NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 11, 2024.

Search: Author = M.Aggarwal

Found 72 matches.

Back to query form



2024AG02      Nucl.Phys. A1044, 122843 (2024)

M.Aggarwal, G.Saxena, P.Parab

Correlation between the shape coexistence and stability in Mo and Ru isotopes

NUCLEAR STRUCTURE 78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144Mo, 83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152Ru; calculated deformation parameters, shell corrections, ground state shape and deformation within the microscopic theoretical framework using Nilsson Strutinsky Method and Relativistic Mean Field Model; deduced energy minima. Comparison with available data.

doi: 10.1016/j.nuclphysa.2024.122843
Citations: PlumX Metrics


2023AG01      Nucl.Phys. A1032, 122619 (2023)

M.Aggarwal

Impact of the quenching of shell effects with excitation energy on nuclear level density

NUCLEAR STRUCTURE Z=27-35; calculated impact of shell effects on nuclear level density (NLD) and particle emission probability as a function of temperature in a microscopic theoretical framework of Statistical Model; deduced the enhancement of LD parameter with the deformation and rotation and the fade out of enhancement with increasing excitations.

doi: 10.1016/j.nuclphysa.2023.122619
Citations: PlumX Metrics


2023SA02      J.Phys.(London) G50, 015102 (2023)

G.Saxena, M.Aggarwal, D.Singh, A.Jain, P.K.Sharma, H.L.Yadav

Deformation dependence of 2p-radioactivity half-lives: probe with a new formula across the mass region with Z < 82

RADIOACTIVITY 6Be, 12O, 16Ne, 19Mg, 45Fe, 48Ni, 54Zn, 67Kr, 10N, 28Cl, 32K, 52Cu, 57Ga, 60,62As(2p); analyzed available data; deduced T1/2 by employing our newly proposed semi-empirical formula wherein the nuclear deformation has been incorporated in a phenomenological way.

doi: 10.1088/1361-6471/ac991d
Citations: PlumX Metrics


2021AB12      Phys.Rev. C 104, L061901 (2021)

M.S.Abdallah, B.E.Aboona, J.Adam, L.Adamczyk, J.R.Adams, J.K.Adkins, G.Agakishiev, I.Aggarwal, M.M.Aggarwal, Z.Ahammed, I.Alekseev, D.M.Anderson, A.Aparin, E.C.Aschenauer, M.U.Ashraf, F.G.Atetalla, A.Attri, G.S.Averichev, V.Bairathi, W.Baker, J.G.Ball Cap, K.Barish, A.Behera, R.Bellwied, P.Bhagat, A.Bhasin, J.Bielcik, J.Bielcikova, I.G.Bordyuzhin, J.D.Brandenburg, A.V.Brandin, I.Bunzarov, J.Butterworth, X.Z.Cai, H.Caines, M.Calderon de la Barca Sanchez, D.Cebra, I.Chakaberia, P.Chaloupka, B.K.Chan, F.-H.Chang, Z.Chang, N.Chankova-Bunzarova, A.Chatterjee, S.Chattopadhyay, D.Chen, J.Chen, J.H.Chen, X.Chen, Z.Chen, J.Cheng, M.Chevalier, S.Choudhury, W.Christie, X.Chu, H.J.Crawford, M.Csanad, M.Daugherity, T.G.Dedovich, I.M.Deppner, A.A.Derevschikov, A.Dhamija, L.Di Carlo, L.Didenko, P.Dixit, X.Dong, J.L.Drachenberg, E.Duckworth, J.C.Dunlop, N.Elsey, J.Engelage, G.Eppley, S.Esumi, O.Evdokimov, A.Ewigleben, O.Eyser, R.Fatemi, F.M.Fawzi, S.Fazio, P.Federic, J.Fedorisin, C.J.Feng, Y.Feng, P.Filip, E.Finch, Y.Fisyak, A.Francisco, C.Fu, L.Fulek, C.A.Gagliardi, T.Galatyuk, F.Geurts, N.Ghimire, A.Gibson, K.Gopal, X.Gou, D.Grosnick, A.Gupta, W.Guryn, A.I.Hamad, A.Hamed, Y.Han, S.Harabasz, M.D.Harasty, J.W.Harris, H.Harrison, S.He, W.He, X.H.He, Y.He, S.Heppelmann, S.Heppelmann, N.Herrmann, E.Hoffman, L.Holub, Y.Hu, H.Huang, H.Z.Huang, S.L.Huang, T.Huang, X.Huang, Y.Huang, T.J.Humanic, G.Igo, D.Isenhower, W.W.Jacobs, C.Jena, A.Jentsch, Y.Ji, J.Jia, K.Jiang, X.Ju, E.G.Judd, S.Kabana, M.L.Kabir, S.Kagamaster, D.Kalinkin, K.Kang, D.Kapukchyan, K.Kauder, H.W.Ke, D.Keane, A.Kechechyan, M.Kelsey, Y.V.Khyzhniak, D.P.Kikola, C.Kim, B.Kimelman, D.Kincses, I.Kisel, A.Kiselev, A.G.Knospe, H.S.Ko, L.Kochenda, L.K.Kosarzewski, L.Kramarik, P.Kravtsov, L.Kumar, S.Kumar, R.Kunnawalkam Elayavalli, J.H.Kwasizur, R.Lacey, S.Lan, J.M.Landgraf, J.Lauret, A.Lebedev, R.Lednicky, J.H.Lee, Y.H.Leung, C.Li, C.Li, W.Li, X.Li, Y.Li, X.Liang, Y.Liang, R.Licenik, T.Lin, Y.Lin, M.A.Lisa, F.Liu, H.Liu, H.Liu, P.Liu, T.Liu, X.Liu, Y.Liu, Z.Liu, T.Ljubicic, W.J.Llope, R.S.Longacre, E.Loyd, N.S.Lukow, X.F.Luo, L.Ma, R.Ma, Y.G.Ma, N.Magdy, D.Mallick, S.Margetis, C.Markert, H.S.Matis, J.A.Mazer, N.G.Minaev, S.Mioduszewski, B.Mohanty, M.M.Mondal, I.Mooney, D.A.Morozov, A.Mukherjee, M.Nagy, J.D.Nam, Md.Nasim, K.Nayak, D.Neff, J.M.Nelson, D.B.Nemes, M.Nie, G.Nigmatkulov, T.Niida, R.Nishitani, L.V.Nogach, T.Nonaka, A.S.Nunes, G.Odyniec, A.Ogawa, S.Oh, V.A.Okorokov, B.S.Page, R.Pak, J.Pan, A.Pandav, A.K.Pandey, Y.Panebratsev, P.Parfenov, B.Pawlik, D.Pawlowska, H.Pei, C.Perkins, L.Pinsky, R.L.Pinter, J.Pluta, B.R.Pokhrel, G.Ponimatkin, J.Porter, M.Posik, V.Prozorova, N.K.Pruthi, M.Przybycien, J.Putschke, H.Qiu, A.Quintero, C.Racz, S.K.Radhakrishnan, N.Raha, R.L.Ray, R.Reed, H.G.Ritter, M.Robotkova, O.V.Rogachevskiy, J.L.Romero, D.Roy, L.Ruan, J.Rusnak, N.R.Sahoo, H.Sako, S.Salur, J.Sandweiss, S.Sato, W.B.Schmidke, N.Schmitz, B.R.Schweid, F.Seck, J.Seger, M.Sergeeva, R.Seto, P.Seyboth, N.Shah, E.Shahaliev, P.V.Shanmuganathan, M.Shao, T.Shao, A.I.Sheikh, D.Shen, S.S.Shi, Y.Shi, Q.Y.Shou, E.P.Sichtermann, R.Sikora, M.Simko, J.Singh, S.Singha, M.J.Skoby, N.Smirnov, Y.Sohngen, W.Solyst, P.Sorensen, H.M.Spinka, B.Srivastava, T.D.S.Stanislaus, M.Stefaniak, D.J.Stewart, M.Strikhanov, B.Stringfellow, A.A.P.Suaide, M.Sumbera, B.Summa, X.M.Sun, X.Sun, Y.Sun, Y.Sun, B.Surrow, D.N.Svirida, Z.W.Sweger, P.Szymanski, A.H.Tang, Z.Tang, A.Taranenko, T.Tarnowsky, J.H.Thomas, A.R.Timmins, D.Tlusty, T.Todoroki, M.Tokarev, C.A.Tomkiel, S.Trentalange, R.E.Tribble, P.Tribedy, S.K.Tripathy, T.Truhlar, B.A.Trzeciak, O.D.Tsai, Z.Tu, T.Ullrich, D.G.Underwood, I.Upsal, G.Van Buren, J.Vanek, A.N.Vasiliev, I.Vassiliev, V.Verkest, F.Videbaek, S.Vokal, S.A.Voloshin, F.Wang, G.Wang, J.S.Wang, P.Wang, Y.Wang, Y.Wang, Z.Wang, J.C.Webb, P.C.Weidenkaff, L.Wen, G.D.Westfall, H.Wieman, S.W.Wissink, J.Wu, Y.Wu, B.Xi, Z.G.Xiao, G.Xie, W.Xie, H.Xu, N.Xu, Q.H.Xu, Y.Xu, Z.Xu, Z.Xu, C.Yang, Q.Yang, S.Yang, Y.Yang, Z.Ye, Z.Ye, L.Yi, K.Yip, Y.Yu, H.Zbroszczyk, W.Zha, C.Zhang, D.Zhang, J.Zhang, S.Zhang, S.Zhang, X.P.Zhang, Y.Zhang, Y.Zhang, Y.Zhang, Z.J.Zhang, Z.Zhang, Z.Zhang, J.Zhao, C.Zhou, X.Zhu, M.Zurek, M.Zyzak

Global Λ-hyperon polarization in Au+Au collisions at √ sNN = 3 GeV

doi: 10.1103/PhysRevC.104.L061901
Citations: PlumX Metrics


2021RO07      Phys.Rev. C 103, 024602 (2021)

P.Roy, S.Mukhopadhyay, M.Aggarwal, D.Pandit, T.K.Rana, S.Kundu, T.K.Ghosh, K.Banerjee, G.Mukherjee, S.Manna, A.Sen, R.Pandey, D.Mondal, S.Pal, D.Paul, K.Atreya, C.Bhattacharya

Excitation energy and angular momentum dependence of the nuclear level density parameter around A ≈ 110

NUCLEAR REACTIONS 93Nb(16O, X), E=116, 142, 160 MeV; 93Nb(20Ne, X), E=145, 180 MeV; measured E(n), I(n), Eγ, Iγ, nγ-coin, n(θ), time-of-flight using eight liquid-scintillator-based neutron detectors, and 50-element BaF2 detector array for γ detection at the K130 cyclotron facility of VECC, Kolkata; deduced differential σ(E, θ), multiplicity of low-energy γ rays, excitation energy and temperature dependence of the inverse nuclear level density parameter, average angular momenta in the residual nuclei and inverse nuclear level density parameters. 104Ag, 107,108In, 111,112Sb; deduced nuclear density parameters, and compared with microscopic statistical-model calculations.

doi: 10.1103/PhysRevC.103.024602
Citations: PlumX Metrics


2021SA57      J.Phys.(London) G48, 125102 (2021)

G.Saxena, M.Kumawat, R.Sharma, M.Aggarwal

Collapse of N = 28 magicity in exotic 40Mg-probe of deformed halo and 2n-radioactivity at Mg neutron drip-line

NUCLEAR STRUCTURE 40,42,44Mg; calculated neutron separation energies, single particle energies, neutron and proton pairing energy contributions, shell gaps, radial moments, radial density distributions, neutron skin thickness. 40Mg; deduced neutron halo, dineutron correlations.

doi: 10.1088/1361-6471/ac288b
Citations: PlumX Metrics


2020KU26      Int.J.Mod.Phys. E29, 2050068 (2020)

M.Kumawat, G.Saxena, M.Kaushik, S.K.Jain, J.K.Deegwal, M.Aggarwal

Novel feature of doubly bubble nuclei in 50 ≤ Z(N) ≤ 82 region along with magicity and weakly bound structure

NUCLEAR STRUCTURE Z=50-82; calculated the separation energies, s.p. energies, pairing energies, proton and neutron density profiles along with deformations of even-even nuclei using the Relativistic Mean-Field (RMF) approach; deduced central density depletion in both proton and neutron named as doubly bubble nuclei.

doi: 10.1142/S0218301320500688
Citations: PlumX Metrics


2019AG04      Nucl.Phys. A983, 166 (2019)

M.Aggarwal

Dependence of spin induced structural transitions on level density and neutron emission spectra

NUCLEAR STRUCTURE 112Ru, 113Rh, 114Pd, 115Ag, 116Cd, 117In, 118Sn, 119Sb, 120Te, 121I, 122Xe, 123Cs; calculated (inverse of) level density parameter, its dependence on spin, shape (γ) and deformation (β) at excitation energy close to 31 MeV within the framework of statistical theory of superfluid nuclei, rotational energy vs spin, level density vs rotational energy, level density vs internal excitation energy of residual nucleus after the neutron emission, neutron evaporation spectra for 119Sb at E*≈ 31 MeV; deduced impact of shape transition in 112Ru from 14 to 16 h-bar, inverse level density parameter increases with spin for all studied systems, but it decreases with deformation or shape transition form oblate to (uncommon) prolate non-collective at approaching sphericity. Neutron spectra compared to data.

doi: 10.1016/j.nuclphysa.2018.12.010
Citations: PlumX Metrics


2019AG14      Int.J.Mod.Phys. E28, 1950099 (2019)

M.Aggarwal, M.Kaushik, G.Saxena

High spin states of Zr isotopes around A=80 mass region- study on cold and hot rotating nuclei

NUCLEAR STRUCTURE 76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124Zr; calculated ground state quadrupole deformation, parameters, high-spin states, proton and neutron pairing gaps, moments of inertia.

doi: 10.1142/S021830131950099X
Citations: PlumX Metrics


2019SA02      Phys.Lett. B 788, 1 (2019)

G.Saxena, M.Kumawat, M.Kaushik, S.K.Jain, M.Aggarwal

Bubble structure in magic nuclei

NUCLEAR STRUCTURE 12,13,14,15,16,17,18,19,20,21,22,23,24O, 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70Ca, 48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98Ni, 80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150Zr, 78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126Sn, 178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262Pb, 251Fr, 299Mc, 302Og, 22Si, 34Si, 46Ar, 56S, 58Ar, 184Ce, 347119, 292120, 341Nh; calculated charge and matter densities, single particle levels and depletion fraction (DF) across the periodic chart; deduced that the central depletion is correlated to shell structure and occurs due to unoccupancy in s-orbit (2s, 3s, 4s) and inversion of (2s, 1d) and (3s, 1h) states in nuclei upto Z less or equal to 82. Bubble effect in superheavy region is a signature of the interplay between the Coulomb and nn-interaction where the depletion fraction is found to increase with Z (Coulomb repulsion) and decrease with isospin.

doi: 10.1016/j.physletb.2018.08.076
Citations: PlumX Metrics


2019SA08      Phys.Lett. B 789, 323 (2019)

G.Saxena, M.Kumawat, B.K.Agrawal, M.Aggarwal

Anti-bubble effect of temperature and deformation: A systematic study for nuclei across all mass regions between A=20-300

NUCLEAR STRUCTURE 22,34Si, 46,58Ar, 56S, 184Ce, 294,302Og, 292120, 22O, 34Ca, 24Ne, 40Mg, 44S, 32Ar; calculated charge and neutron densities as function of temperatures, proton single-particle energies, nuclear charge form factors, depletion fractions, quadrupole deformation parameters, occupation probabilities.

doi: 10.1016/j.physletb.2018.10.062
Citations: PlumX Metrics


2019SA25      Int.J.Mod.Phys. E28, 1950008 (2019)

G.Saxena, M.Kumawat, S.Somorendro Singh, M.Aggarwal

Structural properties and decay modes of Z = 122, 120 and 118 superheavy nuclei

NUCLEAR STRUCTURE 284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299Og, 290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305120, 298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314122; calculated neutron and charge densities, ground state properties viz. binding energies, charge, proton, neutron, matter radii.

RADIOACTIVITY 272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288Cn, 276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292Fl, 280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296Lv, 284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300Og, 288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304120, 292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308122(α); calculated T1/2. Comparison with available data.

doi: 10.1142/S0218301319500083
Citations: PlumX Metrics


2019SA45      J.Phys.(London) G46, 065105 (2019)

G.Saxena, M.Kumawat, B.K.Agrawal, M.Aggarwal

A systematic study of the factors affecting central depletion in nuclei

NUCLEAR STRUCTURE 30Ne, 32Mg, 34Si, 46Ar, 56S, 58Ar; calculated bubble parameters, proton single-particle energies, binding energies.

doi: 10.1088/1361-6471/ab0853
Citations: PlumX Metrics


2019SA49      Hyperfine Interactions 240, 106 (2019)

Authors: G.Saxena, M.Kumawat, B.K.Agrawal, M.Aggarwal

Correction to: Effect of quadrupole deformation and temperature on bubble structure in N = 14 nuclei

doi: 10.1007/s10751-019-1647-y
Citations: PlumX Metrics


2019SA50      Hyperfine Interactions 240, 74 (2019)

G.Saxena, M.Kumawat, B.K.Agrawal, M.Aggarwal

Effect of quadrupole deformation and temperature on bubble structure in N=14 nuclei

NUCLEAR STRUCTURE 24Ne, 32Ar; calculated quadrupole deformation parameters, proton occupation probability using the relativistic mean-field plus BCS approach using NL3* and PK1 parameters.

doi: 10.1007/s10751-019-1620-9
Citations: PlumX Metrics


2019SA58      Int.J.Mod.Phys. E28, 1950101 (2019)

G.Saxena, M.Kumawat, M.Aggarwal

Search for exotic features in the ground state light nuclei with 10≤Z≤18 from stable valley to drip lines

NUCLEAR STRUCTURE 16,18,20,22,24,26,28,30,32,34,36,38,40,42,44,46,48,50,52Ne, 18,20,22,24,26,28,30,32,34,36,38,40,42,44,46,48,50,52,54Mg, 20,22,24,26,28,30,32,34,36,38,40,42,44,46,48,50,52,54,56Si, 22,24,26,28,30,32,34,36,38,40,42,44,46,48,50,52,54,56,58S, 24,26,28,30,32,34,36,38,40,42,44,46,48,50,52,54,56,58,60Ar; calculated two neutron separation energy, charge and neutron radii, neutron density and skin, charge form factor, deformation parameters, potential energy surface as a function of the deformation parameter, ground state properties.

doi: 10.1142/S0218301319501015
Citations: PlumX Metrics


2018AG06      Int.J.Mod.Phys. E27, 1850062 (2018)

M.Aggarwal, G.Saxena

Persistence of magicity in neutron-rich exotic 78Ni in ground as well as excited states

NUCLEAR STRUCTURE 70Ca, 72Ti, 74Cr, 76Fe, 78Ni; calculated charge distribution along with radius, pairing energy contributions from protons and neutrons, neutron and proton single-particle energies for Ni isotopes, two-neutron shell gaps, level density parameter versus mass number A for Ni isotopes at different temperatures, entropy versus mass number A for Ni isotopes at different temperatures, rotational states. Comparison with available data.

doi: 10.1142/S0218301318500623
Citations: PlumX Metrics


2018SA44      Int.J.Mod.Phys. E27, 1850074 (2018)

G.Saxena, U.K.Singh, M.Kumawat, M.Kaushik, S.K.Jain, M.Aggarwal

Distinct ground state features and the decay chains of Z=121 superheavy nuclei

NUCLEAR STRUCTURE Z=121; calculated separation energies, shell corrections, deformation parameters, radial variation of charge density and neutron density using RMF+BCS approach.

RADIOACTIVITY 293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312121(α); calculated Q-values, T1/2. Comparison with available data.

doi: 10.1142/S021830131850074X
Citations: PlumX Metrics


2017SA69      Int.J.Mod.Phys. E26, 1750072 (2017)

G.Saxena, M.Kumawat, M.Kaushik, U.K.Singh, S.K.Jain, S.Somorendro Singh, M.Aggarwal

Implications of occupancy of 2s1/2 state in sd-shell within RMF+BCS approach

NUCLEAR STRUCTURE 22C, 22,24O, 34,36Ca, 26S, 36S, 56S, 22,34,48Si; calculated quadrupole deformation parameters, neutron single particle states, neutron density. Comparison with available data.

doi: 10.1142/S0218301317500720
Citations: PlumX Metrics


2017SA70      Phys.Lett. B 775, 126 (2017)

G.Saxena, M.Kumawat, M.Kaushik, S.K.Jain, M.Aggarwal

Two-proton radioactivity with 2p halo in light mass nuclei A = 18-34

NUCLEAR STRUCTURE 19Mg, 22Si, 26S, 30Ar, 34Ca; calculated variation of charge density, charge radii, RMF potential energy, centrifugal barrier energy for proton resonant states; deduced 2-proton halo.

doi: 10.1016/j.physletb.2017.10.055
Citations: PlumX Metrics


2015SH06      Phys.Rev. C 91, 024909 (2015)

B.Sharma, M.M.Aggarwal, N.R.Sahoo, T.K.Nayak

Dynamical charge fluctuations in the hadronic medium

doi: 10.1103/PhysRevC.91.024909
Citations: PlumX Metrics


2014AG01      Phys.Rev. C 89, 024325 (2014)

M.Aggarwal

Coexisting shapes with rapid transitions in odd-Z rare-earth proton emitters

NUCLEAR STRUCTURE 103,104,105,106,107,108Sb, 108,109,110,111,112,113,114,115I, 112,113,114,115,116,117,118Cs, 117,118,119,120,121,122,123La, 121,122,123,124,125,126,127,128Pr, 126,127,128,129,130,131,132,133Pm, 131,132,133,134,135,136,137Eu, 134,135,136,137,138,139,140,141,142Tb, 140,141,142,143,144,145,146,147Ho, 144,145,146,147,148,149,150Tm, 150,151,152,153,154,155,156,157,158,159Lu, 153,154,155,156,157,158,159,160,161,162,163Ta, 164Re; calculated position of proton drip line, S(p), β and γ deformation parameters. Shape coexistence and rapid shape phase transitions. 112,113,114,115Cs, 117,118La; calculated energy minimization curves as function of β and γ deformation. Triaxially deformed Nilsson potential and Strutinsky's prescription for shell correction. Comparison with experimental data.

doi: 10.1103/PhysRevC.89.024325
Citations: PlumX Metrics


2014AG19      Phys.Rev. C 90, 064322 (2014)

M.Aggarwal

Shape coexistence in excited odd-Z proton emitters 131-136Eu

NUCLEAR STRUCTURE 131,133,134,135,136Eu; calculated equilibrium deformation β versus angular momentum at different temperatures, free energy minimization curves as a function of deformation parameters (β, γ), occupation probability versus single particle energies for neutrons. Search for shape coexistence and shape phase transitions in odd-Z proton emitters as potential candidates for GDR probes nuclear shape. Calculations based on mean-field approximation for the rotating nucleus.

doi: 10.1103/PhysRevC.90.064322
Citations: PlumX Metrics


2013AG03      Nucl.Phys. A898, 14 (2013)

M.M.Aggarwal, Z.Ahammed, A.L.S.Angelis, V.Antonenko, V.Arefiev, V.Astakhov, V.Avdeitchikov, T.C.Awes, P.V.K.S.Baba, S.K.Badyal, S.Bathe, B.Batiounia, C.Baumann, T.Bernier, K.B.Bhalla, V.S.Bhatia, C.Blume, D.Bucher, H.Busching, L.Carlen, S.Chattopadhyay, M.P.Decowski, H.Delagrange, P.Donni, M.R.Dutta Majumdar, K.El Chenawi, A.K.Dubey, K.Enosawa, S.Fokin, V.Frolov, M.S.Ganti, S.Garpman, O.Gavrishchuk, F.J.M.Geurts, T.K.Ghosh, R.Glasow, B.Guskov, H.A.Gustafsson, H.H.Gutbrod, I.Hrivnacova, M.Ippolitov, H.Kalechofsky, R.Kamermans, K.Karadjev, K.Karpio, B.W.Kolb, I.Kosarev, I.Koutcheryaev, A.Kugler, P.Kulinich, M.Kurata, A.Lebedev, H.Lohner, L.Luquin, D.P.Mahapatra, V.Manko, M.Martin, G.Martinez, A.Maximov, Y.Miake, G.C.Mishra, B.Mohanty, M.-J.Mora, D.Morrison, T.Mukhanova, D.S.Mukhopadhyay, H.Naef, B.K.Nandi, S.K.Nayak, T.K.Nayak, A.Nianine, V.Nikitine, S.Nikolaev, P.Nilsson, S.Nishimura, P.Nomokonov, J.Nystrand, A.Oskarsson, I.Otterlund, S.Pavliouk, T.Peitzmann, D.Peressounko, V.Petracek, S.C.Phatak, W.Pinganaud, F.Plasil, M.L.Purschke, J.Rak, M.Rammler, R.Raniwala, S.Raniwala, N.K.Rao, F.Retier, K.Reygers, G.Roland, L.Rosselet, I.Roufanov, C.Roy, J.M.Rubio, S.S.Sambyal, R.Santo, S.Sato, H.Schlagheck, H.-R.Schmidt, Y.Schutz, G.Shabratova, T.H.Shah, I.Sibiriak, T.Siemiarczuk, D.Silvermyr, B.C.Sinha, N.Slavine, K.Soderstrom, G.Sood, S.P.Sorensen, P.Stankus, G.Stefanek, P.Steinberg, E.Stenlund, M.Sumbera, T.Svensson, A.Tsvetkov, L.Tykarski, E.C.v.d.Pijll, N.v.Eijndhoven, G.J.v.Nieuwenhuizen, A.Vinogradov, Y.P.Viyogi, A.Vodopianov, S.Voros, B.Wyslouch, G.R.Young

Photon and η production in p + Pb and p + C collisions at √ sNN=17.4 GeV

doi: 10.1016/j.nuclphysa.2012.11.010
Citations: PlumX Metrics


2011AG03      Phys.Rev. C 83, 024901 (2011), Erratum Phys.Rev. C 107, 049903 (2023)

M.M.Aggarwal, for the STAR Collaboration

Strange and multistrange particle production in Au+Au collisions at √ sNN = 62.4 GeV

doi: 10.1103/PhysRevC.83.024901
Citations: PlumX Metrics


2011AG05      Phys.Rev. C 83, 034910 (2011)

M.M.Aggarwal, for the STAR Collaboration

Scaling properties at freeze-out in relativistic heavy-ion collisions

doi: 10.1103/PhysRevC.83.034910
Citations: PlumX Metrics


2011AG13      Phys.Rev. C 83, 064905 (2011)

M.M.Aggarwal, for the STAR Collaboration

Pion femtoscopy in p + p collisions at √ s=200 GeV

doi: 10.1103/PhysRevC.83.064905
Citations: PlumX Metrics


2011AG16      Phys.Rev. C 84, 034909 (2011)

M.M.Aggarwal, for the STAR Collaboration

K*0 production in Cu + Cu and Au + Au collisions at √ sNN=62.4 GeV and 200 GeV

doi: 10.1103/PhysRevC.84.034909
Citations: PlumX Metrics


2011MA12      Acta Phys.Pol. B42, 643 (2011)

I.Mazumdar, D.A.Gothe, G.Anil Kumar, M.Aggarwal

Shape Transition and Isovector Giant Quadrupole Resonance Decay in Hot Rotating Nuclei

NUCLEAR REACTIONS 180Hf(12C, X)192Pt/188Os, E=65 MeV; measured Eγ, Iγ; deduced deformed non-spherical shape, excess yield of high-energy γ-rays, possible first observation of the Isovector Giant Quadrupole Resonance (IVGQR) on excited state.

doi: 10.5506/APhysPolB.42.643
Citations: PlumX Metrics


2010AG03      Phys.Rev. C 81, 047302 (2010)

M.Aggarwal, S.Kailas

Angular momentum dependence of the nuclear level density parameter

NUCLEAR STRUCTURE 108Cd, 109In, 112Sn, 113Sb, 122Te, 123I, 127Cs; calculated inverse level density parameter vs angular momentum, axial deformation parameter vs temperature. 109In; calculated excitation energies vs angular momentum. Calculations in the framework of statistical theory of a hot rotating nucleus. Comparison with experimental data.

doi: 10.1103/PhysRevC.81.047302
Citations: PlumX Metrics


2010AG05      Phys.Rev.Lett. 105, 022302 (2010)

M.M.Aggarwal, for the STAR Collaboration

Higher Moments of Net Proton Multiplicity Distributions at RHIC

doi: 10.1103/PhysRevLett.105.022302
Citations: PlumX Metrics


2010AG08      Phys.Rev. C 82, 024905 (2010)

M.M.Aggarwal, for the STAR Collaboration

Balance functions from Au+Au, d+Au, and p+p collisions at √ sNN = 200 GeV

doi: 10.1103/PhysRevC.82.024905
Citations: PlumX Metrics


2010AG09      Phys.Rev. C 82, 024912 (2010)

M.M.Aggarwal, for the STAR Collaboration

Azimuthal di-hadron correlations in d+ Au and Au + Au collisions at √ sNN = 200 GeV measured at the STAR detector

doi: 10.1103/PhysRevC.82.024912
Citations: PlumX Metrics


2010AG10      Phys.Rev.Lett. 105, 202301 (2010)

M.M.Aggarwal, for the STAR Collaboration

Measurement of the Bottom Quark Contribution to Nonphotonic Electron Production in p+p Collisions at √ S=200 GeV

doi: 10.1103/PhysRevLett.105.202301
Citations: PlumX Metrics


2009AG06      Phys.Rev. C 80, 024322 (2009)

M.Aggarwal, I.Mazumdar

Deformation and shape transitions in hot rotating neutron deficient Te isotopes

NUCLEAR STRUCTURE 103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124Te; calculated free energy, deformation and nuclear shapes under the influence of temperature (0-2 MeV) and rotation (up to spin 60) using macroscopic-microscopic calculations. Comparison with experimental data.

doi: 10.1103/PhysRevC.80.024322
Citations: PlumX Metrics


2009MA24      Acta Phys.Pol. B40, 545 (2009)

I.Mazumdar, D.A.Gothe, G.Anil kumar, M.Aggarwal, P.K.Joshi, R.Palit, H.C.Jain

Search for Rare Shape Transition and GQR Decay in Hot Rotating 188Os Nucleus

NUCLEAR REACTIONS 12C(180Hf, X), E=65 MeV; measured Eγ, Iγ;188Os, 192Pt; deduced giant dipole resonance strength distributions.


2008AG09      Int.J.Mod.Phys. E17, 1091 (2008)

M.Aggarwal

Neutron emission spectra and level density of hot rotating 132Sn

NUCLEAR STRUCTURE 132Sn; calculated nuclear level density, neutron separation energy and neutron emission probability using statistical theory.

doi: 10.1142/S0218301308010295
Citations: PlumX Metrics


2007MA43      Acta Phys.Pol. B38, 1463 (2007)

I.Mazumdar, H.C.Jain, R.Palit, D.A.Gothe, P.K.Joshi, M.Aggarwal

Search for Rare Shape Transition in Hot Rotating 188Os Nucleus

NUCLEAR REACTIONS 176Yb(12C, F), E=65, 84 MeV; measured Eγ, Iγ, angular anisotropy from GDR decay. 188Os deduced shape parameters.


2006AG09      Phys.Lett. B 638, 39 (2006)

M.M.Aggarwal, G.Sood, Y.P.Viyogi

Event-by-event study of DCC-like fluctuation in ultra-relativistic nuclear collisions

doi: 10.1016/j.physletb.2006.05.013
Citations: PlumX Metrics


2006AG13      Eur.Phys.J. C 48, 343 (2006)

M.M.Aggarwal, and the WA98 Collaboration

Pion freeze-out time in Pb+Pb collisions at 158 AGeV/c studied via π-+ and K-/K+ ratios

NUCLEAR REACTIONS Pb(Pb, X), E at 158 GeV/c/nucleon; measured charged pion yield ratios vs transverse mass, centrality; deduced hyperon decay contribution, freeze-out time.

doi: 10.1140/epjc/s10052-006-0081-x
Citations: PlumX Metrics


2006AG14      Phys.Scr. T125, 178 (2006)

M.Aggarwal

Two-proton radioactivity in proton-rich fp shell nuclei at high spin

NUCLEAR STRUCTURE 45,46Fe, 48,49,50Ni, 54,55,56Zn; calculated one- and two-proton separation energies vs spin.

doi: 10.1088/0031-8949/2006/T125/039
Citations: PlumX Metrics


2005AG06      Eur.Phys.J. C 41, 287 (2005)

M.M.Aggarwal, and the WA98 Collaboration

Azimuthal anisotropy of photon and charged particle emission in 208Pb + 208Pb collisions at 158A GeV/c

NUCLEAR REACTIONS 208Pb(208Pb, X), E at 158 GeV/c/nucleon; measured photon and charged particles azimuthal distributions; deduced anisotropy coefficients.

doi: 10.1140/epjc/s2005-02249-2
Citations: PlumX Metrics


2005AG14      Nucl.Phys. A762, 129 (2005)

M.M.Aggarwal, and the WA98 Collaboration

Centrality and transverse momentum dependence of collective flow in 158 A GeV Pb + Pb collisions measured via inclusive photons

NUCLEAR REACTIONS 208Pb(208Pb, X), E=158 GeV/nucleon; measured inclusive photons direct and elliptic flow vs centrality, rapidity, and transverse momentum; deduced neutral pion flow features.

doi: 10.1016/j.nuclphysa.2005.08.004
Citations: PlumX Metrics


2004AG02      Phys.Rev. C 69, 034602 (2004)

M.Aggarwal

Hot rotating fp shell nuclei near proton drip

NUCLEAR STRUCTURE 44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60Fe; calculated proton separation energies, level density and deformation parameters vs temperature. 46,50,54,58Fe; calculated rotational bands energy vs spin, related features. Determination of particle stability discussed.

doi: 10.1103/PhysRevC.69.034602
Citations: PlumX Metrics


2004AG03      Phys.Rev.Lett. 93, 022301 (2004)

M.M.Aggarwal, and the WA98 Collaboration

Interferometry of Direct Photons in Central 208Pb + 208Pb Collisions at 158A GeV

NUCLEAR REACTIONS 208Pb(208Pb, X), E=158 GeV/nucleon; measured two-photon correlations; deduced source radii, direct photon yields.

doi: 10.1103/PhysRevLett.93.022301
Citations: PlumX Metrics


2004AG08      Int.J.Mod.Phys. E13, 1239 (2004)

M.Aggarwal, M.Rajasekaran

Neutron emission spectra of excited 126-140Sn nuclei

NUCLEAR STRUCTURE 126,128,130,132,134,136,138,140Sn; calculated one- and two-neutron emission probability, neutron spectra vs excitation energy.

doi: 10.1142/S0218301304002697
Citations: PlumX Metrics


2003AG01      Phys.Rev. C 67, 014906 (2003)

M.M.Aggarwal, and the WA98 Collaboration

One-, two-, and three-particle distributions from 158A GeV/c central Pb+Pb collisions

NUCLEAR REACTIONS Pb(Pb, X), E at 158 GeV/c/nucleon; measured negative pion and kaon transverse mass spectra, two- and three-pion correlations; deduced source features. Hydrodynamical model analysis.

doi: 10.1103/PhysRevC.67.014906
Citations: PlumX Metrics


2003AG06      Phys.Rev. C 67, 044901 (2003)

M.M.Aggarwal, and the WA98 Collaboration

Centrality dependence of charged-neutral particle fluctuations in 158A GeV 208Pb+208Pb collisions

NUCLEAR REACTIONS 208Pb(208Pb, X), E at 158 GeV/c/nucleon; measured charged particle and photon multiplicity, fluctuations vs centrality; deduced nonstatistical fluctuations, upper limit on disoriented chiral condensate formation.

doi: 10.1103/PhysRevC.67.044901
Citations: PlumX Metrics


2003AG09      Pramana 60, 987 (2003)

M.M.Aggarwal, and the WA98 Collaboration

Event-by-event search for charged-neutral fluctuations in Pb-Pb collisions at 158 A GeV

NUCLEAR REACTIONS Pb(Pb, X), E=158 GeV/nucleon; analyzed data; deduced event-by-event fluctuations, azimuthal distributions.

doi: 10.1007/BF02707017
Citations: PlumX Metrics


2002AG05      Eur.Phys.J. C 23, 225 (2002)

M.M.Aggarwal, and the WA98 Collaboration

Transverse Mass Distributions of Neutral Pions from 208Pb-Induced Reactions at 158.A GeV

NUCLEAR REACTIONS Nb, Pb(208Pb, X), E=158 GeV/nucleon; measured neutral pion transverse mass and multiplicity distributions. Comparisons with model predictions.

doi: 10.1088/0143-0807/23/2/316
Citations: PlumX Metrics


2002AG08      Phys.Rev. C65, 054912 (2002)

M.M.Aggarwal, and the WA98 Collaboration

Event-by-Event Fluctuations in Particle Multiplicities and Transverse Energy Produced in 158A GeV Pb + Pb Collisions

NUCLEAR REACTIONS Pb(Pb, X), E=158 GeV/nucleon; measured particle multiplicities, total transverse energy, event-by-event fluctuations, centrality dependence. Comparison with participant model results.

doi: 10.1103/PhysRevC.65.054912
Citations: PlumX Metrics


2001AG04      Eur.Phys.J. C 18, 651 (2001)

M.M.Aggarwal, and the WA98 Collaboration

Scaling of Particle and Transverse Energy Production in 208Pb + 208Pb Collisions at 158.A GeV

NUCLEAR REACTIONS 208Pb(208Pb, X), E=158 GeV/nucleon; measured fragments transverse energy, pseudorapidity vs centrality; deduced scaling features.


2001AG07      Phys.Rev. C64, 011901 (2001)

M.M.Aggarwal, and the WA98 Collaboration

Localized Charged-Neutral Fluctuations in 158A GeV Pb + Pb Collisions

NUCLEAR REACTIONS Pb(Pb, X), E=158 GeV/nucleon; analyzed particle multiplicities, azimuthal distributions, event-by-event fluctuations.

doi: 10.1103/PhysRevC.64.011901
Citations: PlumX Metrics


2000AG02      Phys.Lett. 477B, 37 (2000)

M.M.Aggarwal, and the WA98 Collaboration

Δ++ Production in 158 A GeV 208Pb + 208Pb Interactions at the CERN SPS

NUCLEAR REACTIONS 208Pb(208Pb, X), E=158 GeV/nucleon; measured Δ++ resonance yields.

doi: 10.1016/S0370-2693(00)00224-0
Citations: PlumX Metrics


2000AG05      Eur.Phys.J. C 16, 445 (2000)

M.M.Aggarwal, and the WA98 Collaboration

Central Pb + Pb Collisions at 158 A GeV/c Studied by π-π- Interferometry

NUCLEAR REACTIONS Pb(Pb, X), E=158 GeV/nucleon; measured two-pion correlations; deduced emission source size, expansion characteristics. Interferometry analysis.


2000AG06      Phys.Rev.Lett. 85, 2895 (2000)

M.M.Aggarwal, and the WA98 Collaboration

Three-Pion Interferometry Results from Central Pb + Pb Collisions at 158A GeV/c

NUCLEAR REACTIONS 208Pb(208Pb, X), E at 158 GeV/c/nucleon; analyzed two-, three-pion correlations; deduced source features.

doi: 10.1103/PhysRevLett.85.2895
Citations: PlumX Metrics


2000AG08      Phys.Rev.Lett. 85, 3595 (2000)

M.M.Aggarwal, and the WA98 Collaboration

Observation of Direct Photons in Central 158A GeV 208Pb + 208Pb Collisions

NUCLEAR REACTIONS 208Pb(208Pb, X), E=158 GeV/nucleon; measured direct Eγ, Iγ, transverse momentum spectra vs centrality. Comparison with proton-induced reactions.

doi: 10.1103/PhysRevLett.85.3595
Citations: PlumX Metrics


1999AG04      Phys.Lett. 458B, 422 (1999)

M.M.Aggarwal, and the WA98 Collaboration

Systematics of Inclusive Photon Production in 158.A GeV Pb Induced Reactions on Ni, Nb, and Pb Targets

NUCLEAR REACTIONS Ni, Nb, Pb(Pb, X), E=158 GeV/nucleon; measured photon multiplicity, pseudorapidity distributions, mean transverse momentum. Comparison with model predictions.

doi: 10.1016/S0370-2693(99)00560-2
Citations: PlumX Metrics


1999AG05      Phys.Rev.Lett. 83, 926 (1999)

M.M.Aggarwal, and the WA98 Collaboration

Freeze-Out Parameters in Central 158A GeV 208Pb + Pb Collisions

NUCLEAR REACTIONS 208Pb(208Pb, X), E=158 GeV/nucleon; measured neutral pion transverse mass spectra; deduced freeze-out parameters. Hydrodynamical model.

doi: 10.1103/PhysRevLett.83.926
Citations: PlumX Metrics


1999AG07      Phys.Lett. 469B, 30 (1999)

M.M.Aggarwal, and the WA98 Collaboration

Elliptic Emission of K+ and π+ in 158 A.GeV Pb + Pb Collisions

NUCLEAR REACTIONS Pb(Pb, X), E=158 GeV/nucleon; measured kaon, pion azimuthal distributions; deduced possible in-medium potential effects. Relativistic quantum molecular dynamics calculations.

doi: 10.1016/S0370-2693(99)01289-7
Citations: PlumX Metrics


1998AG02      Phys.Lett. 420B, 169 (1998)

M.M.Aggarwal, and the WA98 Collaboration

Search for Disoriented Chiral Condensates in 158 AGeV Pb + Pb Collisions

NUCLEAR REACTIONS Pb(Pb, X), E=158 GeV/nucleon; measured charged, neutral multplicity distributions; deduced upper limit for production of disoriented chiral condensates.

doi: 10.1016/S0370-2693(97)01528-1
Citations: PlumX Metrics


1998AG07      Phys.Rev. C58, 1146 (1998)

M.M.Aggarwal, and the WA93 Collaboration

Multiplicity and Pseudorapidity Distribution of Photons in the S + Au Reaction at 200A GeV

NUCLEAR REACTIONS 197Au(S, X), E=200 GeV/nucleon; measured photons multiplicity, pseudorapidity distributions.

doi: 10.1103/PhysRevC.58.1146
Citations: PlumX Metrics


1998AG11      Phys.Lett. 438B, 357 (1998)

M.M.Aggarwal, V.S.Bhatia, A.C.Das, Y.P.Viyogi

Event-by-Event Fluctuation of Rapidity Distributions in Heavy-Ion Collisions

NUCLEAR REACTIONS Pb(Pb, X), E=high; analyzed photon rapidity distribution; deduced power spectrum quark-gluon plasma detection method.

doi: 10.1016/S0370-2693(98)01130-7
Citations: PlumX Metrics


1998AG12      Phys.Rev.Lett. 81, 4087 (1998); Erratum Phys.Rev.Lett. 84, 578 (2000)

M.M.Aggarwal, and the WA98 Collaboration

Centrality Dependence of Neutral Pion Production in 158A GeV 208Pb + 208Pb Collisions

NUCLEAR REACTIONS 208Pb(208Pb, X), E=158 GeV/nucleon; measured neutral pions transverse mass, transverse momentum spectra; deduced centrality dependence, possible thermal emission process.

doi: 10.1103/PhysRevLett.81.4087
Citations: PlumX Metrics


1998RA13      Int.J.Mod.Phys. E7, 389 (1998)

M.Rajasekaran, M.Aggarwal

Neutron Separation Energies of Extremely Neutron Rich Excited Nuclei from Z = 30 to 70

NUCLEAR STRUCTURE Z=30-70; calculated one-neutron separation energy for neutron-rich even-even nuclei; deduced rotation, thermal excitation effects. Microscopic-macroscopic approach.

doi: 10.1142/S021830139800018X
Citations: PlumX Metrics


1998RA28      Phys.Rev. C58, 2743 (1998)

M.Rajasekaran, M.Aggarwal

Proton Drip Line Nuclei Around Z = 30 to 40

NUCLEAR STRUCTURE 54,56,58,60Zn, 58,60,62,64Ge, 70,72,74,76Sr, 67,69,71Br, 63,65,67As; calculated proton separation energy vs angular momentum, temperature; deduced alteration of proton drip line. Macroscopic-microscopic model.

doi: 10.1103/PhysRevC.58.2743
Citations: PlumX Metrics


1997AG07      Phys.Rev. C56, 1160 (1997)

M.M.Aggarwal, and the WA93 Collaboration

Soft Photon Production in Central 200 GeV/nucleon 32S + Au Collisions

NUCLEAR REACTIONS 197Au(32S, X), E=200 GeV/nucleon; measured photon inclusive σ; deduced soft photon excess over expectation from neutral meson decay. Small acceptance BGO detector.

doi: 10.1103/PhysRevC.56.1160
Citations: PlumX Metrics


1997AG09      Phys.Lett. 403B, 390 (1997)

M.M.Aggarwal, and the WA93 Collaboration

Azimuthal Anisotropy in S + Au Reactions at 200 A GeV

NUCLEAR REACTIONS 197Au(S, X), E=200 GeV/nucleon; measured mid-rapidity produced photons azimuthal correlations; deduced anisotropy related features.

doi: 10.1016/S0370-2693(97)00566-2
Citations: PlumX Metrics


1997AG10      Phys.Lett. 404B, 207 (1997)

M.M.Aggarwal, and the WA93 Collaboration

Event by Event Measurement of <p(T)> of Photons in S + Au Collisions at 200 A.GeV

NUCLEAR REACTIONS 197Au(S, X), E at 200 GeV/nucleon; measured electromagnetic transverse energy, photon multiplicity ratio; deduced photons mean transverse momentum, centrality dependence.

doi: 10.1016/S0370-2693(97)00567-4
Citations: PlumX Metrics


1995AG05      Int.J.Mod.Phys. E4, 477 (1995)

M.M.Aggarwal, S.I.A.Garpman

Review of Rapidity Density Distributions in Heavy-Ion Induced Interactions at Relativistic Energies

NUCLEAR REACTIONS 27Al, W, Ag, Br(16O, X), S, Ag, 27Al, 197Au(32S, X), E=200 GeV/nucleon; compiled, reviewed pseudorapidity distributions, data, analyses, relativistic collisions. Other reactions, aspects studied.

doi: 10.1142/S0218301395000183
Citations: PlumX Metrics


1989AD13      Phys.Rev.Lett. 63, 2349 (1989)

M.Aderholz, M.M.Aggarwal, H.Akbari, P.P.Allport, P.V.K.S.Baba, S.K.Badyal, M.Barth, J.P.Baton, H.H.Bingham, E.B.Brucker, R.A.Burnstein, R.C.Campbell, R.Cence, T.K.Chatterjee, E.F.Clayton, G.Corrigan, C.Coutures, D.Deprospo, Devanand, E.De Wolf, P.J.W.Faulkner, W.B.Fretter, V.K.Gupta, J.Guy, J.Hanlon, G.Harigel, F.Harris, M.A.Jabiol, P.Jacques, V.Jain, G.T.Jones, M.D.Jones, R.W.L.Jones, T.Kafka, M.Kalelkar, P.Kasper, P.Kasper, G.L.Kaul, M.Kaur, J.M.Kohli, E.L.Koller, R.J.Krawiec, M.Lauko, J.Lys, W.A.Mann, P.Marage, R.H.Milburn, D.B.Miller, I.S.Mittra, M.M.Mobayyen, J.Moreels, D.R.O.Morrison, G.Myatt, P.Nailor, R.Naon, A.Napier, M.Neveu, D.Passmore, M.W.Peters, V.Z.Peterson, R.Plano, N.K.Rao, H.A.Rubin, J.Sacton, B.Saitta, P.Schmid, N.Schmitz, J.Schneps, R.Sekulin, S.Sewell, J.B.Singh, P.M.Sood, W.Smart, P.Stamer, K.E.Varvell, W.Venus, L.Verluyten, L.Voyvodic, H.Wachsmuth, S.Wainstein, S.Willocq, W.Wittek, G.P.Yost

Coherent Production of π+ and π- Mesons by Charged-Current Interactions of Neutrinos and Antineutrinos on Neon Nuclei at the Fermilab Tevatron

NUCLEAR REACTIONS 1H, Ne(ν, X), (ν-bar, X), E=40-300 GeV; measured coherent single π+, π- production σ, kinematic distributions. Meson dominance, partial axial-vector current conservation model.

doi: 10.1103/PhysRevLett.63.2349
Citations: PlumX Metrics


1984IS02      Phys.Rev.Lett. 52, 1280 (1984)

A.Z.M.Ismail, M.S.El-Nagdy, K.L.Gomber, M.M.Aggarwal, P.L.Jain

Mean Free Paths of He, Li, and Be Produced in Heavy-Ion Collisions at 2 GeV/u

NUCLEAR REACTIONS 56Fe(40Ar, He), (40Ar, Li), (40Ar, Be), E=2 GeV/nucleon; measured fragment mean free paths; deduced no anomalous effects.

doi: 10.1103/PhysRevLett.52.1280
Citations: PlumX Metrics


Back to query form


Note: The following list of authors and aliases matches the search parameter M.Aggarwal: , M.M.AGGARWAL