NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 26, 2024.

Search: Author = H.Abusara

Found 22 matches.

Back to query form



2023AB29      Int.J.Mod.Phys. E32, 2350071 (2023)

H.Abusara, M.I.Alstaty

Systematic investigation of proxy-SU(3) model in light nuclei

NUCLEAR STRUCTURE 48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76Ni, 50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80Cu, 56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86Ga, 56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90Ge, 52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86As, 56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92Se; calculated the ground state deformation and its evolution with neutron number for several isotopic chains using the proxy-SU(3) model. Comparison with the results of covariant density functional theory (CDFT) as well as the finite-range droplet macroscopic model (FRDM).

doi: 10.1142/S0218301323500714
Citations: PlumX Metrics


2023BA33      Int.J.Mod.Phys. E32, 2350046 (2023)

H.Bashir, H.Abusara, S.Ahmad

Shape evolution of nuclei in the region of (A ≈ 30) using covariant density functional theory

NUCLEAR STRUCTURE 26,28,30,32,34Ne, 22,24,26,28,30,32,34Mg, 26,28,30,32,34Si, 24,26,28,30,32S, 26,28,30,32,34,36,38,40,42Ar, 34,36,38,40,42,44Ca; calculated binding energies, two-neutron separation energies, charge radii. 26Mg, 26Si; deduced shape coexistence.

doi: 10.1142/S0218301323500465
Citations: PlumX Metrics


2022AL15      Nucl.Phys. A1027, 122504 (2022)

M.I.Alstaty, H.Abusara

Ground state deformation comparison between covariant density functional theory and proxy-SU(3) model in transitional nuclei

NUCLEAR STRUCTURE 96,98,100,102,104,106,108,110,112Ru, 92,94,96,98,100,102,104,106,108Mo, 88,90,92,94,96,98,100,102,104,106,108,110Zr, 86,88,90,92,94,96,98,100,102,104,106,108Sr, 70,72,74,76,78,80,82,84,86,88,90,92,94,96,98,100Kr; calculated ground state deformation and its evolution with neutron number using the proxy-SU(3) model. Comparison with the results of the covariant density functional theory (CDFT) and available experimental data.

doi: 10.1016/j.nuclphysa.2022.122504
Citations: PlumX Metrics


2020AB05      Phys.Rev. C 101, 064322 (2020)

N.J.Abu Awwad, H.Abusara, S.Ahmad

Ground state properties of Zn, Ge, and Se isotopic chains in covariant density functional theory

NUCLEAR STRUCTURE 64,66,68,70,72,74,76,78,80,82,84,86,88,90,92,94,96Zn, 66,68,70,72,74,76,78,80,82,84,86,88,90,92,94Ge, 68,70,72,74,76,78,80,82,84,86,88,90,92,94,96Se; calculated potential energy surface (PES) in (β2, γ) plane, S(2n), neutron-, proton-, and charge-radii, β and γ deformations using the relativistic Hartree-Bogoliubov formalism with density-dependent zero- and finite-range NL3* and DD-PC1 interactions. Discussion of shape coexistence. Comparison with experimental data.

doi: 10.1103/PhysRevC.101.064322
Citations: PlumX Metrics


2019NA11      Nucl.Phys. A987, 295 (2019)

T.Naz, M.Bhuyan, S.Ahmad, S.K.Patra, H.Abusara

Correlation among the nuclear structure and effective symmetry energy of finite nuclei

NUCLEAR STRUCTURE Th, U; calculated even-mass isotopes Potential Energy Surfaces (PES), gs binding energy, mass excess, symmetry energy, deformation using Relativistic Mean-Field (RMF) theory, axially and axially deformed Relativistic Hartree Bogoliubov approaches with non-linear (NL3*) force, Density-Dependent Meson Exchange (DD-ME) and Point Coupling (DD-PC). Compared with other published calculations.

doi: 10.1016/j.nuclphysa.2019.04.011
Citations: PlumX Metrics


2018AF01      Phys.Scr. 93, 034002 (2018)

A.V.Afanasjev, H.Abusara, S.E.Agbemava

Octupole deformation in neutron-rich actinides and superheavy nuclei and the role of nodal structure of single-particle wavefunctions in extremely deformed structures of light nuclei

NUCLEAR STRUCTURE 292Cm, 36Ar; calculated octupole deformed shapes in neutron-rich actinides; deduced the presence of new region of octupole deformation in neutron-rich actinides, lack of octupole deformation in the ground states of superheavy for Z>108.

doi: 10.1088/1402-4896/aaa3d0
Citations: PlumX Metrics


2018AF02      Phys.Rev. C 97, 024329 (2018)

A.V.Afanasjev, H.Abusara

From cluster structures to nuclear molecules: The role of nodal structure of the single-particle wave functions

NUCLEAR STRUCTURE 12C, 28Si, 36Ar, 40Ca, 42Sc; calculated nodal structures of neutron density distributions of single-particle states with Nilsson quantum numbers in highly deformed structures such as rod-shaped, hyperdeformed and megadeformed of nonrotating and rotating nuclei; discussed coexistence of ellipsoidal mean-field-type structures and nuclear molecules at similar excitation energies. Cranked relativistic mean field (CRMF) calculations.

doi: 10.1103/PhysRevC.97.024329
Citations: PlumX Metrics


2017AB02      Phys.Rev. C 95, 054302 (2017)

H.Abusara, S.Ahmad, S.Othman

Triaxiality softness and shape coexistence in Mo and Ru isotopes

NUCLEAR STRUCTURE 96,98,100,102,104,106,108,110,112Ru, 92,94,96,98,100,102,104,105,108Mo; calculated potential energy surfaces in the (β2, γ) plane, binding energies, S(2n), neutron, proton, and charge radii; deduced triaxiality softness and shape coexistence. Relativistic-Hartree-Bogoliubov (RHB) formalism with separable pairing. Comparison with experimental data.

doi: 10.1103/PhysRevC.95.054302
Citations: PlumX Metrics


2017AB03      Turk.J.Phys. 41, 203 (2017)

H.Abusara, S.Ahmad

Search of islands of stability for hypothetical superheavy nuclei using covariant density functional theory

NUCLEAR STRUCTURE Z=100-220; calculated two-neutron and two-proton shell gaps, binding energy as a function of quadrupole deformation, pairing energy, proton single particle states. RHB formalism with separable pairing for the spherical and deformed calculations. The force parameters used are the density dependent finite range interaction, i.e. DD-ME2 parameter, and nonlinear meson exchange interaction, i.e. NL3* parameter.

doi: 10.3906/fiz-1610-24
Citations: PlumX Metrics


2017AB09      Phys.Rev. C 96, 064303 (2017)

H.Abusara, S.Ahmad

Shape evolution in Kr, Zr, and Sr isotopic chains in covariant density functional theory

NUCLEAR STRUCTURE 70,72,74,76,78,80,82,84,86,88,90,92,94,96,98,100Kr, 86,88,90,92,94,96,98,100,102,104,106,108Sr, 88,90,92,94,96,98,100,102,104,106,108,110Zr; calculated potential energy surfaces (PES) in (β2, γ) planes using triaxial relativistic-Hartree-Bogoliubov (RHB) formalism with DD-PC1 and DD-ME2 parameter sets for Kr isotopes, DD-PC1 and NL3* for Sr and Zr isotopes, two ground-state minima, binding energies, neutron and proton radii, rms charge radii, S(2n). Relativistic-Hartree-Bogoliubov formalism using density-dependent zero and finite range NN interactions, and separable pairing. Comparison with experimental values.

doi: 10.1103/PhysRevC.96.064303
Citations: PlumX Metrics


2017NO08      Phys.Rev. C 96, 034310 (2017)

K.Nomura, R.Rodriguez-Guzman, Y.M.Humadi, L.M.Robledo, H.Abusara

Structure of krypton isotopes within the interacting boson model derived from the Gogny energy density functional

NUCLEAR STRUCTURE 70,72,74,76,78,80,82,84,86,88,90,92,94,96,98,100Kr; calculated (β, γ)-deformation energy surfaces, mapped IBM energy surfaces, energies, B(E2) and ρ2(E0) for first and second 2+, first 4+ and second 0+ states using Gogny-D1M and relativistic DD-PC1 energy density functionals (EDFs). 74,76,96,98Kr; calculated positive-parity levels, J using Gogny-D1M EDF. 76,98Kr; calculated low-energy positive-parity levels, J using Gogny D1S, D1M, D1N, relativistic DD-ME2 and DD-PC1 EDFs. Discussed shape transition and shape coexistence phenomena. Interacting boson model (IBM), with Hamiltonian from mean-field calculations based on several parametrizations of the Gogny energy density functional and the relativistic mean-field Lagrangian. Comparison with available experimental data.

doi: 10.1103/PhysRevC.96.034310
Citations: PlumX Metrics


2013SN01      Phys.Lett. B 723, 61 (2013)

J.B.Snyder, W.Reviol, D.G.Sarantites, A.V.Afanasjev, R.V.F.Janssens, H.Abusara, M.P.Carpenter, X.Chen, C.J.Chiara, J.P.Greene, T.Lauritsen, E.A.McCutchan, D.Seweryniak, S.Zhu

High-spin transition quadrupole moments in neutron-rich Mo and Ru nuclei: Testing γ softness?

RADIOACTIVITY 252Cf(SF); measured decay products, Eγ, Iγ. 102,104,106,108Mo, 108,110,112Ru; deduced energy levels, J, π, kinematic and dynamic moments of inertia, B(E2), transition quadrupole moments, potential energy surfaces. Comparison with available data.

doi: 10.1016/j.physletb.2013.04.046
Citations: PlumX Metrics


2012AB01      Phys.Rev. C 85, 024314 (2012)

H.Abusara, A.V.Afanasjev, P.Ring

Fission barriers in covariant density functional theory: Extrapolation to superheavy nuclei

NUCLEAR STRUCTURE Z=90-98, N=138-154; calculated heights of inner fission barriers for even-even nuclei as functions of neutron and proton numbers. Comparison with experimental values. 276,278,280,282,284,286,288,290,292Cn, 280,282,284,286,288,290,292,294,296Fl, 284,286,288,290,292,294,296,298,300Lv, 288,290,292,294,296,298,300,302,304Og, 292,294,296,298,300,302,304,306,308120; calculated heights of axially symmetric and triaxial saddle points, deformation energy curves, ground state deformation parameters, inner and outer fission barriers, superdeformed minima. 240Pu, 278,290Cn, 286,300Lv, 292,304120; calculated potential energy surface contours in β-γ plane. Triaxial and octupole deformation. Covariant density functional models with NL3*, DD-ME2, and DD-PC1 parameterizations.

doi: 10.1103/PhysRevC.85.024314
Citations: PlumX Metrics


2012AF04      Int.J.Mod.Phys. E21, 1250025 (2012)

A.V.Afanasjev, H.Abusara, P.Ring

Recent progress in the study of fission barriers in covariant density functional theory

doi: 10.1142/S0218301312500255
Citations: PlumX Metrics


2011AF04      J.Phys.:Conf.Ser. 312, 092004 (2011)

A.V.Afanasjev, H.Abusara, E.Litvinova, P.Ring

Spectroscopy of the heaviest nuclei (theory)

NUCLEAR STRUCTURE 240Pu, 241Am, 251Md; calculated moments of inertia of one-quasiproton configurations using CDFT (covariant density functional theory); compared with data. 228,230,232,234Th, 232,234,236,238,240U, 237,238,240,242,244,246Pu, 242,244,246,248,250Cm, 252,254Cf; calculated deformation energy curves, fission barriers using RMF plus BCS with NL3* parameterization; compared to data.

doi: 10.1088/1742-6596/312/9/092004
Citations: PlumX Metrics


2011RI05      Int.J.Mod.Phys. E20, 235 (2011)

P.Ring, H.Abusara, A.V.Afanasjev, G.A.Lalazissis, T.Niksic, D.Vretenar

Modern applications of Covariant Density Functional theory

NUCLEAR STRUCTURE 228,230,232,234Th, 232,234,236,238,240U, 236,238,240,242,244,246Pu, 242,244,246,248,250Cm, 250,252Cf, 150Nd; calculated potential and deformation energy surfaces, J, π.

doi: 10.1142/S0218301311017570
Citations: PlumX Metrics


2010AB23      Phys.Rev. C 82, 044303 (2010)

H.Abusara, A.V.Afanasjev, P.Ring

Fission barriers in actinides in covariant density functional theory: The role of triaxiality

NUCLEAR STRUCTURE 228,230,232,234Th, 232,234,236,238,240U, 236,238,240,242,244,246Pu, 242,244,246,248,250Cm, 250,252Cf; calculated β2- and γ-deformation energy curves, potential energy surfaces, proton and neutron single-particle energies as a function of β2 and γ parameter, fission barriers as a function of proton and neutron number using relativistic mean-field theory and covariant density functional theory. Comparison with experimental data.

doi: 10.1103/PhysRevC.82.044303
Citations: PlumX Metrics


2010AF01      Phys.Rev. C 81, 014309 (2010)

A.V.Afanasjev, H.Abusara

Time-odd mean fields in covariant density functional theory: Nonrotating systems

NUCLEAR STRUCTURE 22,24,26,28,30,32,34,36,38Al, 30,32,34,36,38,40,42,44,46,48,50,52,54Cl;45,47,49,51,53,55,57,59,61,63,65,67,69,71,73,75,77,79,81,83,85Fe, 119,121,123,125,127,129,131,133,135,137,139,141,143,145,147,149,151,153,155,157,159,161,163,165,167,169,171,173,175,177,179,181,183Ce; Z=10-27, N-Z=-3-33; A=31-55; A=133-171, Z=94; N=1-180, Z=1-112; Z=11-25, N=Z; calculated impact of nuclear magnetism (NM) on binding energies, quadrupole deformation, total neutron current distributions, neutron and proton dependencies of additional binding energies, and energy splittings between signature of single-particle states using NL3 parametrization of relativistic mean field (RMF) Lagrangian. 32S; calculated neutron single particle energies (Routhians) as a function of the rotational frequency.

doi: 10.1103/PhysRevC.81.014309
Citations: PlumX Metrics


2010AF02      Phys.Rev. C 82, 034329 (2010)

A.V.Afanasjev, H.Abusara

Time-odd mean fields in covariant density functional theory: Rotating systems

NUCLEAR STRUCTURE 47V, 60Zn, 92Mo, 100Sn, 108Cd, 118Te, 118Ba, 136Nd, 142Sm, 146Gd, 152Dy, 158,160Eu, 194Pb; calculated proton-single particle energies, kinematic and dynamic moments of inertia, transition quadrupole moments and hexadecapole moments, and neutron current distributions for normal-deformed (ND), superdeformed (SD), hyperdeformed (HD) structures and terminating states in a rotating frame. Z=50-74, N=50-110; Z=42-58, N=44-78; calculated contribution of nuclear magnetism (NM) to kinematic moments of inertia for ND, SD and HD structures. Z=63, N=131-209; calculated contribution of nuclear magnetism to binding energies of odd-odd Eu nuclei. Time-odd mean field (nuclear magnetism) calculations in the framework of covariant density functional theory (CDFT).

doi: 10.1103/PhysRevC.82.034329
Citations: PlumX Metrics


2009AB02      Phys.Rev. C 79, 024317 (2009)

H.Abusara, A.V.Afanasjev

Hyperdeformation in the Cd isotopes: A microscopic analysis

NUCLEAR STRUCTURE 96,98,100,102,104,106,107,108,109Cd; calculated energies of hyperdeformed configurations as a function of angular momentum, dynamic moments of inertia, transition quadrupole moments and mass hexadecapole moments using cranked relativistic mean field theory.

doi: 10.1103/PhysRevC.79.024317
Citations: PlumX Metrics


2009IJ01      Phys.Rev. C 80, 034322 (2009)

Q.A.Ijaz, W.C.Ma, H.Abusara, A.V.Afanasjev, Y.B.Xu, R.B.Yadav, Y.C.Zhang, M.P.Carpenter, R.V.F.Janssens, T.L.Khoo, T.Lauritsen, D.T.Nisius

Excited superdeformed bands in 154Dy and cranked relativistic mean field interpretation

NUCLEAR REACTIONS 122Sn(36S, 4n), E=165 MeV; measured Eγ, Iγ, γγ-coin using Gammasphere array. 154Dy; deduced levels, J, π, superdeformed bands, dynamic moments of inertia, neutron single particle energies. Comparison with the cranked relativistic mean field calculations.

doi: 10.1103/PhysRevC.80.034322
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2008AF02      Phys.Rev. C 78, 014315 (2008)

A.V.Afanasjev, H.Abusara

Hyperdeformation in the cranked relativistic mean field theory: The Z=40-58 region of the nuclear chart

NUCLEAR STRUCTURE 122,124,126,128,130,132,134,136,138,140,142Ce, 104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136Te, 116,118,120,122,124,126,128,130,132,134,136Ba, 102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134Sn, 110,112,114,116,118,120,122,124,126,128,130,132,134Xe, 92,94,96,98,100,102,104,106,108,110,112,114Pd, 90,92,94,96,98,100,102,104,106Ru, 86,88,90,92,94,96,98,100Mo, 80,82,84,86,88,90,92Zr, 106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136Cd; calculated moments of inertia, proton densities, single particle orbital energy gaps. 110Te, 110,111,112,123I, 125Cs, 112,123,124,125Xe; calculated dynamical moments of inertia, effective alignments, transition quadrupole moments. 142Ce; calculated potential energy surfaces. 108Cd; calculated single particle energies. 102Pd; calculated neutron densities. 121,122I; systematics. Cranked relativistic mean-field theory.

doi: 10.1103/PhysRevC.78.014315
Citations: PlumX Metrics


Back to query form