NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of May 10, 2024.

Search: Author = Li Fei

Found 27 matches.

Back to query form



2022LI40      Phys.Rev. C 106, 014906 (2022)

F.Li, Y.-G.Ma, S.Zhang, G.-L.Ma, Q.Shou

Impact of nuclear structure on the background in the chiral magnetic effect in 9644Ru + 9644Ru and 9640Zr + 9640Zr collisions at √ sNN = 7.7-200 GeV from a multiphase transport model

NUCLEAR REACTIONS 96Ru(96Ru, X), 96Zr(96Zr, X), E(cm)=7.7, 27, 62.4, 200 GeV; analyzed experimental data from STAR collaboration of RHIC-BNL for distributions of the number of charged hadrons in the pseudorapidity window, mean charge multiplicity, elliptic and triangular flows as function of centrality using the simulation by string melting version of a multiphase transport (AMPT) model; deduced that quadrupole deformation β2 and neutron skin effects occur in the most-central collisions, while octupole deformation occurs in the near-central collisions. Relevance to precise determination of the shapes of nuclei in isobaric relativistic heavy-ion collisions.

doi: 10.1103/PhysRevC.106.014906
Citations: PlumX Metrics


2021GA27      Appl.Radiat.Isot. 176, 109828 (2021)

J.Gao, Z.Liao, W.Liu, Y.Hu, H.Ma, L.Xia, F.Li, T.Lan, Y.Yang, J.Yang, J.Liao, N.Liu

Simple and efficient method for producing high radionuclidic purity 111In using enriched 112Cd target

NUCLEAR REACTIONS 112Cd(p, 2n)111In, E=21 MeV; measured reaction products, Eγ, Iγ; deduced yields.

doi: 10.1016/j.apradiso.2021.109828
Citations: PlumX Metrics


2021KU20      Phys. Rev. Res. 3, 023227 (2021)

S.J.Kuhn, S.McKay, J.Shen, N.Geerits, R.M.Dalgliesh, E.Dees, A.A.M.Irfan, F.Li, S.Lu, V.Vangelista, D.V.Baxter, G.Ortiz, S.R.Parnell, W.M.Snow, R.Pynn

Neutron-state entanglement with overlapping paths

doi: 10.1103/PhysRevResearch.3.023227
Citations: PlumX Metrics


2021LI11      Phys.Rev. C 103, 024307 (2021)

F.Li, J.-J.Lu, Z.-H.Li, C.-Y.Chen, G.F.Burgio, H.-J.Schulze

Accurate nuclear symmetry energy at finite temperature within a Brueckner-Hartree-Fock approach

doi: 10.1103/PhysRevC.103.024307
Citations: PlumX Metrics


2021LI50      Phys.Rev. C 104, 034608 (2021)

F.Li, Y.Wang, Z.Gao, P.Li, H.Lu, Q.Li, C.Y.Tsang, M.B.Tsang

Application of machine learning in the determination of impact parameter in the 132Sn + 124Sn system

NUCLEAR REACTIONS 124Sn(132Sn, X), E=270 MeV/nucleon; analyzed experimental data for charged-particle spectra or other simulated events from RIBF-RIKEN facility to extract impact parameters using the ultrarelativistic quantum molecular dynamics (UrQMD) model, and three machine learning algorithms of artificial neural network (ANN), convolutional neural network (CNN), and light gradient boosting machine (LightGBM).

doi: 10.1103/PhysRevC.104.034608
Citations: PlumX Metrics


2021SU21      Eur.Phys.J. A 57, 313 (2021)

K.-J.Sun, C.M.Ko, F.Li, J.Xu, L.-W.Chen

Enhanced yield ratio of light nuclei in heavy ion collisions with a first-order chiral phase transition

doi: 10.1140/epja/s10050-021-00607-4
Citations: PlumX Metrics


2021ZH61      Phys.Rev. C 104, 044901 (2021)

W.-H.Zhou, H.Liu, F.Li, Y.-F.Sun, J.Xu, C.M.Ko

Elliptic flow splittings in the Polyakov-Nambu-Jona-Lasinio transport model

doi: 10.1103/PhysRevC.104.044901
Citations: PlumX Metrics


2020HU06      Appl.Radiat.Isot. 160, 109133 (2020)

Y.Hu, Y.Tang, F.Li, J.Gao, Y.Yang, J.Yang, J.Liao, N.Liu

Production of 98Tc with high isotopic purity

NUCLEAR REACTIONS 98Mo(p, n)98Tc, E=9.4 MeV; measured reaction products, Eγ, Iγ; deduced production technology.

doi: 10.1016/j.apradiso.2020.109133
Citations: PlumX Metrics


2020LI24      Eur.Phys.J. A 56, 167 (2020)

F.Li, G.Chen

The evolution of information entropy components in relativistic heavy-ion collisions

doi: 10.1140/epja/s10050-020-00169-x
Citations: PlumX Metrics


2020LI37      J.Phys.(London) G47, 115104 (2020)

F.Li, Y.Wang, H.Lu, P.Li, Q.Li, F.Liu

Application of artificial intelligence in the determination of impact parameter in heavy-ion collisions at intermediate energies

NUCLEAR REACTIONS 197Au(197Au, X), E=1 GeV/nucleon; analyzed available data; calculated true impact parameter versus the predicted impact parameter, rapidity distribution of protons.

doi: 10.1088/1361-6471/abb1f9
Citations: PlumX Metrics


2020TO06      Chin.Phys.C 44, 074101 (2020)

L.Tong, P.Li, F.Li, Y.Wang, Q.Li, F.Liu

Nucleon effective mass splitting and density-dependent symmetry energy effects on elliptic flow in heavy ion collisions at Elab=0.09 ∼ 1.5 GeV/nucleon

NUCLEAR REACTIONS 197Au(197Au, X), E = 0.09-1.5 GeV/nucleon; analyzed available data; deduced effects of the neutron-proton effective mass splitting, density-dependent nuclear symmetry energy by incorporating an isospin-depenent form of the momentum-dependent potential in the ultra-relativistic quantum molecular dynamics model.

doi: 10.1088/1674-1137/44/7/074103
Citations: PlumX Metrics


2019ST09      Phys.Rev. C 99, 064908 (2019)

V.Steinberg, J.Staudenmaier, D.Oliinychenko, F.Li, O.Erkiner, H.Elfner

Strangeness production via resonances in heavy-ion collisions at energies available at the GSI Schwerionen synchrotron

doi: 10.1103/PhysRevC.99.064908
Citations: PlumX Metrics


2018LI33      Phys.Rev. C 98, 014618 (2018)

F.Li, L.Zhu, Z.-H.Wu, X.-B.Yu, J.Su, C.-C.Guo

Predictions for the synthesis of superheavy elements Z=119 and 120

NUCLEAR REACTIONS 238U, 242,244Pu, 243Am, 245,248Cm, 249Bk, 249Cf(48Ca, 3n), (48Ca, 4n), (48Ca, 5n), E*=25-60 MeV; calculated evaporation residue σ(E), and compared with available experimental data. 252Es(40Ca, 3n), E(cm)=204.08 MeV; 252Es(42Ca, 3n), E(cm)=203.00 MeV; 249Cf(45Sc, 3n), E(cm)=211.09 MeV; 255Es(40Ca, 4n), E(cm)=207.02 MeV; 254Es(40Ca, 3n), E(cm)=203.60 MeV; 247Bk(47Ti, 3n), E(cm)=219.19 MeV; 248Bk(46Ti, 3n), E(cm)=217.76 MeV; 242Cm(51V, 2n), E(cm)=225.86 MeV; 248Cf(45Sc, 2n), E(cm)=209.29 MeV; 241Am(52Cr, 2n), E(cm)=231.94 MeV; 252Es(44Ca, 3n), E(cm)=204.27 MeV; 253Es(43Ca, 3n), E(cm)=202.49 MeV; 254Es(42Ca, 3n), E(cm)=201.65 MeV; 251Cf(45Sc, 3n), E(cm)=210.03 MeV; 249Bk(47Ti, 3n), E(cm)=217.18 MeV; 248Bk(48Ti, 3n), E(cm)=219.47 MeV; 245Cm(51V, 3n), E(cm)=229.29 MeV; 247Bk(49Ti, 3n), E(cm)=222.17 MeV; 246Cm(50V, 3n), E(cm)=225.70 MeV; 244Cm(51V, 2n), E(cm)=224.00 MeV; 255Es(42Ca, 4n), E(cm)=205.95 MeV; 243Am(53Cr, 3n), E(cm)=236.20 MeV; 254Es(43Ca, 4n), E(cm)=206.90 MeV; 253Es(44Ca, 4n), E(cm)=210.94 MeV; 243Am(52Cr, 2n), E(cm)=229.49 MeV; 254Es(44Ca, 3n), E(cm)=201.64 MeV; 255Es(43Ca, 3n), E(cm)=201.49 MeV; 255Es(44Ca, 4n), E(cm)=207.59 MeV; 252Es(46Ca, 3n), E(cm)=206.00 MeV; 248Bk(50Ti, 3n), E(cm)=222.48 MeV; 247Cm(51V, 3n), E(cm)=226.83 MeV; 254Cf(45Sc, 4n), E(cm)=211.93 MeV; 249Bk(49Ti, 3n), E(cm)=218.88 MeV; 254Es(46Ca, 3n), E(cm)=203.64 MeV; 255Es(46Ca, 4n), E(cm)=210.13 MeV; 252Es(48Ca, 3n), E(cm)=208.42 MeV; 255Es(46Ca, 3n), E(cm)=204.13; 254Es(48Ca, 3n), E(cm)=205.96 MeV; 255Es(48Ca, 4n), E(cm)=212.72 MeV; 242Cm(50Cr, 2n), E(cm)=234.22 MeV; 249Cf(46Ti, 3n), E(cm)=222.89 MeV; 248Cf(46Ti, 2n), E(cm)=219.12 MeV; 257Fm(40Ca, 5n), E(cm)=222.66 MeV; 257Fm(40Ca, 4n), E(cm)=211.66 MeV; 257Fm(40Ca, 3n), E(cm)=205.66 MeV; 251Cf(46Ti, 3n), E(cm)=220.39 MeV; 252Es(45Sc, 3n), E(cm)=214.17 MeV; 250Cf(46Sc, 2n), E(cm)=218.88 MeV; 247Bk(50V, 3n), E(cm)=231.13 MeV; 244Cm(52Cr, 2n), E(cm)=234.88 MeV; 245Cm(52Cr, 3n), E(cm)=240.80 MeV; 243Cm(53Cr, 2n), E(cm)=236.02 MeV; 247Cm(50Cr, 3n), E(cm)=235.12 MeV; 257Fm(42Ca, 3n), E(cm)=205.29 MeV; 254Es(45Sc, 3n), E(cm)=213.40 MeV; 257Fm(43Ca, 4n), E(cm)=210.97 MeV; 257Fm(44Ca, 3n), E(cm)=205.27 MeV; 257Fm(46Ca, 3n), E(cm)=207.84 MeV; 250Cm(53Cr, 3n), E(cm)=234.59 MeV; 257Fm(48Ca, 3n), E(cm)=211.07 MeV; calculated production σ for Z=119 and 120 superheavy isotopes. Dinuclear system (DNS) model.

doi: 10.1103/PhysRevC.98.014618
Citations: PlumX Metrics


2018WU06      Phys.Rev. C 97, 064609 (2018)

Z.-H.Wu, L.Zhu, F.Li, X.-B.Yu, J.Su, C.-C.Guo

Synthesis of neutron-rich superheavy nuclei with radioactive beams within the dinuclear system model

NUCLEAR REACTIONS 242,244Pu, 243Am, 245,248,250Cm, 249Bk, 250,251Cf(48Ca, 2n), (48Ca, 3n), (48Ca, 4n), (48Ca, 5n), E*=25-60 MeV; 234Th(42S, 2n), (42S, 3n), (42S, 4n), (42S, 5n), E*=20-65 MeV; 234Th, 244Pu(46Ar, 2n), (46Ar, 3n), (46Ar, 4n), (46Ar, 5n), E*=20-65 MeV; 234Th, 238U, 248Cm, 255Es(44Cl, 2n), (44Cl, 3n), (44Cl, 4n), (44Cl, 5n), E*=20-65 MeV; 228Ra(45Cl, 2n), (45Cl, 3n), (45Cl, 4n), (45Cl, 5n), E*=20-65 MeV; 244Pu, 248Cm(43Cl, 2n), (43Cl, 3n), (43Cl, 4n), (43Cl, 5n), E*=20-65 MeV; 244Pu, 254Cf, 255Es(41S, 2n), (41S, 3n), (41S, 4n), (41S, 5n), E*=20-65 MeV; 257Fm(42Ar, 2n), (42Ar, 3n), (42Ar, 4n), (42Ar, 5n), E*=20-65 MeV; 260Md(38Cl, 2n), (38Cl, 3n), (38Cl, 4n), (38Cl, 5n), E*=20-65 MeV; calculated evaporation residue σ. 228Ra(45Cl, 2n), E*=36.0 MeV; 228Ra(46Cl, 3n), E*=46.0 MeV; 226Ra(47Cl, 2n), E*=36.0 MeV; 234Th(42S, 4n), E*=43.0 MeV; 228Ra(46Ar, 2n), E*=34.0 MeV; 234Th(43S, 5n), E*=51.0 MeV; 234Th(42S, 3n), E*=41.0 MeV; 234Th(43S, 4n), E*=46.0 MeV; 234Th(44S, 5n), E*=59.0 MeV; 234Th(44Cl, 2n), E*=37.0 MeV; 234Th(45Cl, 3n), E*=44.0 MeV; 228Ra(50K, 2n), E*=36.0 MeV; 234Th(46Ar, 2n), E*=34.0 MeV; 238U(43S, 3n), E*=41.0 MeV; 238U(42S, 2n), E*=37.0 MeV; 238U(44Cl, 3n), E*=38.0 MeV; 238U(43Cl, 2n), E*=36.0 MeV; 238U(43S, 3n), E*=41.0 MeV; 234Th(47K, 2n), E*=33.0 MeV; 244Pu(41S, 3n), E*=38.0 MeV; 244Pu(42S, 4n), E*=42.0 MeV; 238U(46Ar, 2n), E*=33.0 MeV; 244Pu(43Cl, 4n), E*=44.0 MeV; 242Pu(44Cl, 3n), E*=37.0 MeV; 244Pu(42Cl, 3n), E*=38.0 MeV; 244Pu(46Ar, 4n), E*=38.0 MeV; 244Pu(45Ar, 3n), E*=44.0 MeV; 242Pu(46Ar, 2n), E*=33.0 MeV; 248Cm(43Cl, 4n), E*=38.0 MeV; 250Cm(42Cl, 5n), E*=43.0 MeV; 248Cm(44Cl, 5n), E*=43.0 MeV; 248Cm(44Cl, 4n), E*=38.0 MeV; 250Cm(42Cl, 4n), E*=39.0 MeV; 250Cm(43Cl, 5n), E*=45.0 MeV; 254Cf(41S, 5n), E*=40.0 MeV; 253Cf(42S, 5n), E*=40.0 MeV; 250Cm(44Ar, 4n), E*=37.0 MeV; 255Es(41S, 5n), E*=40.0 MeV; 254Cf(42Cl, 5n), E*=40.0 MeV; 253Cf(43Cl, 5n), E*=39.0 MeV; 255Es(41S, 4n), E*=37.0 MeV; 253Cf(43Cl, 4n), E*=36.0 MeV; 254Cf(42Cl, 4n), E*=37.0 MeV; 250Cm(48Ca, 4n), E*=35.0 MeV; 248Cm(48Ca, 2n), E*=31.0 MeV; 250Cm(46Ca, 2n), E*=35.0 MeV; 255Es(44Cl, 5n), E*=40.0 MeV; 254Cf(44Ar, 4n), E*=36.0 MeV; 257Fm(41S, 4n), E*=37.0 MeV; 250Cm(48Ca, 3n), E*=31.0 MeV; 255Es(44Cl, 4n), E*=36.0 MeV; 253Cf(46Ar, 4n), E*=34.0 MeV; 254Cf(46Ar, 5n), E*=41.0 MeV; 250Cf(48Ca, 3n), E*=34.0 MeV; 250Cm(49Ti, 4n), E*=42.0 MeV; 252Cf(46Ca, 3n), E*=36.0 MeV; 260Md(38Cl, 3n), E*=41.0 MeV; 260Md(39Cl, 4n), E*=42.0 MeV; 257Fm(42Ar, 4n), E*=41.0 MeV; 251Cf(48Ca, 3n), E*=30.0 MeV; 252Cf(48Ca, 4n), E*=38.0 MeV; 250Cm(49Ti, 3n), E*=34.0 MeV; 257Fm(42Ar, 3n), E*=33.0 MeV; 257Fm(43Ar, 4n), E*=38.0 MeV; 260Md(39Cl, 3n), E*=37.0 MeV; 244Pu(43Cl, n), E*=40.0 MeV; 238Cm(48Ca, 2np), E*=41.0 MeV; 254Cf(41S, 5n), E*=40.0 MeV; 248Cm(48Ca, 2nα), E*=46.0 MeV; 248Cm(43Cl, 4n), E*=38.0 MeV; 242Pu(48Ca, 2np), E*=35.0 MeV; 248Cm(44Cl, 4n), E*=38.0 MeV; 242Pu(48Ca, np), E*=40.0 MeV; 244Pu(48Ca, 3np), E*=45.0 MeV; 255Es(41S, 5n), E*=40.0 MeV; 245Cm(48Ca, np), E*=32.0 MeV; 249Bk(48Ca, 2nα), E*=37.0 MeV; 255Es(41S, 4n), E*=37.0 MeV; 248Cm(48Ca, 3np), E*=44.0 MeV; 249Bk(48Ca, nα), E*=32.0 MeV; calculated evaporation residue σ, and optimal incident beam energies. 48Ca(238U, 2n), (238U, 3n), (238U, 4n), E(cm)=184.13-214.13 MeV; calculated evaporation residue σ, potential energy surface, driving potential, survival and complete fusion probabilities, and capture σ. Dinuclear system model. 271Db, 272,273Sg, 276Bh, 278Hs, 279Mt, 282Ds, 283Rg, 286Cn, 287,288Nh, 290Fl, 291,292Mc, 294,295Lv, 295,296Og; calculated evaporation residue σ, and optimal incident beam energies for various reactions. Comparison with available experimental data. Relevance to synthesis of neutron-rich superheavy nuclei using radioactive ion beams, such as those at ATLAS-ANL.

doi: 10.1103/PhysRevC.97.064609
Citations: PlumX Metrics


2017LI17      Phys.Rev. C 95, 055203 (2017)

F.Li, C.M.Ko

Spinodal instabilities of baryon-rich quark matter in heavy ion collisions

doi: 10.1103/PhysRevC.95.055203
Citations: PlumX Metrics


2016LI14      Phys.Rev. C 93, 034901 (2016)

Y.Liu, C.M.Ko, F.Li

Heavy quark correlations and the effective volume for quarkonia production

doi: 10.1103/PhysRevC.93.034901
Citations: PlumX Metrics


2016LI16      Phys.Rev. C 93, 035205 (2016)

F.Li, C.M.Ko

Spinodal instabilities of baryon-rich quark-gluon plasma in the Polyakov-Nambu-Jona-Lasinio model

doi: 10.1103/PhysRevC.93.035205
Citations: PlumX Metrics


2016SU24      Phys.Rev. C 94, 045204 (2016)

Y.Sun, C.M.Ko, F.Li

Anomalous transport model study of chiral magnetic effects in heavy ion collisions

doi: 10.1103/PhysRevC.94.045204
Citations: PlumX Metrics


2014GR16      Phys.Rev. C 90, 064909 (2014)

G.Graef, J.Steinheimer, F.Li, M.Bleicher

Deep sub-threshold Ξ and Λ production in nuclear collisions with the UrQMD transport model

doi: 10.1103/PhysRevC.90.064909
Citations: PlumX Metrics


2014KO26      Nucl.Phys. A928, 234 (2014)

C.M.Ko, T.Song, F.Li, V.Greco, S.Plumari

Partonic mean-field effects on matter and antimatter elliptic flows

doi: 10.1016/j.nuclphysa.2014.05.016
Citations: PlumX Metrics


2014XU02      Phys.Rev.Lett. 112, 012301 (2014)

J.Xu, T.Song, C.M.Ko, F.Li

Elliptic Flow Splitting as Probe of the QCD Phase Structure at Finite Baryon Chemical Potential

doi: 10.1103/PhysRevLett.112.012301
Citations: PlumX Metrics


2012LI28      Phys.Rev. C 85, 064902 (2012)

F.Li, L.-W.Chen, C.M.Ko, S.H.Lee

Contributions of hyperon-hyperon scattering to subthreshold cascade production in heavy ion collisions

doi: 10.1103/PhysRevC.85.064902
Citations: PlumX Metrics


2003ZH07      Nucl.Instrum.Methods Phys.Res. B201, 551 (2003)

X.Zhang, F.Li, B.Ding, Z.Liu

Non-Rutherford elastic scattering cross sections of natural magnesium for protons

NUCLEAR REACTIONS Mg(p, p), E=776-2476 keV; measured σ(θ).

doi: 10.1016/S0168-583X(02)02233-4
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetS0195.


1995LI50      J.Phys.Condens.Matter 7, L235 (1995)

F.Li, Y.Kong, R.Zhou

A 57Fe High-Pressure Mossbauer Study of the Ferromagnetic γ'-Fe4N

NUCLEAR REACTIONS 57Fe(γ, γ), E=14.4 keV; measured Mossbauer spectra vs pressure; deduced average magnetic hyperfine field decrease related features.

doi: 10.1088/0953-8984/7/16/004
Citations: PlumX Metrics


1985TI07      Chin.J.Nucl.Phys. 7, 154 (1985)

Tian Ye, Han Yinlu, Shen Qingbiao, Zhuo Yizhong, Liu Wei, Guo Dongmin, Li Fei

A Global Analysis of Integral Cross Section Calculations with the Microscopic Optical Potential

NUCLEAR REACTIONS 12C(n, n), E ≤ 100 MeV; 44,40Ca(n, n), E ≤ 15 MeV; 60Ni(n, n), E ≤ 30 MeV; 242Pu, 98Mo(n, n), E ≤ 100 MeV; 140Ce(n, n), E ≤ 60 MeV; 238U, 232Th(n, n), E ≤ 15 MeV; calculated elastic, nonelastic, total σ(E). Effective Skyrme force, microscopic optical potential.


1985TI08      Chin.J.Nucl.Phys. 7, 344 (1985)

Tian Ye, Han Yinlu, Shen Qingbiao, Zhuo Yizhong, Liu Wei, Guo Dongmin, Li Fei

A Global Analysis of Neutron Differential Elastic Cross Section Calculations with the Microscopic Optical Potential

NUCLEAR REACTIONS 4He, 12C, 16O, 24Mg, 28Si, 32S, 40Ca, 50,52,54Cr, 54,56Fe, 58,60,62,64Ni, 64,66,68Zn, 90,92,94Zr, 92,94,96,98,100Mo, 118,120,122,124Sn, 182,184,186W, 208Pb, 232Th, 238U, 240Pu(n, n), E=1-26 MeV; calculated σ(θ). Microscopic optical potential.


1976BI06      Nucl.Instrum.Methods 133, 279 (1976)

L.Birstein, F.Li, R.Klawer

The Manufacture of Needle Type Si(Li) Detectors for Bio-Medical Use

RADIOACTIVITY 32P; measured Eβ.

doi: 10.1016/0029-554X(76)90620-0
Citations: PlumX Metrics


Back to query form