NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of May 6, 2024.

Search: Author = Y.M.Humadi

Found 4 matches.

Back to query form



2021RO02      J.Phys.(London) G48, 015103 (2021)

R.Rodriguez-Guzman, Y.M.Humadi, L.M.Robledo

Microscopic description of quadrupole-octupole coupling in actinides with the Gogny-D1M energy density functional

NUCLEAR STRUCTURE 220,222,224,226,228,230,232,234,236,238,240U, 222,224,226,228,230,232,234,236,238,240,242Pu, 224,226,228,230,232,234,236,238,240,242,244Cm, 226,228,230,232,234,236,238,240,242,244,246Cf; calculated correlation energies, negative-parity excitation energies, reduced transition probabilities B(E1) and B(E3) using static Hartree-Fock-Bogoliubov approach, dynamical beyond-mean-field correlations via both parity restoration and symmetry-conserving generator coordinate method calculations based on the parametrization D1M of the Gogny energy density functional. Comparison with experimental data.

doi: 10.1088/1361-6471/abb000
Citations: PlumX Metrics


2020NO13      Phys.Rev. C 102, 064326 (2020)

K.Nomura, R.Rodriguez-Guzman, Y.M.Humadi, L.M.Robledo, J.E.Garcia-Ramos

Octupole correlations in light actinides from the interacting boson model based on the Gogny energy density functional

NUCLEAR STRUCTURE 218,220,222,224,226,228,230,232,234,236,238Ra, 220,222,224,226,228,230,232,234,236,238,240Th; calculated potential energy surfaces in (β2, β3) plane using self-consistent mean-field (SCMF), and interacting boson model (IBM), energies of yrast positive-parity and negative-parity states, and relative energy splitting between positive- and negative-parity yrast bands, B(E1), B(E2), B(E3), transition quadrupole and octupole moments. Hartree-Fock-Bogoliubov approximation, based on Gogny-D1M energy density functional, and sdf interacting boson model (IBM) Hamiltonian for quadrupole-octupole coupling and collective excitations in even-even actinides. Comparison with experimental data.

doi: 10.1103/PhysRevC.102.064326
Citations: PlumX Metrics


2020RO04      Eur.Phys.J. A 56, 43 (2020)

R.Rodriguez-Guzman, Y.M.Humadi, L.M.Robledo

Microscopic description of fission in superheavy nuclei with the parametrization D1M* of the Gogny energy density functional

doi: 10.1140/epja/s10050-020-00051-w
Citations: PlumX Metrics


2017NO08      Phys.Rev. C 96, 034310 (2017)

K.Nomura, R.Rodriguez-Guzman, Y.M.Humadi, L.M.Robledo, H.Abusara

Structure of krypton isotopes within the interacting boson model derived from the Gogny energy density functional

NUCLEAR STRUCTURE 70,72,74,76,78,80,82,84,86,88,90,92,94,96,98,100Kr; calculated (β, γ)-deformation energy surfaces, mapped IBM energy surfaces, energies, B(E2) and ρ2(E0) for first and second 2+, first 4+ and second 0+ states using Gogny-D1M and relativistic DD-PC1 energy density functionals (EDFs). 74,76,96,98Kr; calculated positive-parity levels, J using Gogny-D1M EDF. 76,98Kr; calculated low-energy positive-parity levels, J using Gogny D1S, D1M, D1N, relativistic DD-ME2 and DD-PC1 EDFs. Discussed shape transition and shape coexistence phenomena. Interacting boson model (IBM), with Hamiltonian from mean-field calculations based on several parametrizations of the Gogny energy density functional and the relativistic mean-field Lagrangian. Comparison with available experimental data.

doi: 10.1103/PhysRevC.96.034310
Citations: PlumX Metrics


Back to query form