions.

doi: 10.1103/PhysRevC.93.044615
Citations: PlumX Metrics


2015BA03      Phys.Rev. C 91, 011603 (2015)

X.J.Bao, Y.Gao, J.Q.Li, H.F.Zhang

Influence of the nuclear dynamical deformation on production cross sections of superheavy nuclei

NUCLEAR REACTIONS 238U, 237Np, 242,244Pu, 245,248Cm, 249Bk, 249,251Cf, 252,254Es(48Ca, 3n), (48Ca, 4n), (48Ca, 5n), at E(compound nucleus)=20-60 MeV; calculated evaporation residue cross sections as function of the excitation energy of the compound nucleus. Z=119, 120; predicted production σ. Calculations based on Dinuclear system with deformations of the two nuclei described by a Fokker-Planck equation. Comparison with experimental data.

doi: 10.1103/PhysRevC.91.011603
Citations: PlumX Metrics


2015BA19      Phys.Rev. C 91, 064612 (2015)

X.J.Bao, Y.Gao, J.Q.Li, H.F.Zhang

Theoretical study of the synthesis of superheavy nuclei using radioactive beams

NUCLEAR REACTIONS 244Pu(34S, X), (48Ca, X), E not given; calculated contour plot of driving potential as function of neutron and proton numbers of fragment. 154Sm(40Ca, X)194Pb*, E(*)=56-75 MeV; 154Sm(48Ca, X)202Pb*, E(*)=49-95 MeV; 182W(32S, X)214Th*, E(*)=56-136 MeV; 208Pb(19F, X)227Pa*, E(*)=51-124 MeV; 208Pb(24Mg, X)232Pu*, E(*)=52-114 MeV; 154Sm(40Ca, X)194Pb*, E(*)=56-75 MeV; 208Pb(28Si, X)236Cm*, E(*)=50-138 MeV; 208Pb(32S, X)240Cf*, E(*)=66-111 MeV; 238U(36S, X)274Hs*, E(*)=36-56 MeV; 248Cm(26Mg, X)274Hs*, E(*)=37-64 MeV; calculated fusion probability and compared with experimental values. 249Bk, 252Cf(14N, 3n), (14N, 4n), (14N, 5n), 249Bk(19F, 3n), (19F, 4n), (19F, 5n), 246Cm, 249Bk, 250Cf(30Si, 3n), (30Si, 4n), (30Si, 5n), 252Cf, 253Es(22Ne, 3n), (22Ne, 4n), (22Ne, 5n), 253Es(18O, 3n), (18O, 4n), (18O, 5n), 238U, 237Np, 242,244Pu, 243Am, 245,248Cm, 249Cf, 249Bk(48Ca, 3n), (48Ca, 4n), (48Ca, 5n), 237Np, 244Pu, 248Cm, 249Bk, 252Cf, 253Es(24Na, 4n), (24Na, 5n), 252Cf(21O, 4n), (21O, 5n), 238U, 244Pu(42K, 4n), (42K, 5n), 237Np, 249Bk(43K, 4n), (43K, 5n), 248Cm(46Ar, 4n), (46Ar, 5n), 248Cm, 252Cf, 253Es(46K, 4n), (46K, 5n), E not given; calculated formation σ for evaporation residues and compared with available experimental values and previous calculations. Dinuclear system (DNS) model for the formation of Z=108-118 superheavy (SHE) compound nuclei.

doi: 10.1103/PhysRevC.91.064612
Citations: PlumX Metrics


2015BA24      J.Phys.(London) G42, 085101 (2015)

X.J.Bao, S.Q.Guo, H.F.Zhang, Y.Z.Xing, J.M.Dong, J.Q.Li

Competition between α-decay and spontaneous fission for superheavy nuclei

RADIOACTIVITY 232Th, 234,236,238U, 236,238,240,242,244Pu, 240,242,244,246,248,250Cm, 242,244,246,248,250,252,254Cf, 246,248Fm, 256,258,260Rf, 264,266,270Hs, 270Ds, 284Cn, 286,288Fl, 290,292Lv, 294Og, 235U, 239Pu, 243,245Cm, 237,249Cf, 255,257,259Fm, 253,255,259Rf, 293,294Ts, 287,289,290Mc, 282,283,285,286Nh, 275,278Mt, 271,274Bh, 291,293Lv, 287,289Fl, 283,285Cn, 278,279,280,281,282Rg, 279,281Ds, 274,275,276Mt, 275Hs, 270,272Bh, 266,267,268,270Db(α); calculated T1/2. Comparison with experimental data.

doi: 10.1088/0954-3899/42/8/085101
Citations: PlumX Metrics


2015BA30      Phys.Rev. C 92, 014601 (2015)

X.J.Bao, Y.Gao, J.Q.Li, H.F.Zhang

Influence of nuclear basic data on the calculation of production cross sections of superheavy nuclei

NUCLEAR REACTIONS 237Np, 238U, 242,244Pu, 243Am, 245,248Cm, 249Cf, 249Bk(48Ca, 3n), (48Ca, 4n), E not given; calculated survival probabilities of superheavy nuclei (SHN) as function of mass number of compound nucleus, and compared with experimental cross sections. 243Am(48Ca, 3n), (48Ca, 4n), (48Ca, 5n), E*(CN)=20-60 MeV; calculated capture cross sections, fusion probabilities, and survival probabilities, evaporation residue cross sections as function of excitation energy leading to nuclei with Z=112-118. 249Cf(50Ti, 3n), (50Ti, 4n), (50Ti, 5n), E*=20-60 MeV; 248Cm(54Cr, 3n), (54Cr, 4n), (54Cr, 5n), E*=20-60 MeV; calculated evaporation residue cross sections as function of excitation energy and Z=120 production. Calculations based on the DNS concept, and use of three nuclear data tables (FRDM-1995, KTUY-2005, WS-2010).

doi: 10.1103/PhysRevC.92.014601
Citations: PlumX Metrics


2015BA42      Phys.Rev. C 92, 034612 (2015)

X.J.Bao, Y.Gao, J.Q.Li, H.F.Zhang

Isotopic dependence of superheavy nuclear production in hot fusion reactions

NUCLEAR REACTIONS 237Np, 238U, 242,244Pu, 243Am, 245,248Cm, 249Bk, 249Cf(48Ca, 2n), (48Ca, 3n), (48Ca, 4n), (48Ca, 5n), E*=20-60 MeV; calculated evaporation residue cross section (ERCSs) for nuclei of SHE of Z=112-118. 232,233,234,235,236,237,238U, 236,237,238,239,240,241,242,243,244Pu, 242,243,244,245,246,247,248,249,250Cm, 249,250,251,252Cf(48Ca, 3n), (48Ca, 4n), (50Ti, 3n), (50Ti, 4n), (50Ca, 3n), (50Ca, 4n), 235,236,237Np, 241,242,243Am, 247,248,249Bk(48Ca, 3n), (48Ca, 4n), (50Ti, 3n), (50Ti, 4n), E not given; calculated evaporation residue cross section (ERCSs) for nuclei of SHE region. Dinuclear system (DNS) model. Comparison with available experimental data.

doi: 10.1103/PhysRevC.92.034612
Citations: PlumX Metrics


2015GU02      Nucl.Phys. A934, 110 (2015)

S.Guo, X.Bao, Y.Gao, J.Li, H.Zhang

The nuclear deformation and the preformation factor in the α-decay of heavy and superheavy nuclei

RADIOACTIVITY Z=76-100(α); calculated even-even nuclei T1/2, α preformation factor using generalized liquid drop model with and without deformation. Compared with values extracted from experimental T1/2. Paper declares calculations for Z=62-118, but results presented only for its subset.

doi: 10.1016/j.nuclphysa.2014.12.001
Citations: PlumX Metrics


2015MA45      J.Phys.(London) G42, 095107 (2015)

N.N.Ma, H.F.Zhang, X.J.Bao, P.H.Chen, J.M.Dong, J.Q.Li, H.F.Zhang

Weizsacker-Skyrme-type mass formula by considering radial basis function correction

NUCLEAR STRUCTURE N<180; calculated nuclear masses, α-decay Q-values and T1/2. Comparison with experimental data.

doi: 10.1088/0954-3899/42/9/095107
Citations: PlumX Metrics


2014BA02      Nucl.Phys. A921, 85 (2014)

X.Bao, H.Zhang, H.Zhang, G.Royer, J.Li

Systematical calculation of α decay half-lives with a generalized liquid drop model

RADIOACTIVITY Z=52-118(α); calculated T1/2 using WKB with liquid drop with proximity effects; deduced T1/2 systematics vs neutron number. Compared with data.

doi: 10.1016/j.nuclphysa.2013.11.002
Citations: PlumX Metrics


2014BA23      Phys.Rev. C 89, 067301 (2014)

X.-J.Bao, H.-F.Zhang, J.-M.Dong, J.-Q.Li, H.-F.Zhang

Competition between α decay and cluster radioactivity for superheavy nuclei with a universal decay-law formula

RADIOACTIVITY Z=104-120, N=140-202(α); 222,224,226Ra, 228,230Th, 230,232,234U, 236Ra, 240,242Cm, 256,258Rf, 260,262Sg, 264,266Hs, 270Ds(α); calculated branching ratios for α-decay and cluster radioactivity. Comparison with available experimental data. 282Ds(76Zn); 284Ds(78Zn); 286Ds(82Ge); 288Ds(84Ge); 284Cn(76Zn), (80Zn); 286Cn(80Ge), (82Ge); 288Cn(82Ge); 290Cn(82Ge), (84Ge), (86Se); 292Cn(84Se), (88Se); 286Fl(78Ge), (80Ge), (84Se); 288Fl(80Ge), (84Se); 290Fl(82Ge), (84Se); 292Fl(86Se); 294Fl(88Se); 294Fl(88Se); 296Fl(88Se), (92Kr); 298Fl(94Kr); 288Lv(82Se); 288,290,292Lv(84Se); 294Lv(86Se); 288,290,292,294Og(86Kr); 296Og(88Kr); 298Og(90Kr); 290,292,294120(88Sr); 296,298120(90Sr); 300120(92Sr); calculated branching ratios and half-lives for the most probable cluster decay using Universal Decay Law formalism, and AME-2012, FRDM95, KTUV05, and WS2011 mass tables.

doi: 10.1103/PhysRevC.89.067301
Citations: PlumX Metrics


2014GA17      Nucl.Phys. A929, 9 (2014)

J.Gao, H.Zhang, X.Bao, J.Li, H.Zhang

Fusion calculations for 40Ca+40Ca, 48Ca+48Ca, 40Ca+48Ca and p+208Pb systems

NUCLEAR REACTIONS 40,48Ca(40Ca, x), E(cm)=20-160 MeV;48Ca(48Ca, x), E(cm)=49-66 MeV;48Ca(p, x), E(cm)=0-160 MeV; calculated fusion σ, mean angular momentum using coupled channels. Compared with available data.

doi: 10.1016/j.nuclphysa.2014.05.011
Citations: PlumX Metrics


2014GA18      Nucl.Phys. A929, 246 (2014)

J.Gao, X.Bao, H.Zhang, J.Li, H.Zhang

New numerical method for fission half-lives of heavy and superheavy nuclei at ground and excited states

RADIOACTIVITY 232,234,235,236,238U, 239,240,241Pu, 243Am, 243,245Cm, 249Bk, 249,250Cf, 255Es, 250,252,254,256Fm, 255,257,259Md, 252,254,256,257,259No, 252,253,255,256,259Lr, 255,256,257,258,259,260Rf, 255Db, 258,262Sg, 264Hs(SF);238Np*,239U*(SF); calculated fission T1/2 using generalized liquid drop model. Compared with available data.

doi: 10.1016/j.nuclphysa.2014.07.003
Citations: PlumX Metrics


2014ZH37      Phys.Rev. C 90, 054313 (2014)

H.Zhang, H.Zhang, J.Li, X.Bao, N.Ma

Spontaneous fission with β-parameterized quasimolecular shape

RADIOACTIVITY 232,234,235,236,238U, 238,239,240Pu, 243Am, 243,245,248Cm, 250Cf, 256Fm(SF); calculated spontaneous fission half-lives by describing the quasimolecular shape in terms of deformation parameters β2, β3, β4, β5 and β6 for asymmetric SF channels. Quasimolecular mechanism in the framework of Generalized liquid drop model (GLDM). Comparison with experimental results.

doi: 10.1103/PhysRevC.90.054313
Citations: PlumX Metrics


2012BA35      J.Phys.(London) G39, 095103 (2012)

X.J.Bao, H.F.Zhang, B.S.Hu, G.Royer, J.Q.Li

Half-lives of cluster radioactivity with a generalized liquid-drop model

RADIOACTIVITY 221Fr, 221,222,223,224,226Ra, 225Ac, 226Th(14C), 226Th(18O), 228Th(20O), 230Th(24Ne), 232Th(26Ne), 231Pa(24Ne), (23F), 230U(22Ne), (24Ne), 232U(28Mg), (24Ne), 233U(24Ne), (25Ne), (28Mg), 234U(24Ne), (26Ne), (28Mg), 235U(24Ne), (25Ne), (28Mg), 236U, 247Np(30Mg), 236Pu(28Mg), 238Pu(28Mg), (30Mg), (32Si), 220Rn(12C), 221Rn(15N), 222Rn(18O), 223Ra(18O), 226Ra(20O), 225Ac(18O), 224Th(15N), 224Th(24Ne), 226Th(15N), 226,228Th(24Ne), 229Th(21O), (24Ne), 231Pa(27Na), 232Pa(25Ne), (28Mg), 230U(20O), (24Ne), (32Si), 232U(28Mg), 233,234U(27Na), 225Np(12C), (16O), 227Np(16O), (18O), 231Np(20O), 233Np(22Ne), (25Ne), 234Np(28Mg), 235Np(29Mg), 236Np(29Mg), 237Np(32Si), 234Pu(27Na), (29Al), 236Pu(24Ne), (29Al), 237Pu(29Mg), (32Si), 237Am(28Mg), (32Si), 238Am(29Mg), (33Si), 239Am(32Si), (34Si), 240Am(34Si), 241Am(34Si), 238Cm(32Si), 240Cm(30Mg), (34Si), 242Cm(32Si), 243Cm(34Si), 242Cf(32Si), (34Si), 244Cf(34Si), 246Cf(38S), 249Cf(46Ar), (50Ca), 250,252,253,254,255,256,257,258No(48Ca), 258Rf(49Ca), (51Ti), (53Ti); calculated T1/2 for cluster radioactivity. WKB barrier-penetrating probabilities, generalized liquid drop model, comparison with available data.

doi: 10.1088/0954-3899/39/9/095103
Citations: PlumX Metrics


1996BB11      Nucl.Instrum.Methods Phys.Res. A380, 58 (1996)

X.J.Bao, M.Natarajan, J.Henderson

Low Energy Background in Mercuric Iodide X-Ray Spectrometers

RADIOACTIVITY 55Fe(EC); measured K X-ray spectra; deduced spectrometers low energy background related features. Mercury iodide X-ray spectrometers.

doi: 10.1016/S0168-9002(96)00328-2
Citations: PlumX Metrics


1988YU01      Chin.J.Nucl.Phys. 10, 39 (1988)

Yuan Rongfang, Wen Keling, Wang Zhifu, Yuan Jian, Zhang Peihua, Xu Jianping, Mao Zhiqiang, Bao Xiuming, Wang Yuanda, Wang Jianan, Sun Zuxun

Study of (α, p) Three Nucleon Transfer Reactions on Odd A Nuclei in 1f7/2 Shell

NUCLEAR REACTIONS 51V, 55Mn(α, p), E=25.7 MeV; measured σ(θ). 54Cr, 58Fe levels deduced transfer angular momentum characteristics. DWBA, quasitriton.


1985BA77      Chin.J.Nucl.Phys. 7, 226 (1985)

Bao Xiumin, Li Shuming, Wang Yuanda, Yuan Rongfang, Huang Bingyin, Sun Zuxun

Influence of α-Nucleus ALAS Potential on the 40Ca(α, p)43Sc Reaction

NUCLEAR REACTIONS 40Ca(α, p), E=25.8 MeV; measured σ(θ); deduced α-nucleus potential character. DWBA analysis.


1985WA30      Chin.J.Nucl.Phys. 7, 297 (1985)

Wang Yuanda, Bao Xiuming, Mao Zhiqiang, Yuan Rongfang, Wen Keling, Huang Bingyin, Wang Zhifu, Li Shuming, Wang Jianan, Sun Zuxun

58,60,62Ni(α, p) Three-Nucleon Transfer Reactions and α Optical Potential Ambiguities

NUCLEAR REACTIONS 58,60,62Ni(α, α), (α, p), E=25.4, 26 MeV; measured σ(θ). Enriched targets. Optical model. DWBA analyses.


1983ZH09      Chin.J.Nucl.Phys. 5, 1 (1983)

Zhang Peihua, Wen Keling, Li Shuming, Bao Xiumin, Shi Yijin, Sun Zuxun

Study of QFS Mechanism in 9Be, 12C(α, 2α) Reactions at Low Energy

NUCLEAR REACTIONS 9Be, 12C(α, 2α), E=18 MeV; measured σ(θ1, θ2, E1). 9Be, 12C deduced α-particle momentum distribution width, clustering probability. Quasifree scattering, generator coordinate method.


Back to query form


Note: The following list of authors and aliases matches the search parameter X.Bao: , X.J.BAO