NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of May 19, 2024.

Search: Author = T.Sun

Found 55 matches.

Back to query form



2024SU02      Phys.Rev. C 109, 014323 (2024)

T.-T.Sun, B.-X.Li, K.Liu

Probing spin and pseudospin symmetries in deformed nuclei by the Green's function method

doi: 10.1103/PhysRevC.109.014323
Citations: PlumX Metrics


2023LI21      Appl.Radiat.Isot. 197, 110824 (2023)

C.Li, H.Zhou, H.Liu, T.Sun, H.Fan, J.Yang, W.Xiao

Neutron spectrometry of D2O-moderated 252Cf with Bonner sphere spectrometer

doi: 10.1016/j.apradiso.2023.110824
Citations: PlumX Metrics


2022SU17      Chin.Phys.C 46, 074106 (2022)

Q.-K.Sun, T.-T.Sun, W.Zhang, S.-S.Zhang, C.Chen

Possible shape coexistence in odd-A Ne isotopes and the impurity effects of Λ hyperons

NUCLEAR STRUCTURE 18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34Ne; calculated binding energy per nucleon, quadrupole deformation, potential energy curves (PECs) as a function of the deformation parameter in the framework of the multidimensionally constrained relativistic-mean-field (MDC-RMF) model.

doi: 10.1088/1674-1137/ac6153
Citations: PlumX Metrics


2022TA05      Phys.Rev. C 105, 044324 (2022)

Y.Tanimura, H.Sagawa, T.-T.Sun, E.Hiyama

Ξ hypernuclei 15ΞC and 12ΞBe and the ΞN two-body interaction

NUCLEAR STRUCTURE 15C, 12Be; calculated levels, J, π, energy spectrum of the 15C and 12Be Ξ hypernuclei. Relativistic mean filed model taking into account meson exchange ΞN interactions.

doi: 10.1103/PhysRevC.105.044324
Citations: PlumX Metrics


2022ZH59      Chin.Phys.C 46, 104105 (2022)

W.Zhang, Z.Y.Li, W.Gao, T.T.Sun

A Global Weizsacker mass model with relativistic mean field shell correction

NUCLEAR STRUCTURE N=10-160; calculated neutron, proton, and total shell correction energy and binding energy as functions of deformation, absolute ground state deformations via relativistic mean field calculations using the density functional DD-LZ1. Comparison with available data.

doi: 10.1088/1674-1137/ac7b18
Citations: PlumX Metrics


2020CH26      Chin.Phys.C 44, 084105 (2020)

C.Chen, A.Li, Y.Li, T.Sun

Single-particle resonant states with Green's function method

NUCLEAR STRUCTURE 120Sn; calculated single-particle energies, resonant states, J, π.

doi: 10.1088/1674-1137/44/8/084105
Citations: PlumX Metrics


2020SU04      Phys.Rev. C 101, 014321 (2020)

T.-T.Sun, L.Qian, C.Chen, P.Ring, Z.P.Li

Green's function method for the single-particle resonances in a deformed Dirac equation

NUCLEAR STRUCTURE 37Mg; calculated Nilsson levels for bound and resonant orbitals in the halo candidate nucleus, density of states, energies of the single-neutron resonant states, single-neutron levels using Green's function (GF) method to solve the coupled-channel Dirac equation with quadrupole-deformed Woods-Saxon potentials. Comparison with other theoretical approaches.

doi: 10.1103/PhysRevC.101.014321
Citations: PlumX Metrics


2019SU06      Phys.Rev. C 99, 034310 (2019)

T.-T.Sun, W.-L.Lu, L.Qian, Y.-X.Li

Green's function method for the spin and pseudospin symmetries in the single-particle resonant states

NUCLEAR STRUCTURE 208Pb; calculated density of neutron states, energies and widths of single-neutron resonant states, and spin- and pseudospin-doublets of single-neutron spectra, reduced spin-orbit (SO) splitting, reduced SO width splitting, single-particle levels and the mean-field potential for neutrons, reduced energy splittings versus reduced width splittings, and distribution functions. Solution of the Dirac equation containing a Woods-Saxon mean-field potential with Green's function method.

doi: 10.1103/PhysRevC.99.034310
Citations: PlumX Metrics


2019SU09      Phys.Rev. C 99, 054316 (2019)

T.-T.Sun, Z.-X.Liu, L.Qian, B.Wang, W.Zhang

Continuum Skyrme-Hartree-Fock-Bogoliubov theory with Green's function method for odd-A nuclei

NUCLEAR STRUCTURE 159Sn; calculated neutron occupation number density, neutron density and neutron pairing density distributions, neutron Hartree-Fock single-particle energy. Z=50, A=122-178; calculated S(2n), neutron quasiparticle levels, neutron rms radii and neutron densities. Self-consistent continuum Skyrme-HFB theory with the Green's function technique in the coordinate space including equal filling approximation blocking effects. Comparison with experimental values, and with other theoretical predictions.

doi: 10.1103/PhysRevC.99.054316
Citations: PlumX Metrics


2018LI43      Phys.Rev. C 98, 024316 (2018)

Z.-X.Liu, C.-J.Xia, W.-L.Lu, Y.-X.Li, J.N.Hu, T.-T.Sun

Relativistic mean-field approach for Λ, Ξ and Σ Hypernuclei

NUCLEAR STRUCTURE 17O, 17N, 17F, 41Ca, 41K, 41Sc, 91Zr, 91Nb, 91Y, 209Pb, 209Tl, 209Bi; calculated mean-field potentials, single-particle levels, density distributions, energies, radii, tensor potentials, and binding energies for hyperons (Λ, Ξ and Σ) in the hypernuclei, starting with the core nuclei of 16O, 40Ca and 208Pb. Relativistic mean-field model. Comparison with available experimental data.

doi: 10.1103/PhysRevC.98.024316
Citations: PlumX Metrics


2018SU02      Chin.Phys.C 42, 025101 (2018)

T.-T.Sun, C.-J.Xia, S.-S.Zhang, M.S.Smith

Massive neutron stars and Λ-hypernuclei in relativistic mean field models

NUCLEAR STRUCTURE 208Pb, 139La, 89Y, 51V, 40Ca, 28Si, 16O; calculated predicted single binding energies of hypernuclei using the effective interactions PK1 and TM1. Comparison with the experimental data.

doi: 10.1088/1674-1137/42/2/025101
Citations: PlumX Metrics


2017LU12      J.Phys.(London) G44, 125104 (2017)

W.-L.Lu, Z.-X.Liu, S.-H.Ren, W.Zhang, T.-T.Sun

(Pseudo)spin symmetry in the single-neutron spectrum of L hypernuclei

NUCLEAR STRUCTURE 120,121,122Sn; calculated hypernuclei single-neutron spectrum, spin-orbit splittings. Relativistic mean field (RMF) model.

doi: 10.1088/1361-6471/aa8e2d
Citations: PlumX Metrics


2017RE04      Phys.Rev. C 95, 054318 (2017)

S.-H.Ren, T.-T.Sun, W.Zhang

Green's function relativistic mean field theory for Λ hypernuclei

NUCLEAR STRUCTURE 61Ca; calculated density of states of Λ hyperon, Single-Λ energies, integrands for the density of states using RMF-GF method. 61,62Ca; calculated energies and widths of single-neutron resonant states single-L 61ΛCa and double-Λ 62ΛΛ62Ca. A=53-73, Z=20; calculated single-hyperon particle levels for the Λ hyperon in A=53-73 Ca isotopes as a function of mass number.12C, 16O, 28Si, 40Ca, 51V, 89Y, 139La, 208Pb; calculated single-Λ binding energies for the Λ hypernuclei using the RMF-GF method and compared with experimental data. Relativistic mean field theory with the Green's function (RMF-GF) method for hypernuclei.

doi: 10.1103/PhysRevC.95.054318
Citations: PlumX Metrics


2017SH09      Eur.Phys.J. A 53, 40 (2017)

M.Shi, X.-X.Shi, Z.-M.Niu, T.-T.Sun, J.-Y.Guo

Relativistic extension of the complex scaled Green's function method for resonances in deformed nuclei

NUCLEAR STRUCTURE A=31; calculated continuum level density for the 9/2[404] state, density of continuum states with quadrupole deformation and selected rotation angles; deduced influence of potential and its parameters.

doi: 10.1140/epja/i2017-12241-6
Citations: PlumX Metrics


2017SU30      Phys.Rev. C 96, 044312 (2017)

T.-T.Sun, W.-L.Lu, S.-S.Zhang

Spin and pseudospin symmetries in the single-Λ spectrum

NUCLEAR STRUCTURE 209Pb; calculated single-particle spectra for the Λ hyperon for spin and pseudospin doublets of hypernucleus, reduced spin-orbit (SO) splitting, single-particle wave functions for the Λ hyperon. discussed effect of ωΛΛ tensor coupling on spin and pseudospin symmetries. Relativistic mean-field theory.

doi: 10.1103/PhysRevC.96.044312
Citations: PlumX Metrics


2016SU07      J.Phys.(London) G43, 045107 (2016)

T.T.Sun, Z.M.Niu, S.Q.Zhang

Single-proton resonant states and the isospin dependence investigated by Green's function relativistic mean field theory

NUCLEAR STRUCTURE 120Sn; calculated single-particle levels and density of states, resonance parameters. The relativistic mean field theory formulated with Green's function method (RMF-GF).

doi: 10.1088/0954-3899/43/4/045107
Citations: PlumX Metrics


2016SU27      Phys.Rev. C 94, 064319 (2016)

T.T.Sun, E.Hiyama, H.Sagawa, H.-J.Schulze, J.Meng

Mean-field approaches for Ξ- hypernuclei and current experimental data

NUCLEAR STRUCTURE 15C, 12Be; calculated binding energies of hypernuclei with Ξ- hyperon and the core nuclei of 14N and 11B; reproduced results for observed 2015 Kiso event for 15C at the KEK-E373 experiment. Relativistic-mean-field and Skyrme-Hartree-Fock models.

doi: 10.1103/PhysRevC.94.064319
Citations: PlumX Metrics


2014SU21      Phys.Rev. C 90, 054321 (2014)

T.T.Sun, S.Q.Zhang, Y.Zhang, J.N.Hu, J.Meng

Green's function method for single-particle resonant states in relativistic mean field theory

NUCLEAR STRUCTURE 120Sn; calculated density of neutron states, single-neutron energies for positive and negative-parity bound states, energies and widths of single-neutron resonant states. Relativistic mean field theory formulated with Green's function method.

doi: 10.1103/PhysRevC.90.054321
Citations: PlumX Metrics


2013LI12      Phys.Rev.Lett. 110, 092502 (2013)

G.Li, R.Segel, N.D.Scielzo, P.F.Bertone, F.Buchinger, S.Caldwell, A.Chaudhuri, J.A.Clark, J.E.Crawford, C.M.Deibel, J.Fallis, S.Gulick, G.Gwinner, D.Lascar, A.F.Levand, M.Pedretti, G.Savard, K.S.Sharma, M.G.Sternberg, T.Sun, J.Van Schelt, R.M.Yee, B.J.Zabransky

Tensor Interaction Limit Derived From the α-β-ν(bar) Correlation in Trapped 8Li Ions

RADIOACTIVITY 8Li(β-) [from 7Li(d, p), E=24 MeV]; measured decay products, Eα, Iα; deduced α-β-ν correlation in the Gamow-Teller decay, limit on tensor component contribution.

doi: 10.1103/PhysRevLett.110.092502
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2012SU13      Phys.Rev. C 86, 014305 (2012)

T.T.Sun, B.Y.Sun, J.Meng

BCS-BEC crossover in nuclear matter with the relativistic Hartree-Bogoliubov theory

doi: 10.1103/PhysRevC.86.014305
Citations: PlumX Metrics


2012VA02      Phys.Rev. C 85, 045805 (2012)

J.Van Schelt, D.Lascar, G.Savard, J.A.Clark, S.Caldwell, A.Chaudhuri, J.Fallis, J.P.Greene, A.F.Levand, G.Li, K.S.Sharma, M.G.Sternberg, T.Sun, B.J.Zabransky

Mass measurements near the r-process path using the Canadian Penning Trap mass spectrometer

ATOMIC MASSES 133,134Sb, 134,135,136,137Te, 135,136,137,138,139I, 137,138,139,140,141Xe, 141,142Cs, 153,155Pr, 153,155,157Nd, 153,155,156,157,158,159Pm, 155,157,158,159,160,161Sm, 158,159,160,161Eu, 163Gd; measured cyclotron frequency ratios; deduced mass excess, atomic masses. Canadian Penning Trap mass spectrometer at ANL. Comparison with AME-2003 evaluation and theoretical mass models. Systematics of S(2n) values.

doi: 10.1103/PhysRevC.85.045805
Citations: PlumX Metrics


2011CH66      J.Phys.:Conf.Ser. 312, 042009 (2011)

A.Chaudhuri, P.F.Bertone, F.Buchinger, S.Caldwell, J.A.Clark, J.E.Crawford, C.M.Deibel, S.Gulick, D.Lascar, A.F.Levand, G.Li, G.Savard, R.E.Segel, K.S.Sharma, M.G.Sternberg, T.Sun, J.Van Schelt

Studies of neutron-rich nuclei using the CPT mass spectrometer at CARIBU

doi: 10.1088/1742-6596/312/4/042009
Citations: PlumX Metrics


2011FA10      Phys.Rev. C 84, 045807 (2011)

J.Fallis, J.A.Clark, K.S.Sharma, G.Savard, F.Buchinger, S.Caldwell, A.Chaudhuri, J.E.Crawford, C.M.Deibel, S.Gulick, A.A.Hecht, D.Lascar, J.K.P.Lee, A.F.Levand, G.Li, B.F.Lundgren, A.Parikh, S.Russell, M.Scholte-van de Vorst, N.D.Scielzo, R.E.Segel, H.Sharma, S.Sinha, M.G.Sternberg, T.Sun, I.Tanihata, J.Van Schelt, J.C.Wang, Y.Wang, C.Wrede, Z.Zhou

Mass measurements of isotopes of Nb, Mo, Tc, Ru, and Rh along the Νp- and rp-process paths using the Canadian Penning trap mass spectrometer

ATOMIC MASSES 87Nb, 87,90,91,92Mo, 90,91,92,93Tc, 90,91,92,93,94Ru, 92,93,94,95Rh; measured cyclotron frequency ratios using Canadian Penning trap mass spectrometer; deduced mass excesses. 88Tc; deduced S(p). Comparison with previous measurements and AME-2003. Z=42-47, A=87-96; analyzed systematics of S(2p) values. Z=42-45, N=45-52; analyzed systematics of S(2n) values. Z=42-45, A=87-95; analyzed systematics of S(p) values. 94mAg; discussed 2p decay mode of 21+ isomer.

NUCLEAR REACTIONS 58Ni(40Ca, X)87Nb/87Mo/90Mo/92Mo/90Tc/90Tc/92Tc/93Tc/90Ru/91Ru/92Ru/93Ru/92Rh/93Rh/94Rh, E=185, 190, 200 MeV; 58Ni(36Ar, X)91Tc/91Ru, E=125 MeV; Ni(36Ar, X)90Mo/91Mo/90Tc/91Tc/92Tc/91Ru/92Ru, E=130, 150 MeV; Ni(40Ca, X)93Tc/93Ru/94Ru/94Rh/95Rh, E=170 MeV; measured yields at ATLAS facility.

doi: 10.1103/PhysRevC.84.045807
Citations: PlumX Metrics


2011SA71      Hyperfine Interactions 199, 301 (2011)

G.Savard, R.C.Pardo, S.Baker, C.N.Davids, A.Levand, D.Peterson, D.G.Phillips, T.Sun, R.Vondrasek, B.J.Zabransky, G.P.Zinkann

CARIBU: a new facility for the study of neutron-rich isotopes

doi: 10.1007/s10751-011-0325-5
Citations: PlumX Metrics


2009SC19      Phys.Rev. C 80, 025501 (2009)

N.D.Scielzo, S.Caldwell, G.Savard, J.A.Clark, C.M.Deibel, J.Fallis, S.Gulick, D.Lascar, A.F.Levand, G.Li, J.Mintz, E.B.Norman, K.S.Sharma, M.Sternberg, T.Sun, J.Van Schelt

Double-β-decay Q values of 130Te, 128Te, and 120Te

ATOMIC MASSES 128,129,130,131,132Xe, 120,128,130Te, 120Sn; measured mass differences of 120Te-120Sn, 128Te-128Xe, 130Te-130Xe and 132Xe-129Xe pairs using Penning Trap mass spectrometer.

RADIOACTIVITY 120Te(2β+); 128,130Te(2β-); measured parent-daughter mass differences by Penning-trap spectrometer; deduced Q values.

doi: 10.1103/PhysRevC.80.025501
Citations: PlumX Metrics


2008FA11      Phys.Rev. C 78, 022801 (2008)

J.Fallis, J.A.Clark, K.S.Sharma, G.Savard, F.Buchinger, S.Caldwell, J.E.Crawford, C.M.Deibel, J.L.Fisker, S.Gulick, A.A.Hecht, D.Lascar, J.K.P.Lee, A.F.Levand, G.Li, B.F.Lundgren, A.Parikh, S.Russell, M.Scholte-van de Vorst, N.D.Scielzo, R.E.Segel, H.Sharma, S.Sinha, M.Sternberg, T.Sun, I.Tanihata, J.Van Schelt, J.C.Wang, Y.Wang, C.Wrede, Z.Zhou

Determination of the proton separation energy of 93Rh from mass measurements

ATOMIC MASSES 92Ru, 93Rh; measured masses; deduced mass excesses, proton separation energies. Penning trap method.

doi: 10.1103/PhysRevC.78.022801
Citations: PlumX Metrics


2007BO50      Eur.Phys.J. Special Topics 150, 337 (2007)

G.Bollen, C.Bachelet, M.Block, D.A.Davies, M.Facina, C.M.Folden, C.Guenaut, J.Huikari, E.Kwan, A.Kwiatowski, D.J.Morrissey, G.Pang, A.Prinke, R.Ringle, J.Savory, P.Schury, S.Schwarz, C.Sumithrarachchi, T.Sun

Penning trap mass measurements of rare isotopes produced by projectile fragmentation with LEBIT at NSCL

ATOMIC MASSES 80As, 81Se; measured masses a penning trap mass spectrometer.

doi: 10.1140/epjst/e2007-00340-3
Citations: PlumX Metrics


2007RI08      Phys.Rev. C 75, 055503 (2007)

R.Ringle, T.Sun, G.Bollen, D.Davies, M.Facina, J.Huikari, E.Kwan, D.J.Morrissey, A.Prinke, J.Savory, P.Schury, S.Schwarz, C.S.Sumithrarachchi

High-precision Penning trap mass measurements of 37, 38Ca and their contributions to conserved vector current and isobaric mass multiplet equation

ATOMIC MASSES 37,38Ca; measured masses using penning trap mass spectrometer. Deduced mass excess and implications on CVC and IMME.

doi: 10.1103/PhysRevC.75.055503
Citations: PlumX Metrics


2007SC24      Phys.Rev. C 75, 055801 (2007); Erratum Phys.Rev. C 80, 029905 (2009)

P.Schury, C.Bachelet, M.Block, G.Bollen, D.A.Davies, M.Facina, C.M.Folden III, C.Guenaut, J.Huikari, E.Kwan, A.Kwiatkowski, D.J.Morrissey, R.Ringle, G.K.Pang, A.Prinke, J.Savory, H.Schatz, S.Schwarz, C.S.Sumithrarachchi, T.Sun

Precision mass measurements of rare isotopes near N = Z = 33 produced by fast beam fragmentation

ATOMIC MASSES 63,64Ga, 64,65,66Ge, 66,67,68As, 69Se; measured masses using penning trap mass spectrometer. Astrophysical implications discussed.

doi: 10.1103/PhysRevC.75.055801
Citations: PlumX Metrics


2006BO11      Phys.Rev.Lett. 96, 152501 (2006)

G.Bollen, D.Davies, M.Facina, J.Huikari, E.Kwan, P.A.Lofy, D.J.Morrissey, A.Prinke, R.Ringle, J.Savory, P.Schury, S.Schwarz, C.Sumithrarachchi, T.Sun, L.Weissman

Experiments with Thermalized Rare Isotope Beams from Projectile Fragmentation: A Precision Mass Measurement of the Superallowed β Emitter 38Ca

ATOMIC MASSES 38Ca; measured mass. Penning trap mass spectrometer.

doi: 10.1103/PhysRevLett.96.152501
Citations: PlumX Metrics


2006RI15      Int.J. Mass Spectrom. 251, 300 (2006)

R.Ringle, P.Schury, T.Sun, G.Bollen, D.Davies, J.Huikari, E.Kwan, D.J.Morrissey, A.Prinke, J.Savory, S.Schwarz, C.Sumithrarachchi

Precision mass measurements with LEBIT at MSU

ATOMIC MASSES 78,80,82,83,84Kr; measured masses using the LEBIT Penning trap mass spectrometer. Comparison with 2003 mass evaluation.

doi: 10.1016/j.ijms.2006.02.011
Citations: PlumX Metrics


2005RI18      Eur.Phys.J. A 25, Supplement 1, 59 (2005)

R.Ringle, G.Bollen, D.Lawton, P.Schury, S.Schwarz, T.Sun

The LEBIT 9.4 T Penning trap system

doi: 10.1140/epjad/i2005-06-132-y
Citations: PlumX Metrics


2005SC26      Eur.Phys.J. A 25, Supplement 1, 51 (2005)

P.Schury, G.Bollen, D.A.Davies, A.Doemer, D.Lawton, D.J.Morrissey, J.Ottarson, A.Prinke, R.Ringle, T.Sun, S.Schwarz, L.Weissman

Precision experiments with rare isotopes with LEBIT at MSU

ATOMIC MASSES 78,80,82,83,84,86Kr; measured masses. Penning trap mass spectrometer.

doi: 10.1140/epjad/i2005-06-131-0
Citations: PlumX Metrics


2005SU23      Eur.Phys.J. A 25, Supplement 1, 61 (2005)

T.Sun, S.Schwarz, G.Bollen, D.Lawton, R.Ringle, P.Schury

Commissioning of the ion beam buncher and cooler for LEBIT

doi: 10.1140/epjad/i2005-06-126-9
Citations: PlumX Metrics


2004BO44      Nucl.Phys. A746, 597c (2004)

G.Bollen, S.Schwarz, D.Davies, P.Lofy, D.J.Morrissey, R.Ringle, P.Schury, T.Sun, L.Weissman

Towards precision experiments with LEBIT at NSCL/MSU

doi: 10.1016/j.nuclphysa.2004.09.096
Citations: PlumX Metrics


2004WE15      Nucl.Phys. A746, 655c (2004)

L.Weissman, P.A.Lofy, D.A.Davies, D.J.Morrissey, P.Schury, S.Schwarz, T.Sun, G.Bollen

First extraction tests of the NSCL gas cell

doi: 10.1016/j.nuclphysa.2004.09.045
Citations: PlumX Metrics


2000LI11      Eur.Phys.J. A 7, 397 (2000)

W.Li, Z.Qin, L.Zhao, W.Wen, Q.Lou, T.Sun, S.Ambe, Y.Ohkubo, M.Iwamoto, Y.Kobayashi, H.Maeda, F.Ambe

Mass Yield Distributions of Target Fragments from the Reactions of Iron with 135 MeV/nucleon 12C and 80 MeV/nucleon 16O Ions

NUCLEAR REACTIONS Fe(12C, X), E=135 MeV/nucleon; Fe(16O, X), E=80 MeV/nucleon; measured target-like fragment isotopic production σ. Comparison with theoretical calculations.

doi: 10.1007/PL00013623
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetA0438.


1996LI47      Radiochim.Acta 72, 109 (1996)

W.Li, T.Sun, D.Wu, R.Sun, L.Zhao, X.Yin, X.Zhang, Q.Luo, F.Zhang, G.Jin

Target Residues from the Interaction of Copper with 20-46 MeV/Nucleon 12C Ions

NUCLEAR REACTIONS, ICPND Cu(12C, X)24Na/28Mg/34Cl/34mCl/39Cl/41Ar/42K/43K/44Sc/44mSc/47Sc/48Sc/48V/48Cr/49Cr/51Cr/52Mn/52mMn/52Fe/54Mn/55Co/56Mn/56Co/57Ni/58Co/59Fe/60Co/60Cu/61Cu/62Zn/63Zn/65Zn/66Ga/67Ga/69Ga/71As, E=20-46 MeV/nucleon; measured residuals production σ vs E, cumulative or independent yields, charge distribution. Thick target, thick catcher foil technique. Fireball model, statistical binary decay.

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetA0449.


1996QI01      Z.Phys. A355, 315 (1996)

Z.Qin, A.Ono, W.Li, L.Zhao, T.Sun, S.Ambe, Y.Ohkubo, M.Iwamoto, Y.Kobayashi, H.Maeda, F.Ambe

The Mass Yield Distribution of Fragments Studied with Improved Antisymmetrized Molecular Dynamics

NUCLEAR REACTIONS Fe(12C, X), E=135 MeV/nucleon; calculated fragment production σ mass distributions. Improved antisymmetrized molecular dynamics.

doi: 10.1007/s002180050113
Citations: PlumX Metrics


1996YI01      J.Radioanal.Nucl.Chem. 214, 89 (1996)

X.Yin, J.Du, X.Zhang, X.Wang, X.Dai, T.Sun, Z.Tao

Preparation of Multitracer Nuclides from UO2(NO3)2 Irradiated by 40Ar Ion Beam

NUCLEAR REACTIONS O, N, U(40Ar, X), E=25 MeV/nucleon; measured products Eγ, Iγ(t); deduced multitracer solution properties. Activation technique.

doi: 10.1007/BF02164809
Citations: PlumX Metrics


1996ZH34      Radiochim.Acta 75, 7 (1996)

X.Zhang, X.Yin, W.Li, T.Sun, Z.Qin, L.Zhao, D.Wu

Production of Hafnium Nuclides in the Reactions of 6.3- to 24.6-MeV/Nucleon 40Ar Ions with Natural Tungsten

NUCLEAR REACTIONS, ICPND W(40Ar, X)170Hf/171Hf/173Hf/175Hf/180Hf/181Hf/182Hf/183Hf, E=6.3-24.6 MeV; measured production σ. Activation technique.


1995LI54      Chin.J.Nucl.Phys. 17, No 1, 21 (1995)

G.-X.Liu, K.-L.Chen, X.Yu, J.-W.Zheng, W.-Y.Jin, T.-Y.Sun, D.-Q.Wu, L.-L.Zhao, X.Zang, X.-M.Yin, Z.Qin

Fragment Angular Distributions for 40Ar + 197Au Reaction

NUCLEAR REACTIONS 197Au(40Ar, X), E=600 MeV; measured Eγ, Iγ; deduced σ(fragment θ), reaction mechanism. Off-line γ-spectroscopy.


1995ZH53      Chin.J.Nucl.Phys. 17, No 3, 247 (1995)

X.Zhang, W.-X.Li, X.M.Yin, W.-X.Wen, T.-Y.Sun, G.-M.Jin, Q.-Z.Luo

Mass Yield Distribution in Intermediate Energy Heavy Ion Reactions

NUCLEAR REACTIONS Cu(40Ar, X), E=40 MeV/nucleon; measured fragment mass yield distribution. Off-line γ-spectroscopy. Statistical binary decay model.


1993LI20      Phys.Rev. C48, 628 (1993)

W.Li, T.Sun, T.Chih, Y.Li, Y.Zheng, R.Sun, L.Zhao, D.Wu, G.Jing, B.Sa

Target Fragments from the Interaction of 93Nb and 181Ta with 47 MeV/Nucleon 12C Ions

NUCLEAR REACTIONS 93Nb, 181Ta(12C, X), E=47 MeV/nucleon; measured production σ for fragment 22Na to 182Ta, mass yield distribution. Off-line γ-spectroscopy. Fusion-fragmentation model.

doi: 10.1103/PhysRevC.48.628
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetA0439.


1993YI02      Chin.J.Nucl.Phys. 15, No 1, 21 (1993)

X.Yin, Q.Luo, W.Li, T.Sun, L.Zhao, R.Sun, D.Wu

The Mass Distributions in Intermediate Energy Heavy Ion Reactions

NUCLEAR REACTIONS 115In(12C, X), E=42 MeV/nucleon; measured fragment yield vs mass. Statistical binary model.


1992LI15      Phys.Rev. C46, 1538 (1992)

W.Li, X.Yin, Q.Lou, L.Zhao, T.Sun, D.Wu

Mass Yield Distribution of Target Residues from the Reaction of Indium with 42 MeV/Nucleon 12C Ions

NUCLEAR REACTIONS In(12C, X), E=42 MeV/nucleon; measured target residue production σ, X=48V-100Pd; deduced mass yield distribution. Nuclear chemistry technique. Statistical binary decay model based Monte Carlo code.

doi: 10.1103/PhysRevC.46.1538
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetA0440.


1988IG02      Phys.Rev. C38, 2777 (1988)

G.Igo, A.Masaike, B.Aas, D.Adams, E.Bleszynski, M.Bleszynski, M.Gazzaly, S.J.Greene, H.Hasai, S.Ishimoto, S.Isagawa, K.Jones, D.Lopiano, J.B.McClelland, F.Nishiyama, Y.Ohashi, A.Okihana, G.Pauletta, F.Sperisen, T.-H.Sun, N.Tanaka, G.S.Weston, C.A.Whitten, Jr.

Spin Observables in Small-Angle Elastic p(pol)d(pol) → p(pol)d with an N-Type Polarized Target at 800 MeV

NUCLEAR REACTIONS 2H(polarized p, p), E=800 MeV; measured polarization observables; deduced nucleon-nucleon amplitude ambiguities. N-type polarized, fully deuterated propanediol target.

doi: 10.1103/PhysRevC.38.2777
Citations: PlumX Metrics


1988LI35      J.Nucl.Radiochem. 2, 9 (1988)

W.Li, T.Sun, X.Sun, T.Zhang, M.Zheng, T.Dong, M.Fu

Charge Distribution in the Fission of 238U by 14.7 MeV Neutron

NUCLEAR REACTIONS 238U(n, F)82Br/132I/136Cs/140La/95Zr/97Zr/99Mo/131I/134I/135I/138Cs/142La, E=14.7 MeV; measured fission products using radiochemical methods; deduced independent and cumulative fission yields.


1985MC07      Nucl.Instrum.Methods 241, 435 (1985)

M.W.McNaughton, B.E.Bonner, H.Ohnuma, O.B.Van Dijk, Sun Tsu-Hsun, C.L.Hollas, D.J.Cremans, K.H.McNaughton, P.J.Riley, R.F.Rodebaugh, Shen-Wu Xu, S.E.Turpin, B.Aas, G.S.Weston

The p-C Analyzing Power between 100 and 750 MeV

NUCLEAR REACTIONS C(polarized p, pX), E=80-584 MeV; measured inclusive analyzing power vs θ. Large solid angle polarimeter.

doi: 10.1016/0168-9002(85)90595-9
Citations: PlumX Metrics


1985SU02      Phys.Rev. C31, 515 (1985)

Sun Tsu-hsun, B.E.Bonner, M.W.McNaughton, H.Ohnuma, O.B.van Dyck, G.S.Weston, B.Aas, E.Bleszynski, M.Bleszynski, G.J.Igo, D.J.Cremans, C.L.Hollas, K.H.McNaughton, P.J.Riley, R.F.Rodebaugh, Shen-wu Xu, S.E.Turpin

Measurements of the Spin-Rotation Parameters for (p(pol)d → p(pol)d) Elastic Scattering at 496, 647, and 800 MeV

NUCLEAR REACTIONS 2H(polarized p, p), E=496, 647, 800 MeV; measured spin rotation parameters, induced polarization, analyzing power vs θ. Liquid 2H target, noneikonal multiple-scattering theory.

doi: 10.1103/PhysRevC.31.515
Citations: PlumX Metrics


1984FR14      Z.Phys. A319, 133 (1984)

R.Frick, H.Clement, G.Graw, P.Schiemenz, N.Seichert, Sun Tsu-Hsun

On the Tensor Term in the Deuteron Optical Potential near E(d) = 20 MeV

NUCLEAR REACTIONS 4He, 16O, 36Ar, 40Ca, 65Cu, 144Sm, 208Pb(polarized d, d), E ≈ 20 MeV; measured σ(θ), iT11(θ), T21(θ); deduced complex tensor potential parameters. Optical model analysis.

doi: 10.1007/BF01415625
Citations: PlumX Metrics


1984HO20      Phys.Rev. C30, 1251 (1984)

C.L.Hollas, D.J.Cremans, K.H.McNaughton, P.J.Riley, R.F.Rodebaugh, Shen-wu Xu, B.E.Bonner, M.W.McNaughton, H.Ohnuma, O.B.van Dyck, Sun Tsu-hsun, S.E.Turpin, B.Aas, G.S.Weston

D(SS), D(LL), D(SL), D(LS), and P for pp → pp at 600 to 800 MeV

NUCLEAR REACTIONS 1H(polarized p, p), E=600-800 MeV; measured spin parameters D(SS), D(LL), D(SL), D(LS), polarization, K(SS), K(LL), K(SL), K(LS), vs θ; deduced phase shifts.

doi: 10.1103/PhysRevC.30.1251
Citations: PlumX Metrics


1983LI24      J.Nucl.Radiochem. 5, 176 (1983)

W.Li, T.Sun, M.Zhen, T.Dong, X.Sun

Determination of the Yields for the Rare-Earth Nuclides from 14 MeV Neutron Fission of 238U Using Ge(Li) Detector

NUCLEAR REACTIONS 238U(n, F)93Y/141Ce/142La/143Ce/144Ce/145Pr/147Nd/149Nd/149Pm/151Pm/153Sm/156Sm/156Eu/157Eu, E=14 MeV; measured fission products, Eγ, Iγ; deduced cumulative yields.

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset32628.


1982CL01      Phys.Rev.Lett. 48, 1082 (1982)

H.Clement, R.Frick, G.Graw, F.Merz, H.J.Scheerer, P.Schiemenz, N.Seichert, Sun Tsu Hsun

Evidence for Different Proton and Neutron Deformations in Heavy Nuclei Deduced from Polarized-Deuteron Scattering

NUCLEAR REACTIONS 16,18O, 24Mg, 28Si, 32S, 36Ar, 40Ca, 54Cr, 144,152,154Sm, 208Pb, 232Th(polarized d, d), (polarized d, d'), E=18-23 MeV; measured σ(θ), iT11(θ). 16,18O, 24Mg, 28Si, 32S, 36Ar, 40Ca, 54Cr, 144,152,154Sm, 208Pb, 232Th levels deduced isoscalar quadrupole, octupole transition strength. 154,152,144Sm, 232Th deduced neutron, proton deformation differences. Q3D spectrograph. Collective model.

doi: 10.1103/PhysRevLett.48.1082
Citations: PlumX Metrics


1979SU14      Chin.J.Nucl.Phys. 1, 1 (1979)

Sun Han-Cheng, Yao Jin-Zhang, Sun Tsu-Xun, Wen Ke-Ling, Lu Hui-Jun, Dai Neng-Xiong, Jin Rong-Hua, Yan Chen

d + 6Li and α + 6Li Quasi-Free Processes at Low Energies

NUCLEAR REACTIONS 6Li(d, 2d), E=9 MeV; 6Li(α, 2α), (α, 2d), E=18 MeV; measured momemtum spectra. 6Li deduced α, d cluster momemtum distribution. PWIA.


Back to query form


Note: The following list of authors and aliases matches the search parameter T.Sun: , T.H.SUN, T.T.SUN, T.X.SUN, T.Y.SUN