NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of May 2, 2024.

Search: Author = K.Sridhar

Found 33 matches.

Back to query form



2024RE02      Phys.Rev. C 109, 024610 (2024)

L.Reddi Rani, N.Sowmya, H.C.Manjunatha, K.N.Sridhar, M.M.Armstrong Arasu

Optimal incident energy of heavy ion fusion

doi: 10.1103/PhysRevC.109.024610
Citations: PlumX Metrics


2023GU22      Int.J.Mod.Phys. E32, 2350069 (2023)

P.S.D.Gupta, N.Sowmya, H.C.Manjunatha, H.S.Anushree, L.Seenappa, K.N.Sridhar

A study of decay chains of radioactive actinium isotopes

RADIOACTIVITY 205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227Ac(α), (β-); calculated T1/2 using unified fission model (UFM) and the effective liquid drop model. Comparison with available data.

doi: 10.1142/S0218301323500696
Citations: PlumX Metrics


2023MA02      Nucl.Phys. A1030, 122568 (2023)

H.C.Manjunatha, Y.S.Vidya, K.N.Sridhar, L.Seenappa, P.S.Damodara Gupta

Effect of entrance channel parameters on the elastic scattering of light nuclei

NUCLEAR REACTIONS 11B, 14N, 6,7Li(p, p), 6,7Li, 12C, 28Si(d, d), 6Li(3He, 3He), 6,7Li, 24Mg, 9Be(α, α), 6Li, 9Be, 4He, 12C, 48Ti(6He, 6He), 12,13C, 16O, 208Pb, 26Mg, 28Si, 40Ca, 4He, 58Ni, 6,7Li, 90Zr(6Li, 6Li), 12,13C, 16O, 28Si, 7Li(7LI, 7Li), 12C, 7Li, 9Be(8Li, 8Li), 2H(11Be, 11Be), 10B, 12C, 14N, 9Be(7Be, 7Be), 16O, 9Be(9Be, 9Be), 12C, 16O, 7Li(10B, 10B), 13,14C, 7Li, 9Be(11B, 11B), 12C(8B, 8B), 14N(11C, 11C), 11B, 13C(12C, 12C), 12C(13C, 13C), 11B, 12,13C, 14N, 16O, 7Li, 9Be(14N, 14N), 9Be(15N, 15N), 11B(16N, 16N), 12C, 18O(16O, 16O), 208Pb(17O, 17O), 13C, 18O, 7Li(18O, 18O), 14N, 197Au, 208Pb(17F, 17F), E<100 MeV; analyzed available data; deduced elastic scattering σ derived from entrance channel parameters.

doi: 10.1016/j.nuclphysa.2022.122568
Citations: PlumX Metrics


2023MA06      Pramana 97, 12 (2023)

H.C.Manjunatha, N.Sowmya, K.N.Sridhar, L.Seenappa, P.S.Damodara Gupta

An accurate empirical formula for the average total kinetic energy released in fission

NUCLEAR STRUCTURE Z=23-120; analyzed available data; deduced s new improved formula of Viola systematics, covariance of the matrix and its parameters in both symmetric and asymmetric fission of nuclei.

doi: 10.1007/s12043-022-02485-x
Citations: PlumX Metrics


2023MA15      Nucl.Phys. A1032, 122621 (2023)

H.C.Manjunatha, N.Sowmya, R.Munirathnam, K.N.Sridhar, L.Seenappa, P.S.Damodara Gupta

Effect of entrance channel parameters on compound nucleus formation probability in heavy ion fusion reactions

doi: 10.1016/j.nuclphysa.2023.122621
Citations: PlumX Metrics


2023MA28      J.Phys.(London) G50, 035101 (2023)

H.C.Manjunatha, P.S.Damodara Gupta, N.Sowmya, N.Manjunatha, K.N.Sridhar, L.Seenappa, T.Nandi

Survival probability of compound nuclei in heavy-ion fusion reaction

NUCLEAR REACTIONS 249Cf(48Ca, X)294Og, E(cm)=200-230 MeV; 208Pb(50Ti, X)258Rf, 209Bi(50Ti, X)259Db, 244Pu(48Ca, X)292Fl, 208Pb(58Fe, X)266Hs, 208Pb(54Cr, X)262Sg, E not given; analyzed available data; calculated the survival probability of superheavy nuclei; deduced an empirical formula.

doi: 10.1088/1361-6471/acb1cb
Citations: PlumX Metrics


2023SO13      Phys.Part. and Nucl.Lett. 20, 544 (2023)

N.Sowmya, H.C.Manjunatha, K.N.Sridhar, P.S.Damodara Gupta, N.Dhanajaya

Competition between Cluster and Alpha Decay in Even Atomic Number Superheavy Nuclei 110 ≤ Z ≤ 126

RADIOACTIVITY 261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280Ds, 274,275,276,277,278,279,280,281,282,283Cn, 280,281,282,283,284,285,286,287,288Fl, 282,283,284,285,286,287,288,289,290,291,292,293,294,295Lv, 286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303Og, 288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306120, 292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310122, 292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312124, 292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314126(α), (SF); calculated T1/2, Q-values. Comparison with available data.

doi: 10.1134/S1547477123030664
Citations: PlumX Metrics


2022MA15      Int.J.Mod.Phys. E31, 2250015 (2022)

H.C.Manjunatha, P.S.Damodara Gupta, N.Sowmya, K.N.Sridhar

Investigations on 28Ca and 58Fe-induced heavy ion fusion reactions

NUCLEAR REACTIONS 40Ca, 44Ca, 48Ca, 48Ca, 46Ti, 48Ti, 50Ti, 58Ni, 60Ni, 62Ni, 64Ni, 90Zr, 94Zr, 96Zr(40Ca, X), 90Zr, 96Zr(48Ca, X), 124Sn(40Ca, X), 154Sm, 168Er, 170Er(48Ca, X), 192Os, 194Pt, 197Au(40Ca, X), 197Au(48Ca, X), 208Pb(40Ca, X), 208Pb(48Ca, X), 238U(40Ca, X), 238U(48Ca, X), 120Sn, 122Sn, 165Ho(56Fe, X), 238U, 237Np, 244Pu, 243Am, 245Cm, 249Bk, 249Cf(48Ca, X), 208Pb, 209Bi(58Fe, X), E<320 MeV; analyzed available data. 80Zr, 84Zr, 88Zr, 96Zr, 86Mo, 88Mo, 90Mo, 98Cd, 100Cd, 102Cd, 104Cd, 130Nd, 134Nd, 136Nd, 138Nd, 144Nd, 164Yb, 202Pb, 216Ra, 218Ra, 232Cm, 234Cf, 237Es, 245Es, 248No, 256No, 278Cn, 286Cn, 283Cn, 282Nh, 288Fl, 288Mc, 291Lv, 294Ts, 294Og, 265Hs, 266Mt; calculated evaporation residue σ.

doi: 10.1142/S021830132250015X
Citations: PlumX Metrics


2022NA09      Int.J.Mod.Phys. E31, 2250004 (2022)

A.M.Nagaraja, H.C.Manjunatha, N.Sowmya, K.N.Sridhar, P.S.Damodara Gupta, S.A.Cecil Raj

Theoretical evidence for neutron magic number 184 from cluster radioactivity studies

RADIOACTIVITY 221Fr, 221,222,223,224Ra, 225Ac(14C), 228Th(20O), 230U(22Ne), 230Th, 231Pa, 232,233U(24Ne), 234U(26Ne), 234U, 236,238Pu(28Mg), 238Pu(32Si), 242Cm(34Si), 257,258,259,260,261,262Rf, 259,260,261,262Db, 261,262Sg, 263,264,265,266Bh, 264,265,266,267,268,269,270,271,272Hs, 271,272,273Mt, 266,267,268,269,270,271,272,273,274,275,276,277,278,279Ds, 271,272,273,274,275,276,277,278,279Rg, 276,277,278,279,280,281Cn, 291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307119, 287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310120, 290,291,292,293,294,295,296,297,298,299,300,301,302,303121, 270,271,272,273,274,275,276,277,278,279,280,281,282,283Nh, 271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287Fl, 272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290Mc, 275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292Lv, 278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299Ts, 281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303Og, 284,285,286,287,288,289,290119, 305,306,307,308,309,310,311,312,313,314,315,316,317124, 303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323125, 306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329126(α), (β+), (SF); calculated T1/2 using modified generalized liquid drop model (MGLDM); deduced magic numbers. Comparison with available data.

doi: 10.1142/S0218301322500045
Citations: PlumX Metrics


2022NA34      Int.J.Mod.Phys. E31, 2250081 (2022)

A.M.Nagaraja, R.Munirathnam, H.C.Manjunatha, N.Sowmya, K.N.Sridhar, L.Seenappa, S.A.C.Raj

Predictive power of theoretical models in cluster radioactivity

NUCLEAR STRUCTURE A=221-242, Z=87-96; calculated cluster decays using using modified generalized liquid drop model (MGLDM), Coulomb and proximity potential model (CPPM) and generalized liquid drop model (GLDM).

doi: 10.1142/S0218301322500811
Citations: PlumX Metrics


2022SR03      Ukr.J.Phys. 67, 631 (2022)

M.G.Srinivas, H.C.Manjunatha, K.N.Sridhar, A.C.Raj, P.S.Damodara Gupta

A Systematic Study of Proton Decay in Superheavy Elements

NUCLEAR STRUCTURE Z=104-126; calculated proton decay T1/2, penetration factors using the semiclassical WKB method. Comparison with available data.

doi: 10.15407/ujpe67.9.631
Citations: PlumX Metrics


2021MA01      Can.J.Phys. 99, 16 (2021)

H.C.Manjunatha, L.Seenappa, N.Sowmya, K.N.Sridhar

Investigations on 54-60Fe + 238-244Pu → 296-302120 fusion reactions

NUCLEAR REACTIONS 238,239,240,241,242,243,244Pu(54Fe, xn), (55Fe, xn), (56Fe, xn), (57Fe, xn), (58Fe, xn), (59Fe, xn), (60Fe, xn)296120/297120/298120/299120/300120/301120/302120, E(cm)<400 MeV; calculated formation probability, survival probability, and evaporation residue σ. Comparison with available data.

doi: 10.1139/cjp-2019-0580
Citations: PlumX Metrics


2021MA16      Phys.Rev. C 103, 024311 (2021)

H.C.Manjunatha, L.Seenappa, P.S.Damodara Gupta, N.Manjunatha, K.N.Sridhar, N.Sowmya, T.Nandi

Quasifission and fusion-fission lifetime studies for the superheavy element Z=120

NUCLEAR REACTIONS 252Cf(50Ti, X)302120*, E=299 MeV; 251Cf(50Ti, X)301120*, E=293 MeV; 250Cf(50Ti, X)300120*, E=300 MeV; 252Cf(49Ti, X)301120*, E=299 MeV; 249Cf(50Ti, X)299120*, E=295 MeV; 248Cm(54Cr, X)302120*, E=316 MeV; 244Pu(58Fe, X)302120*, E=347 MeV; 238U(64Ni, X)302120*, E=372 MeV; 64Ni(238U, X)302120*, E=1383 MeV; 60Ni(238U, X)298120*, E=1476 MeV; calculated fusion barriers, fusion σ, evaporation σ, fusion-fission σ, quasifission σ, quasifission lifetimes, and fusion-fission lifetimes for synthesis of Z=120 nuclei. 65Zn(238U, X)303122*, E(cm)=275.7 MeV; 40Ca(238U, X)278Cn*, E(cm)=184.9 MeV; 48Ca(238U, X)278Cn*, E(cm)=215.7 MeV; 35Cl(238U, X)273Mt*, E(cm)=204.4 MeV; 32S(238U, X)270Hs*, E(cm)=152.0 MeV; 184W(72Ge, X)256Sg*, E(cm)=178.1 MeV; 27Al(238U, X)265Db*, E(cm)=146.0 MeV; 184W(64Ni, X)248No*, E(cm)=341.0 MeV; 184W(58Ni, X)242No*, E(cm)=250.9, 266.1, 285.1 MeV; 186W(48Ti, X)234Cm*, E(cm)=245.0 MeV; 184W(48Ti, X)232Cm*, E(cm)=190.3, 194.3, 202.2 MeV; 208Pb(16O, X)224Th*, E(cm)=140.0 MeV; 186W(32S, X)218Th*, E(cm)=180.0 MeV; 184W(32S, X)216Th*, E(cm)=153.3 MeV; calculated quasifission and fusion-fission lifetimes, and compared with experimental data. 248Cm(54Cr, X)302120*, E=326 MeV; 244Pu(58Fe, X)302120*, E(cm)=325 MeV; 238U(64Ni, X)302120*, E(cm)=349 MeV; 249Cf(50Ti, X)299120*, E(cm)=273 MeV; 249Bk(50Ti, X)299119*, E(cm)=267 MeV; 248Cm(51V, X)299120*, E(cm)=277 MeV; 249Cf(48Ca, X)297Og*, E(cm)=235 MeV; 249Bk(48Ca, X)297Ts*, E(cm)=239 MeV; 248Cm(48Ca, X)296Lv*, E(cm)=241 MeV; 243Am(48Ca, X)291Mc*, E(cm)=248 MeV; 242Pu(48Ca, X)290Fl*, E(cm)=244 MeV; 209Bi(70Zn, X)279Nh*, E(cm)=349 MeV; 208Pb(70Zn, X)278Cn*, E(cm)=346 MeV; calculated quasifission and fusion-fission lifetimes for the first six failed experiments to find evidence for Z=119 and 120, and the next seven successful experiments. Statistical method within the framework of the dinuclear system (DNS) model.

doi: 10.1103/PhysRevC.103.024311
Citations: PlumX Metrics


2021MA28      Can.J.Phys. 99, 353 (2021)

H.C.Manjunatha, L.Seenappa, K.N.Sridhar

Pocket formula for incoherent scattering cross section

NUCLEAR REACTIONS H, Li, C, N, O, 19F, 23Na, Mg, 27Al, 31P, S, Cl, K, Cr, Mg, Ni, Cu, Br, Rb, Sr, Zr(γ, γ'), E=661.6, 1115.5 keV; calculated σ. Comparison with available data.

doi: 10.1139/cjp-2020-0286
Citations: PlumX Metrics


2020MA62      Phys.Rev. C 102, 064605 (2020)

H.C.Manjunatha, N.Sowmya, N.Manjunatha, P.S.Damodara Gupta, L.Seenappa, K.N.Sridhar, Ganesh, T.Nandi

Entrance channel dependent hot fusion reactions for superheavy element synthesis

NUCLEAR REACTIONS 208Pb(62Ni, n)269Ds, 251Cf(25Mg, 4n)272Ds, 249,253Bk(26Al, 5n)270Ds/274Ds, 209Bi(64Ni, n)272Rg, 234Th(48Sc, 3n)279Rg, 248Cm(33P, 4n)277Rg, 242Pu(37Cl, 4n)275Rg, 238U(40K, 5n)273Rg, 208Pb(70Zn, n)277Cn, 242Pu(42Ar, 3n)281Cn, 238U(47Ca, 3n)282Cn, 249Bk(33P, 4n)278Cn, 209Bi(70Zn, n)278Nh, 254Cf(31P, 4n)281Nh, 250Cm(37Cl, 4n)283Nh, 252Cf(32P, 4n)280Nh, 253Cf(33P, 4n)282Nh, 249Bk(33S, 5n)277Nh, 244Pu(48Ca, 3n)289Fl, 240Pu(43Ca, 3n)280Fl, 246Cm(36Ar, 4n)278Fl, 243Am(48Ca, 3n)288Mc, 244Pu(46Sc, 3n)287Mc, 246Bk(38Ar, 3n)281Mc, 240Pu(48Sc, 3n)285Mc, 236U(51V, 3n)284Mc, 248Cm(48Ca, 4n)292Lv, 249Cf(36Ar, 3n)282Lv, 240Cm(41Ca, 3n)278Lv, 252Cf(36Ar, 4n)284Lv, 249Bk(48Ca, 4n)293Ts, (48Ca, 3n)294Ts, 243Bk(46Ca, 2n)287Ts, 248Bk(48Ca, 3n)293Ts, 249Cf(48Ca, 3n)294Og, 244Pu(52Cr, 3n)293Og, 252Cf(47Ca, 3n)296Og, 253Cf(40Ca, 5n)288Og, 250Cm(50V, 3n)297119, 239Pu(53Mn, 3n)289119, 249Cf(44Ti, n)292120, (47Ti, n)295120, (50Ti, n)298120, 239Np(64Ni, 2n)301121, 252Cf(48V, 3n)297121, 253Cf(49V, 3n)299121, 225Rn(85Kr, X)310122, 223At(86Rb, n)308122, 239Pa(76Ge, n)314123, 242Np(72Zn, n)313123, 240Np(64Zn, 2n)302123, 232Th(71As, 2n)301123, 242,244Pu(72Zn, n)313124/315124, 227Ac(85Kr, n)311125, 245Bk(58Ni, n)302125, 249Bk(66Ni, n)314125, 247Bk(60Ni, n)305125, 232Th(83Kr, X)315126, (82Kr, X)314126, E not given; Z=5-40, A=10-96 projectiles; Z=72-114, A=180-290 targets; calculated evaporation residue fusion cross sections in 6645 different projectile-target combinations for synthesis of Z=110-126 superheavy nuclei, and their dependence on entrance channel effects of mass asymmetry, charge asymmetry, isospin asymmetry, Coulomb charge, Coulomb interaction parameter, mean fissility, and Businaro-Gallone mass asymmetry; compared with available experimental data. 266,270,272,274,276,278,280Ds, 278,280,282,284,286Cn, 272,274,276,278,280,282Fl, 276,278,280,282,284,286,288,290,292,294Lv, 292,294,296,298,300Og, 286,288,290,292,294,296,298,300,302,304120, 308,310,312,314122, 314,316,318124, 318,320126; calculated evaporation residue cross sections in fusion reactions as function of the mass asymmetry parameter.

NUCLEAR REACTIONS 231U(36Ar, X)267Ds, 208Pb(61Ni, X)269Ds, 232U(38Ar, X)270Ds, 249Bk(26Al, X)275Ds, 251Cf(25Mg, X)276Ds, 253Cf(24Mg, X)277Ds, 252Cf(26Mg, X)278Ds, 253,254Bk(26Al, X)279Ds/280Ds, 254Bk(27Al, X)281Ds, 248Cf(26Al, X)274Rg, 231Pa(44Ca, X)275Rg, 239Pu(37Cl, X)276Rg, 236U(41K, X)277Rg, 238U(40K, X)278Rg, 242Pu(37Cl, X)279Rg, 253Cf(27Al, X)280Rg, 248,250Cm(33P, X)281Rg/283Rg, 234Th(48Sc, X)282Rg, 239Np(39K, X)278Cn, 243Pu(36Ar, X)279Cn, 250Cf(30Si, X)280Cn, 248Cm(33S, X)281Cn, 249Bk(33P, X)282Cn, 253Cf(30Si, X)283Cn, 242Pu(42Ar, X)284Cn, 238U(37Ca, X)285Cn, 254Cf(32Si, X)286Cn, 212Bi(67Zn, X)279Nh, 226Ac(54Cr, X)280Nh, 249Bk(33S, X)282Nh, 235U(48Sc, X)283Nh, 252Cf(32P, X)284Nh, 254Cf(31P, X)285Nh, 253Cf(33P, X)286Nh, 250Cm(37Cl, X)287Nh, 219,220Rn(58Ni, X)277Fl/278Fl, 217At(63Cu, X)280Fl, 226Ac(55Mn, X)281Fl, 246Cm(36Ar, X)282Fl, 240Pu(43Ca, X)283Fl, 246Bk(38Ar, X)284Mc, 236U(51V, X)287Mc, 249Pu(48Sc, X)288Mc, 242,244Pu(47Sc, X)289Mc/291Mc, 244Pu(46Sc, X)290Mc, 240,242,243Cm(40Ca, X)280Lv/282Lv/283Lv, 240Cm(41Ca, X)281Lv, 248,249,250,252,253Cf(36Ar, X)284Lv/285Lv/286Lv/288Lv/289Lv, 250Cf(37Ar, X)287Lv, 243Bk(46Ca, X)289Mc, 242Am(49Ti, X)291Mc, 252Bk(42Ca, X)294Mc, 248Bk(48Ca, X)296Mc, 239Pu(53Cr, X)292Og, 253Cf(40Ca, X)293Og, 250Cf(44Ca, X)294Og, 230Ac(65Cu, X)295Og, 244Pu(52Cr, X)296Og, 238U(59Fe, X)297Og, 250Bk(48Sc, X)298Og, 252Cf, 254Bk(47Ca, X)299Og/301Og, 198Pt(91Nb, X)289119, 207Bi(83Kr, X)290119, 241Am(50Cr, X)291119, 248Bk(44Ti, X)292119, 227Ac(66Zn, X)293119, 229Th(65Cu, X)294119, 236U(59Co, X)295119, 243Am(53Cr, X)296119, 238U(60Co, X)298119, 250Cm(50V, X)300119, (51V, X)301119, 209Po(78Kr, 2n)285120, 202Pb(86Sr, 2n)286120, 232U(59Ni, 4n)287120, 209Po(81Kr, 2n)288120, 232Po(58Ni, n)289120, 204Pb(87Sr, n)290120, 228Pu(64Fe, n)291120, 249Cf(44Ti, n)292120, (47Ti, n)295120, (50Ti, n)298120, 244Cm(50Cr, n)293120, 242Am(53Mn, n)294120, 210Bi(87Rb, n)296120, 247Bk(51V, n)297120, 246Cm(54Cr, n)299120, 229Th(72Zn, n)300120, 226Ra(76Ge, n)301120, 250Cm(53Cr, n)302120, 246Bk(53Cr, X)299121, 252Cf(48V, X)300121, 228Ra(73As, X)301121, 250Cm(52Mn, X)302121, 239Np(64Ni, X)303121, 233Pa(71Zn, X)304121, 253Cf(54Cr, n)306122, 230Ra(78Se, n)307122, 223At(86Rb, n)308122, 228Rn(83Kr, 2n)309122, 225Rn(85Kr, X)310122, 226Ac(86As, n)311122, 234Ra(80Se, 2n)312122, 230Rn(84Kr, n)313122, 232Th(71As, n)302123, 240Pu(67Zn, 4n)303123, 214Bi(92Zr, n)305123, 213Pb(94Nb, n)306123, 241Pu(67Cu, n)307123, 214Bi(96Zr, 2n)308123, 228Ra(85Kr, n)312124, 242,244Pu(72Zn, n)313124/315124, 228,230Rn(87Sr, n)314124/316124, 245,246,247Bk(58Ni, X)303125/304125/305125, 247Bk(60Ni, X)307125, 239Np(69Ge, n)308125, 243Am(66Zn, X)309125, 242Am(68Zn, X)310125, 246Cm(65Cu, X)311125, 249Bk(66Ni, X)315125, 232Th(82Kr, X)314126, (83Kr, X)315126, (84Kr, X)316126, (86Kr, X)318126, E not given; calculated fusion evaporation residue σ for suitable projectile-target combinations to synthesize Z=110-126 superheavy nuclei. 208Pb(40Ca, X), (48Ti, X), (52Cr, X), (56Fe, X), (59Ni, X), (65Zn, X), 209Bi(45Ca, X), (51Ti, X), (52Cr, X), (59Ni, X), (65Zn, X), E not given; calculated evaporation residue σ for the synthesis of Z=102-113 elements in cold fusion reactions, and compared with experimental data. 208Pb, 226Ra, 238U, 237Np, 244Pu, 243Am, 247Cm, 247Bk, 251Cf(48Ca, X), E not given; calculated evaporation residue σ for the synthesis of Z=112-118 elements in hot fusion reactions, and compared with experimental data. 232Th(82Kr, X)314126; calculated large evaporation residue cross sections as high as 31 nb.

RADIOACTIVITY 283Cn, 279Ds, 275Hs, 271Sg, 267Rf, 263No, 259Fm, 255Cf, 247,251Bk, 243Am, 239Pu, 235Np(α); 251Cm, 247Am, 239Np, 235U(β-); 291Lv, 287Fl, 283Cn, 279Ds, 275Hs, 271Sg, 267Rf, 263No, 259Fm, 255Cf, 247,251Bk, 243Am, 239Pu, 235Np(α); 251Cm, 247Am, 239Np, 235U(β-); 296119, 292Ts, 288Mc, 284Nh, 280Rg, 276Mt, 272Bh, 268Db, 264Lr, 260Md, 256Es, 252Cf, 248Bk, 244Cm, 240Pu, 236Pu(α); 252Bk, 248Cm, 244Am, 236U(β-); 295Og, 291Lv, 287Fl, 283Cn, 279Ds, 275Hs, 271Sg, 267Rf, 263No, 259Fm, 255Cf, 247,251Bk, 243Am, 239Pu, 235Np(α); 251Cm, 247Am, 239Np, 235U(β-); 299120, 295Og, 291Lv, 287Fl, 283Cn, 279Ds, 275Hs, 271Sg, 267Rf, 263No, 259Fm, 255Cf, 247,251Bk, 243Am, 239Pu, 235Np(α); 251Cm, 247Am, 239Np, 235U(β-); predicted decay chains of 283Cn (Z=112), 291Lv (Z=116), 295Og (Z=118), 296119 (Z=119), and 299120 (Z=120).

doi: 10.1103/PhysRevC.102.064605
Citations: PlumX Metrics


2020SR01      Nucl.Phys. A995, 121689 (2020)

M.G.Srinivas, H.C.Manjunatha, K.N.Sridhar, N.Sowmya, A.Cecil Raj

Proton decay of actinide nuclei

doi: 10.1016/j.nuclphysa.2019.121689
Citations: PlumX Metrics


2019MA01      Nucl.Phys. A981, 17 (2019)

H.C.Manjunatha, K.N.Sridhar, H.B.Ramalingam

Synthesis of superheavy elements using 50, 51V-induced fusion reactions

NUCLEAR STRUCTURE 168Ta; calculated proton, neutron sp levels near Fermi surface, energy, J, π, occupation probability of orbitals, kinematic high spin rotational bands, band crossings, moment of inertia, major shells using PNC-CSM (Particle Number Conserving) method - Cranking Shell Model. High-spin rotational bands compared to data.

doi: 10.1016/j.nuclphysa.2018.10.084
Citations: PlumX Metrics


2019MA39      Nucl.Phys. A987, 382 (2019)

H.C.Manjunatha, K.N.Sridhar, N.Sowmya

Investigations on 64Ni + ZAnAZ=104-123(SHN)A=250-310

NUCLEAR REACTIONS 192Os, 193Ir, 194,195,196Pt, 197,198Au, 202Hg, 204,205Tl, 207,208Pb, 209Bi, 209Po, 223,226Ra, 225,227Ac, 230,232Th, 231Pa, 232,238U, 235,237Np, 239Pu, 241,243Am(64Ni, x), E*=35 MeV;(64Ni, xn), E*=20-45 MeV; calculated compound nucleus formation probability and yields of superheavies for Ni projectiles, evaporation residue elements σER for x=3, 4 and 5; identified suitable targets for synthesis of superheavy elements using 64Ni fusion reactions.

doi: 10.1016/j.nuclphysa.2019.05.006
Citations: PlumX Metrics


2019MA86      Phys.Part. and Nucl.Lett. 16, 647 (2019)

H.C.Manjunatha, K.N.Sridhar

A Detail Investigation on the Synthesis of Superheavy Element Z = 119

doi: 10.1134/s1547477119060487
Citations: PlumX Metrics


2019SR01      Nucl.Phys. A983, 195 (2019)

K.N.Sridhar, H.C.Manjunatha, H.B.Ramalingam

Studies on the synthesis superheavy element Z = 120

RADIOACTIVITY 290,291,292,293,294,295,296,297,298,299,300,301,302,303,304120 (SF), (α); calculated T1/2 of both α-decay and spontaneous fission using Coulomb potential plus proximity potential; calculated decay chains and maximum evaporation residue σ for different projectile-target combinations, proper E* and different neutron evaporation channels to achieve maximal σ; deduced superheavy σ, most probable projectile-target combination to synthetize superheavy Z=120 is Ti+Cf. Halflives and σ compared to available data.

doi: 10.1016/j.nuclphysa.2018.11.032
Citations: PlumX Metrics


2019SR04      Pramana 93, 81 (2019)

G.R.Sridhara, H.C.Manjunatha, K.N.Sridhar, H.B.Ramalingam

Systematic study of the α decay properties of actinides

RADIOACTIVITY 211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238Ac, 214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236Th, 217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240Pa, 219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245U, 221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245Np, 228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245Pu, 228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250Am, 233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251Cm, 255Cm, 234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252Bk, 238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255Cf, 241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258Es, 243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258Fm, 246,247,248,249,250,251,252,253,254,255,256,257,258,259Md, 246,247,248,249,250,251,252,253,254,255,256,257,258,259,260No, 251,252,253,254,255,256,257,258,259,260,261,262Lr(α); calculated T1/2. Comparison with available data.

RADIOACTIVITY 210Ac, 200,201,202,203,204,205,206,207,208,209,210,211,212,213Th, 200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216Pa, 210,211,212,213,214,215,216,217,218U, 215,216,217,218,219,220Np, 220,221,222,223,224,225,226,227Pu, 226,227Am, 252,253,254Cm, 230,231,232,233Bk, 253,254,255Bk, 230,231,232,233,234,235,236,237Cf, 235,236,237,238,239,240Es, 259,260Es, 235,236,237,238,239,240,241,242Fm, 259,260Fm, 240,241,242,243,244,245Md, 260Md, 245No, 261,262,263,264,265No, 245,246,247,248,249,250Lr, 263,264,265Lr(SF); calculated T1/2. Comparison with available data.

doi: 10.1007/s12043-019-1845-9
Citations: PlumX Metrics


2018MA19      Nucl.Phys. A971, 83 (2018)

H.C.Manjunatha, K.N.Sridhar

Fusion barrier characteristics of actinides

NUCLEAR STRUCTURE Z=89-103; calculated fusion barrier parameters (position, height, width) by using data of more than 7000 different combinations of projectile and target leading to the same composite system; deduced parameters, fusion σ formula. Compared with other parameterizations and with data.

doi: 10.1016/j.nuclphysa.2018.01.016
Citations: PlumX Metrics


2018MA31      Nucl.Phys. A975, 136 (2018)

H.C.Manjunatha, K.N.Sridhar

Investigation to synthesis more isotopes of superheavy nuclei Z=118

RADIOACTIVITY 291,293,295,297,299,301Og(α); calculated T1/2, α-decay chains (ending with Og(SF) nuclei).

NUCLEAR REACTIONS Cf(Ca, x), Cm(Ti, x), Bk(Sc, x), Am(V, x), Pu(Cr, x), U(Fe, x), Np(Mn, x), Th(Ni, x), Pb(Kr, x); calculated simple relations for maximum evapopration residue σ and the corresponding energy, reaction Q-values, nucleon separation energy, fusion barriers, evaporation residue σ vs projectile mass number, maximum evaporation σ, compound nucleus formation probability, survival probability, α-decay chains (ending with Og(SF) nuclei); deduced parameters.

doi: 10.1016/j.nuclphysa.2018.04.009
Citations: PlumX Metrics


2018MA50      Phys.Rev. C 98, 024308 (2018)

H.C.Manjunatha, K.N.Sridhar, N.Sowmya

Investigations of the synthesis of the superheavy element Z=122

NUCLEAR REACTIONS 250Cm(57Fe, X)307122*, E(cm)=288 MeV; 247Cm(60Fe, X)307122*, E(cm)=287 MeV; 244Pu(63Ni, X)307122*, E(cm)=302 MeV; 235U(72Zn, X)307122*, E(cm)=314 MeV; 228Ra(79Se, X)307122*, E(cm)=339 MeV; 250Cm(58Fe, X)308122*, E(cm)=284 MeV; 248Cm(60Fe, X)308122*, E(cm)=283 MeV; 244Pu(64Ni, X)308122*, E(cm)=297 MeV; 238U(70Zn, X)308122*, E(cm)=310 MeV; 236U(72Zn, X)308122*, E(cm)=310 MeV; 232Th(76Ge, X)308122*, E(cm)=322 MeV; 228Ra(80Se, X)308122*, E(cm)=334 MeV; 226Ra(82Se, X)308122*, E(cm)=334 MeV; 256Cf(53Cr, X)309122*, E(cm)=266 MeV; 255Cf(54Cr, X)309122*, E(cm)=266 MeV; 252Cm(57Fe, X)309122*, E(cm)=281 MeV; 251Cm(58Fe, X)309122*, E(cm)=281 MeV; 250Cm(59Fe, X)309122*, E(cm)=281 MeV; 249Cm(60Fe, X)309122*, E(cm)=280 MeV; 243Pu(66Ni, X)309122*, E(cm)=294 MeV; 239U(70Zn, X)309122*, E(cm)=308 MeV; 237U(72Fe, X)309122*, E(cm)=307 MeV; 233Th(76Ge, X)309122*, E(cm)=320 MeV; 230Ra(79Se, X)309122*, E(cm)=332 MeV; 227Ra(82Se, X)309122*, E(cm)=331 MeV; 256Cf(54Cr, X)310122*, E(cm)=263 MeV; 252Cm(58Fe, X)310122*, E(cm)=278 MeV; 251Cm(59Fe, X)310122*, E(cm)=278 MeV; 250Cm(60Fe, X)310122*, E(cm)=278 MeV; 244Pu(66Ni, X)310122*, E(cm)=291 MeV; 238U(72Zn, X)310122*, E(cm)=304 MeV; 234Th(76Ge, X)310122*, E(cm)=317 MeV; 235Ac(75As, X)310122*, E(cm)=324 MeV; 230Ra(80Se, X)310122*, E(cm)=329 MeV; 228Ra(82Se, X)310122*, E(cm)=328 MeV; (60Fe, X)311122*, E(cm)=277 MeV; 239U(72Zn, X)311122*, E(cm)=303 MeV; 236Ac(75As, X)311122*, E(cm)=323 MeV; 235Ac(76As, X)311122*, E(cm)=323 MeV; 234Ac(77As, X)311122*, E(cm)=322 MeV; 234Ra(77Se, X)311122*, E(cm)=329 MeV; 233Ra(78Se, X)311122*, E(cm)=328 MeV; 232Ra(79Se, X)311122*, E(cm)=328 MeV; 231Ra(80Se, X)311122*, E(cm)=328 MeV; 229Ra(82Se, X)311122*, E(cm)=327 MeV; 252Cm(60Fe, X)312122*, E(cm)=277 MeV; 236Ac(76As, X)312122*, E(cm)=322 MeV; 235Ac(77As, X)312122*, E(cm)=322 MeV; 234Ra(78Se, X)312122*, E(cm)=328 MeV; 233Ra(79Se, X)312122*, E(cm)=328 MeV; 232Ra(80Se, X)312122*, E(cm)=328 MeV; 230Ra(82Se, X)312122*, E(cm)=327 MeV; 236Ac(77As, X)313122*, E(cm)=322 MeV; 234Ra(79Se, X)313122*, E(cm)=328 MeV; 233Ra(80Se, X)313122*, E(cm)=327 MeV; 231Ra(82Se, X)313122*, E(cm)=327 MeV; 234Ra(80Se, X)314122*, E(cm)=327 MeV; 232Ra(82Se, X)314122*, E(cm)=326 MeV; calculated evaporation residue σ, compound nucleus formation probability, and survival probability. Dinuclear system (DNS) model. Discussed most probable projectile-target combinations to synthesize the superheavy element Z=122.

RADIOACTIVITY 307,308,309,310,311,312,313,314122(α), (12C), (14C), (14N), (20Ne), (22Ne), (24Ne), (28Si), (30Si), (32Si), (34Si), (36Ar), (38Ar), (40Ar), (42Ar), (44Ar), (40Ca), (42Ca), (44Ca), (46Ca), (48Ca), (SF); calculated half-lives, Q values, penetrability, branching ratios relative to α decay. Dinuclear system (DNS) model.

doi: 10.1103/PhysRevC.98.024308
Citations: PlumX Metrics


2018SR05      Phys.Rev. C 98, 064605 (2018)

K.N.Sridhar, H.C.Manjunatha, H.B.Ramalingam

Search for possible fusion reactions to synthesize the superheavy element Z=121

RADIOACTIVITY 299,300,301,302,303,304,305121, 295,296,297,298,299,300119, 291,292,293,294,295,296Ts, 287,288,289Mc(α), (SF); calculated half-lives for different decay modes using Wong model for SF decay. Comparison with several other theoretical calculations.

NUCLEAR STRUCTURE 280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330121; calculated S(n), S(p), S(2n), S(2p), Q(β).

NUCLEAR REACTIONS 249,250,251Cf(50V, 2n), 250,252Cf(51V, 2n), 244Pu(60Co, 2n)302121, 250Cm(55Mn, 2n)303121, E*=20-50 MeV; calculated evaporation σ(E). 299,300,301,302,303,304,305121; calculated compound nucleus probability, and survival probability at 35 MeV excitation energy and 2n channel reaction as a function of projectile mass number. 249,250,251,252,253,254Cf(48V, xn), (49V, xn), (50V, xn), (51V, xn), E*=20, 25, 30, 35 MeV; 247,248,249Bk(50Cr, xn), (51Cr, xn), (52Cr, xn), (53Cr, xn), (54Cr, xn), E*=20, 25, 30, 35 MeV; 244,245,246,247,248,250Cm(52Mn, xn), (53Mn, xn), (54Mn, xn), (55Mn, xn), E*=20, 25, 30, 35 MeV; 241,242,243Am(56Fe, xn), (57Fe, xn), (58Fe, xn), (60Fe, xn), E*=20, 25, 30, 35 MeV; 239,240,241,242,244Pu(59Co, xn), (60Co, xn), E*=15-35 MeV, x=1-6. calculated evaporation residue σ(E) for the production of 300,301,302,303,304,305121 nuclei, fusion barrier heights.

doi: 10.1103/PhysRevC.98.064605
Citations: PlumX Metrics


2017MA20      Nucl.Phys. A962, 7 (2017)

H.C.Manjunatha, K.N.Sridhar

Projectile target combination to synthesis superheavy nuclei Z=126

NUCLEAR STRUCTURE 307,318,319,320126; calculated different combinations of colliding ions with varied energy capable to reach isotopes of Z=126 element, their fusion, fission, survival σ, compound nucleus formation and survival probability, α-decay chains (finishing at spontaneously fissioning isotopes of Hs, Lv and Og); deduced, identified most probable combination of nuclei and energy.

doi: 10.1016/j.nuclphysa.2017.03.007
Citations: PlumX Metrics


2017MA25      Eur.Phys.J. A 53, 97 (2017)

H.C.Manjunatha, K.N.Sridhar

Survival and compound nucleus probability of super heavy element Z = 117

NUCLEAR STRUCTURE 289,290,291,292,293,294,295,296,297Ts; calculated possible projectile-target combinations for Ts synthesis, where the driving potential has its minimum, fusion σ, survival σ, fission σ.

NUCLEAR REACTIONS 238U, 242,243Pu, 243Am, 245,248Cm, 249Bk, 294Cf(48Ca, xn), E*=31-53 MeV; calculated evaporation residue σ leading to Z=112-117. 203Tl(86Kr, xn), 213Bi(80Se, xn), 222At(74Ge, xn), 223Fr(70Zn, xn), 232Ra(65Cu, xn), 232Ac(64Ni, xn), 249Bk(80Se, xn), 259,260Md(36S, xn), E(cm)=180-360 MeV; calculated evaporation residue σ leading on Ts isotopes; deduced suitable ways to synthetize Ts element.

doi: 10.1140/epja/i2017-12279-4
Citations: PlumX Metrics


2017MA42      Eur.Phys.J. A 53, 156 (2017)

H.C.Manjunatha, K.N.Sridhar

New semi-empirical formula for α-decay half-lives of the heavy and superheavy nuclei

RADIOACTIVITY Z=95-135(α); calculated T1/2 of isotopes of given nuclei (separately for even and odd Z) vs A/√; deduced parameters for newly suggested formula using fit to data of more than 2600 isotopes.

doi: 10.1140/epja/i2017-12337-y
Citations: PlumX Metrics


2017MA78      Eur.Phys.J. A 53, 196 (2017)

H.C.Manjunatha, K.N.Sridhar

A probability of synthesis of the superheavy element Z=124

NUCLEAR STRUCTURE 313,314,315,316,317,318124; calculated total fusion σ, survival probability, evaporation residue σ vs E(cm) for combinations of different isotopes Cm+Ni, Bk+Co, Cf+Fe, Pu+Zn, Ac+Br, Th+Se, U+Ge, Ra+Kr, Ac+Br, Th+Se, U+Ge, Pu+Zn, Rn+Sr, At+Y giving the composite system at excitation energy E*=0-95 MeV; deduced projectile-target combinations with maximal fusion σ, combinations with maximum survival σ and minimal fission σ.

doi: 10.1140/epja/i2017-12380-8
Citations: PlumX Metrics


1999MA32      Phys.Rev. D60, 014009 (1999)

P.Mathews, K.Sridhar, R.Basu

J/ψ + γ Production at the CERN LHC

doi: 10.1103/PhysRevD.60.014009
Citations: PlumX Metrics


1998MA68      Phys.Lett. 438B, 336 (1998); Erratum Phys.Lett. 450B, 479 (1999)

P.Mathews, P.Poulose, K.Sridhar

ηc Production at the Tevatron: A test of NRQCD

NUCLEAR REACTIONS 1H(p-bar, X), E(cm)=1.8 TeV; calculated η(c) production σ(pT). Testable NRQCD prediction.

doi: 10.1016/S0370-2693(98)00990-3
Citations: PlumX Metrics


1998SR03      Phys.Lett. 438B, 211 (1998)

K.Sridhar, A.D.Martin, W.J.Stirling

J/ψ Production at the Tevatron and HERA: The effect of kT Smearing

NUCLEAR REACTIONS 1H(p-bar, X), E(cm)=1.8 TeV; 1H(γ, X), E(cm)=100 GeV; analyzed J/ψ production data; deduced k(T) smearing effects, role in NRQCD tests.

doi: 10.1016/S0370-2693(98)00956-3
Citations: PlumX Metrics


1994LE32      Nucl.Phys. B419, 3 (1994)

E.Leader, K.Sridhar

γ(*), Z(*) Production in Polarized pp Scattering as a Probe of the Proton Spin Structure

NUCLEAR REACTIONS 1H(p, X), E=Collider energies; calculated Drell-Yan process σ.

doi: 10.1016/0550-3213(94)90354-9
Citations: PlumX Metrics


Back to query form


Note: The following list of authors and aliases matches the search parameter K.Sridhar: , K.N.SRIDHAR