NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 11, 2024.

Search: Author = C.Guo

Found 41 matches.

Back to query form



2024LI17      Phys.Rev. C 109, 034310 (2024)

C.B.Li, Y.Zheng, T.X.Li, X.G.Wu, H.Y.Wu, M.Zheng, Z.H.Zhao, Y.Q.Li, R.Hong, Z.Y.He, J.Z.Li, J.L.Wang, C.Y.Guo, Z.X.Zhou, L.Ni, G.S.Li, X.H.Zhou, B.Guo, S.Y.Wang, M.L.Liu, Y.H.Zhang, C.Y.He, F.L.Liu, S.Wang, L.H.Zhu

Lifetime measurements of the first 2+ states in 116, 118Te

doi: 10.1103/PhysRevC.109.034310
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2023AN14      Sci. Rep. 13, 12657 (2023)

Z.An, W.Qiu, W.Jiang, G.Yang, X.Li, Z.Liao, Z.Zhuang, X.Zhang, S.Chen, C.Guo, E.Xiao, X.Fang, X.Li, H.Wang, X.Hu, Bi.Jiang, W.Shen, J.Wang, J.Ren, X.Ruan, D.Wang, S.-Y.Zhang, W.Luo, Z.Zhu, H.Lan, Z.Cao, X.Ma, Y.Liu, P.Wang, Y.Yang, P.Su, X.Deng, W.He, Y.Ma, C.Ma, Y.Wang, P.He, R.Tang, T.Zhou, J.Wang, H.Yi, Y.Zhang, Y.Chen, R.Fan, K.Gao, Q.Li, K.Sun, Z.Tan, M.Gu, H.Jing, J.Tang

Measurement of the 181Ta(n, γ) cross sections up to stellar s-process temperatures at the CSNS Back-n

NUCLEAR REACTIONS 181Ta(n, γ), E=0.001-800 keV; measured reaction products, En, In, TOF; deduced σ, resonance parameters using the R-Matrix code SAMMY, Maxwellian average cross sections (MACS). Comparison with available data. The back-streaming white neutron facility (Back-n) of China spallation neutron source (CSNS).

doi: 10.1038/s41598-023-39603-7
Citations: PlumX Metrics


2023DU05      Eur.Phys.J. A 59, 93 (2023)

H.-X.Duan, F.Zhang, J.Su, L.Zhu, C.-C.Guo

Studying sub-saturation density symmetry energy with different nuclear thermometers

NUCLEAR REACTIONS U(155Gd, X), E not given; 197Au(197Au, X), E=35 MeV/nucleon; analyzed available data; deduced the relation between nuclear temperatures and symmetry energy using the IQMD model.

doi: 10.1140/epja/s10050-023-01008-5
Citations: PlumX Metrics


2023GU09      Phys.Rev. A 107, 033116 (2023)

C.Guo, V.Cambier, J.Calvert, M.Favier, M.Andia, L.de Sarlo, S.Bize

Exploiting the two-dimensional magneto-optical trapping of 199Hg for a mercury optical lattice clock

ATOMIC PHYSICS 199Hg; measured frequencies; deduced two-dimensional magneto-optical trapping (2D-MOT).

doi: 10.1103/PhysRevA.107.033116
Citations: PlumX Metrics


2023LI05      Phys.Rev. C 107, 014307 (2023)

J.Lin, Y.K.Wang, C.Xu, Z.H.Li, H.Hua, S.Q.Zhang, D.W.Luo, H.Y.Wu, J.Meng, X.G.Wu, Y.Zheng, C.B.Li, T.X.Li, Z.Y.Huang, H.Cheng, C.Y.Guo, Z.X.Zhou, Z.Q.Chen, C.G.Wang

Possible coexistence of magnetic and antimagnetic rotations in 61Ni

NUCLEAR REACTIONS 54Cr(11B, 4n)61Ni, E=54 MeV; measured Eγ, Iγ, γγ-coin, γγ(θ). 61Ni; deduced levels, J, π, asymmetric angular distributions from oriented states (ADO), dipole and quadrupole bands structures, configurations, high-spin states. Study provides evidence for possible coexistence of magnetic and antimagnetic rotations in the region around A=60. Comparison with calculations using the microscopic tilted axis cranking covariant density functional theory (TAC-CDFT). Detector array consisted of 6 HPGe with BGO anti-Compton suppressors, 1 clover HPGe detector 2 planar HPGe detectors at HI-13 Tandem Accelerator of the China Institute of Atomic Energy (CIAE).

doi: 10.1103/PhysRevC.107.014307
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2022HU09      Phys.Lett. B 833, 137345 (2022)

H.Huang, W.Q.Zhang, A.N.Andreyev, Z.Liu, D.Seweryniak, Z.H.Li, C.Y.Guo, A.E.Barzakh, P.Van Duppen, B.Andel, S.Antalic, M.Block, A.Bronis, M.P.Carpenter, P.Copp, J.G.Cubiss, B.Ding, D.T.Doherty, Z.Favier, F.Giacoppo, T.H.Huang, B.Kindler, F.G.Kondev, T.Lauritsen, J.G.Li, G.S.Li, B.Lommel, H.Y.Lu, M.Al Monthery, P.Mosat, Y.F.Niu, C.Raison, W.Reviol, G.Savard, S.Stolze, G.L.Wilson, H.Y.Wu, Z.H.Wang, F.R.Xu, Q.B.Zeng, X.H.Yu, F.F.Zeng, X.H.Zhou

First observation of the decay of the 13/2+ isomer in 183Hg and B(M2) systematics of neutron transitions across the nuclear chart

RADIOACTIVITY 183Hg(α) [from 187Pb α decay]; 187mPb(α) [from 142Nd(50Cr, 3n2pγ), E=255 MeV, followed by separation of fragments using Argonne gas-filled analyzer (AGFA) at the ATLAS-ANL facility]; measured reaction products, evaporation residues (EVRs), Eα, Iα, (EVR)α-correlations, αγ(t), Eγ, Iγ, x rays, T1/2 using double-sided silicon strip detector (DSSD), and four HPGe clover detectors. 183,183mHg; deduced levels, isomer, J, π, T1/2 of g.s. and isomer, α branching ratio, K-conversion coefficient, multipolarity, B(M2), Nilsson configurations. 187mPb; deduced T1/2. Systematics of decay schemes of 13/2+ isomers in 175,177,179,181,183,185Hg. Systematics of B(M2) values for 7/2-, 9/2+, 11/2- and 13/2+ isomers in even-Z, odd-N nuclei: 25Mg, 33Si, 33,35S, 37Ar, 39Ca, 59Cr, 61Fe, 63,67Ni, 63,65,67Zn, 67,69,71Ge, 69,71Se, 97,99Mo, 99,101,103Ru, 103,105Pd, 107,109Cd, 109,111,113,115Sn, 153Yb, 161Hf, 163W, 163Os, 171,189,191Pt, 181,183,201,203,205Hg, 209Pb, 205,207,211Po, 207,209,213Rn, 209,211Ra, 211,213Th.

doi: 10.1016/j.physletb.2022.137345
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2022ZH22      Phys.Lett. B 829, 137129 (2022)

W.Q.Zhang, A.N.Andreyev, Z.Liu, D.Seweryniak, H.Huang, Z.H.Li, J.G.Li, C.Y.Guo, D.T.Doherty, A.E.Barzakh, P.Van Duppen, J.G.Cubiss, B.Andel, S.Antalic, M.Block, A.Bronis, M.P.Carpenter, P.Copp, B.Ding, Z.Favier, F.Giacoppo, T.H.Huang, X.H.Yu, B.Kindler, F.G.Kondev, T.Lauritsen, G.S.Li, B.Lommel, H.Y.Lu, M.Al Monthery, P.Mosat, Y.F.Niu, C.Raison, W.Reviol, G.Savard, S.Stolze, G.L.Wilson, H.Y.Wu, Z.H.Wang, F.R.Xu, Q.B.Zeng, X.H.Zhou

First observation of a shape isomer and a low-lying strongly-coupled prolate band in neutron-deficient semi-magic 187Pb

NUCLEAR REACTIONS 142Nd(50Cr, 3n2p)187Pb, E=255 MeV beam from ATLAS-ANL facility, followed by separation of evaporation residues (EVRs) using Argonne Gas-Filled Analyzer; measured Eα, Eγ, Iγ, x rays, αγ-coin, γγ-coin, T1/2 of a new low-energy microsec-isomer by αγ(t) using Gammasphere for γ detection and double-sided silicon strip detector (DSSD) for EVRs and α particles. Recoil-decay tagging (RDT) and isomer-decay tagging (IDT) methods. 187Pb; deduced high-spin levels, J, π, isomer, K-conversion coefficient, multipolarity, bands, B(E2), B(M1)/B(E2), triple-shape coexistence at low energy. Comparison with band structure in 185Hg. Systematics of aligned angular momenta plots and experimental Routhians for bands in 183,185Hg, 187Pb. 184Hg, 186Pb, 187Tl; observed γ rays. 186,187m,188Pb; observed α-decay peaks.

doi: 10.1016/j.physletb.2022.137129
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2022ZH46      Phys.Rev. C 106, 024317 (2022)

W.Q.Zhang, A.N.Andreyev, Z.Liu, D.Seweryniak, H.Huang, Z.H.Li, J.G.Li, C.Y.Guo, A.E.Barzakh, P.Van Duppen, M.Al Monthery, B.Andel, S.Antalic, M.Block, A.Bronis, M.P.Carpenter, P.Copp, J.G.Cubiss, B.Ding, D.T.Doherty, Z.Favier, F.Giacoppo, T.H.Huang, B.Kindler, F.G.Kondev, T.Lauritsen, G.S.Li, B.Lommel, H.Y.Lu, P.Mosat, Y.F.Niu, C.Raison, W.Reviol, G.Savard, S.Stolze, G.L.Wilson, H.Y.Wu, Z.H.Wang, F.R.Xu, X.H.Yu, Q.B.Zeng, X.H.Zhou

Identification of excited states in 188Bi and 188Po

NUCLEAR REACTIONS 142Nd(50Cr, 3np)188Bi, (50Cr, 4n)188Po, E=255 MeV; measured evaporation residues (EVRs), Eα, Eγ, Iγ, x rays, (EVR)γ-coin, αγ-coin, γγ-coin, using four clover HPGe detectors, Gammasphere array with 64 Compton-suppressed HPGe detectors, and DSSD and DSSD+Sibox at the ATLAS-ANL accelerator facility. 186,187,187m,188Pb, 189,189mBi; deduced recoil-decay tagging (RDT) γ-ray yields. 188Bi; deduced levels, J, π, isomer, T1/2 and decay modes of isomer, K-conversion coefficients, multipolarities, configurations. 188Po; deduced energy of the first 2+ level. 186Pb; deduced levels, J, π. 183,184,186Hg, 186,187,187m,188Pb, 188,189,189mBi; observed Eα. Systematics of 9/2-, 1/2+, 7/2- and 13/2+ level energies in 185,187,189,191,193,195Bi, and those of first 2+, 4+, 6+ and 8+, second 0+, 2+ and 4+ in 188,190,192,194,196,198,200,202,204,206,208,210Po.

doi: 10.1103/PhysRevC.106.024317
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2020SU12      Phys.Rev. C 101, 044606 (2020)

J.Su, L.Zhu, C.Guo

Constraints on the effective mass splitting by the isoscalar giant quadrupole resonance

NUCLEAR STRUCTURE 40Ca, 90Zr, 208Pb; calculated correlation between the square of the excitation energies of isoscalar giant quadrupole resonances (ISGQRs) and the reciprocal of the weighted effective masses using the microscopic Langevin equation with particle density and kinetic-energy density from the Thomas-Fermi (TF) approach and the Hartree-Fock-Bogolyubov (SHFB) model. Comparison with experimental data. A=30-240; compiled experimental excitation energies of the ISGQRs as a function of mass number, and compared with several theoretical calculations.

doi: 10.1103/PhysRevC.101.044606
Citations: PlumX Metrics


2020SU18      Chin.Phys.C 44, 084106 (2020)

J.Su, L.Zhu, C.Guo, F.-S.Zhang

Isospin dependence of projectile fragmentation at hundreds of MeV/u

NUCLEAR REACTIONS 120Sn(124Sn, X), (107Sn, X), E=600 MeV/nucleon; 208Pb(136Xe, X), (124Xe, X), E=1000 MeV/nucleon; analyzed available data; deduced isospin observables, neutron-to-proton ratios of the light particles emitted from the fragmenting. Isospin-dependent quantum molecular dynamics (IQMD) model and permitting only evaporation in the statistical model GEMINI, the IQMD+GEMINI model.

doi: 10.1088/1674-1137/44/8/084106
Citations: PlumX Metrics


2020ZH22      Int.J.Mod.Phys. E29, 2030004 (2020)

L.Zhu, C.Li, C.-C.Guo, J.Su, P.W.Wen, G.Zhang, F.-S.Zhang

Theoretical progress on production of isotopes in the multinucleon transfer process

NUCLEAR REACTIONS 238U(64Ni, X), E(cm)=307.5 MeV; 208Pb(124Xe, X), E(cm)=50 MeV; 186W(160Gd, X), E=503 MeV; calculated transfer σ for production of neutron-rich transuranium nuclei.

doi: 10.1142/S0218301320300040
Citations: PlumX Metrics


2019GU08      Phys.Rev. C 99, 044607 (2019)

C.-C.Guo, Y.-G.Ma, Z.-D.An, B.-S.Huang

Influence of α-clustering configurations in 16O + 197Au collisions at Fermi energy

NUCLEAR REACTIONS 197Au(16O, X), E=40 MeV/nucleon; calculated contour plots of nucleon density, directed flow and flow parameters of free protons as function of rapidity with the chain and a tetrahedron α configurations of 16O projectile, and transverse momentum dependence of flow parameters. 197Au(12C, X), (14N, X), (36Ar, X), E=30, 35, 40 MeV/nucleon; calculated charge multiplicity distributions. Extended quantum molecular dynamics model (ImQMD). Comparison with available experimental data. Relevance to α-clustering configurations in light nuclei.

doi: 10.1103/PhysRevC.99.044607
Citations: PlumX Metrics


2019SU17      Phys.Rev. C 100, 014602 (2019)

J.Su, L.Zhu, C.Guo, Z.Zhang

Uniform description of breakup mechanisms in central collision, projectile fragmentation, and proton-induced spallation

NUCLEAR REACTIONS 197Au(197Au, X), E=35 MeV/nucleon; 63Cu(197Au, X), E=600 MeV/nucleon; 12C(197Au, X), E=1000 MeV/nucleon; 1H(56Fe, X), E=1000 MeV/nucleon; calculated charge distribution of fragments, multiplicity of intermediate mass fragments with Z=3-30, first and second fragment asymmetries versus the analogous bound charge. 48Ti(48Ti, X), E=30 MeV/nucleon; 120Sn(120Sn, X), E=600 MeV/nucleon; 1H(90Zr, X), E=2000 MeV/nucleon; calculated energy-density trajectories of the projectile centers, and fragment mass-excitation, correlations between the intermediate mass fragment (IMF) multiplicity and the total bound charge of the productions in the central collision, projectile fragmentation, and proton-induced spallation. Isospin-dependent quantum molecular dynamics (IQMD) model for breakup mechanisms in central collision, with the evaporations of light particles from the prefragments described by the statistical code GEMINI. Comparison with experimental data.

doi: 10.1103/PhysRevC.100.014602
Citations: PlumX Metrics


2019ZH13      Phys.Lett. B 791, 20 (2019)

L.Zhu, C.Li, J.Su, C.-C.Guo, W.Hua

Advantages of the multinucleon transfer reactions based on 238U target for producing neutron-rich isotopes around N=126

NUCLEAR REACTIONS 238U(186W, X), (160Gd, X), E(cm)=660, 475 MeV; analyzed available data; deduced mechanism of multinucleon transfer (MNT) reactions for producing neutron-rich heavy nuclei around N=126 using dinuclear system (DNS) model and isospin-dependent quantum molecular dynamics (IQMD) model.

doi: 10.1016/j.physletb.2019.02.015
Citations: PlumX Metrics


2018GU10      Phys.Rev. C 98, 024914 (2018)

Ch.-Q.Guo, H.Liu, J.Xu

Directed flow in an extended multiphase transport model

doi: 10.1103/PhysRevC.98.024914
Citations: PlumX Metrics


2018LI23      Phys.Rev. C 97, 044620 (2018)

P.Li, Y.Wang, Q.Li, C.Guo, H.Zhang

Effects of the in-medium nucleon-nucleon cross section on collective flow and nuclear stopping in heavy-ion collisions in the Fermi-energy domain

NUCLEAR REACTIONS 197Au(197Au, X)E=40-150 MeV/nucleon; calculated directed and elliptic flows of free protons at midrapidity and at the nuclear stopping, yield distributions of free protons as functions of reduced longitudinal and transverse rapidities. Ultrarelativistic quantum molecular dynamics (UrQMD) calculations with medium correction factors and FU3FPI parametrization. Comparison with FOPI and INDRA experimental results.

doi: 10.1103/PhysRevC.97.044620
Citations: PlumX Metrics


2018LI33      Phys.Rev. C 98, 014618 (2018)

F.Li, L.Zhu, Z.-H.Wu, X.-B.Yu, J.Su, C.-C.Guo

Predictions for the synthesis of superheavy elements Z=119 and 120

NUCLEAR REACTIONS 238U, 242,244Pu, 243Am, 245,248Cm, 249Bk, 249Cf(48Ca, 3n), (48Ca, 4n), (48Ca, 5n), E*=25-60 MeV; calculated evaporation residue σ(E), and compared with available experimental data. 252Es(40Ca, 3n), E(cm)=204.08 MeV; 252Es(42Ca, 3n), E(cm)=203.00 MeV; 249Cf(45Sc, 3n), E(cm)=211.09 MeV; 255Es(40Ca, 4n), E(cm)=207.02 MeV; 254Es(40Ca, 3n), E(cm)=203.60 MeV; 247Bk(47Ti, 3n), E(cm)=219.19 MeV; 248Bk(46Ti, 3n), E(cm)=217.76 MeV; 242Cm(51V, 2n), E(cm)=225.86 MeV; 248Cf(45Sc, 2n), E(cm)=209.29 MeV; 241Am(52Cr, 2n), E(cm)=231.94 MeV; 252Es(44Ca, 3n), E(cm)=204.27 MeV; 253Es(43Ca, 3n), E(cm)=202.49 MeV; 254Es(42Ca, 3n), E(cm)=201.65 MeV; 251Cf(45Sc, 3n), E(cm)=210.03 MeV; 249Bk(47Ti, 3n), E(cm)=217.18 MeV; 248Bk(48Ti, 3n), E(cm)=219.47 MeV; 245Cm(51V, 3n), E(cm)=229.29 MeV; 247Bk(49Ti, 3n), E(cm)=222.17 MeV; 246Cm(50V, 3n), E(cm)=225.70 MeV; 244Cm(51V, 2n), E(cm)=224.00 MeV; 255Es(42Ca, 4n), E(cm)=205.95 MeV; 243Am(53Cr, 3n), E(cm)=236.20 MeV; 254Es(43Ca, 4n), E(cm)=206.90 MeV; 253Es(44Ca, 4n), E(cm)=210.94 MeV; 243Am(52Cr, 2n), E(cm)=229.49 MeV; 254Es(44Ca, 3n), E(cm)=201.64 MeV; 255Es(43Ca, 3n), E(cm)=201.49 MeV; 255Es(44Ca, 4n), E(cm)=207.59 MeV; 252Es(46Ca, 3n), E(cm)=206.00 MeV; 248Bk(50Ti, 3n), E(cm)=222.48 MeV; 247Cm(51V, 3n), E(cm)=226.83 MeV; 254Cf(45Sc, 4n), E(cm)=211.93 MeV; 249Bk(49Ti, 3n), E(cm)=218.88 MeV; 254Es(46Ca, 3n), E(cm)=203.64 MeV; 255Es(46Ca, 4n), E(cm)=210.13 MeV; 252Es(48Ca, 3n), E(cm)=208.42 MeV; 255Es(46Ca, 3n), E(cm)=204.13; 254Es(48Ca, 3n), E(cm)=205.96 MeV; 255Es(48Ca, 4n), E(cm)=212.72 MeV; 242Cm(50Cr, 2n), E(cm)=234.22 MeV; 249Cf(46Ti, 3n), E(cm)=222.89 MeV; 248Cf(46Ti, 2n), E(cm)=219.12 MeV; 257Fm(40Ca, 5n), E(cm)=222.66 MeV; 257Fm(40Ca, 4n), E(cm)=211.66 MeV; 257Fm(40Ca, 3n), E(cm)=205.66 MeV; 251Cf(46Ti, 3n), E(cm)=220.39 MeV; 252Es(45Sc, 3n), E(cm)=214.17 MeV; 250Cf(46Sc, 2n), E(cm)=218.88 MeV; 247Bk(50V, 3n), E(cm)=231.13 MeV; 244Cm(52Cr, 2n), E(cm)=234.88 MeV; 245Cm(52Cr, 3n), E(cm)=240.80 MeV; 243Cm(53Cr, 2n), E(cm)=236.02 MeV; 247Cm(50Cr, 3n), E(cm)=235.12 MeV; 257Fm(42Ca, 3n), E(cm)=205.29 MeV; 254Es(45Sc, 3n), E(cm)=213.40 MeV; 257Fm(43Ca, 4n), E(cm)=210.97 MeV; 257Fm(44Ca, 3n), E(cm)=205.27 MeV; 257Fm(46Ca, 3n), E(cm)=207.84 MeV; 250Cm(53Cr, 3n), E(cm)=234.59 MeV; 257Fm(48Ca, 3n), E(cm)=211.07 MeV; calculated production σ for Z=119 and 120 superheavy isotopes. Dinuclear system (DNS) model.

doi: 10.1103/PhysRevC.98.014618
Citations: PlumX Metrics


2018SU08      Phys.Rev. C 97, 054604 (2018)

J.Su, L.Zhu, C.Guo

Influence of the nuclear level density on the odd-even staggering in 56Fe + spallation at energies from 300 to 1500 MeV/nucleon

NUCLEAR REACTIONS 1H(56Fe, X), E=300-1500 MeV/nucleon; calculated level-density parameter, energy backshift, σ(E), differential σ(E), odd-even staggering (OES), and neutron- and proton-separation energies for Z=8-26, Tz=-1/2, 0, +1/2, +1 residual nuclei; deduced influence of level density on OES. 54Fe, 52Mn; calculated level densities as function of excitation energy. Calculations performed using isospin-dependent quantum molecular dynamics (IQMD) model using statistical model GEMINI code. Comparison with experimental values.

doi: 10.1103/PhysRevC.97.054604
Citations: PlumX Metrics


2018SU17      Phys.Rev. C 98, 024315 (2018)

J.Su, L.Zhu, C.Guo

Isoscalar giant monopole resonance within the Bohr-Mottelson model

NUCLEAR STRUCTURE A=20-240; analyzed excitation energies and incompressibility parameters, widths, surface and symmetry parameters, Coulomb parameter of the incompressibility of the Isoscalar giant monopole resonance (ISGMR) as a function of the mass number in nuclei from 12C to 238U using Bohr-Mottelson model. Comparison with other theoretical predictions.

doi: 10.1103/PhysRevC.98.024315
Citations: PlumX Metrics


2018WU06      Phys.Rev. C 97, 064609 (2018)

Z.-H.Wu, L.Zhu, F.Li, X.-B.Yu, J.Su, C.-C.Guo

Synthesis of neutron-rich superheavy nuclei with radioactive beams within the dinuclear system model

NUCLEAR REACTIONS 242,244Pu, 243Am, 245,248,250Cm, 249Bk, 250,251Cf(48Ca, 2n), (48Ca, 3n), (48Ca, 4n), (48Ca, 5n), E*=25-60 MeV; 234Th(42S, 2n), (42S, 3n), (42S, 4n), (42S, 5n), E*=20-65 MeV; 234Th, 244Pu(46Ar, 2n), (46Ar, 3n), (46Ar, 4n), (46Ar, 5n), E*=20-65 MeV; 234Th, 238U, 248Cm, 255Es(44Cl, 2n), (44Cl, 3n), (44Cl, 4n), (44Cl, 5n), E*=20-65 MeV; 228Ra(45Cl, 2n), (45Cl, 3n), (45Cl, 4n), (45Cl, 5n), E*=20-65 MeV; 244Pu, 248Cm(43Cl, 2n), (43Cl, 3n), (43Cl, 4n), (43Cl, 5n), E*=20-65 MeV; 244Pu, 254Cf, 255Es(41S, 2n), (41S, 3n), (41S, 4n), (41S, 5n), E*=20-65 MeV; 257Fm(42Ar, 2n), (42Ar, 3n), (42Ar, 4n), (42Ar, 5n), E*=20-65 MeV; 260Md(38Cl, 2n), (38Cl, 3n), (38Cl, 4n), (38Cl, 5n), E*=20-65 MeV; calculated evaporation residue σ. 228Ra(45Cl, 2n), E*=36.0 MeV; 228Ra(46Cl, 3n), E*=46.0 MeV; 226Ra(47Cl, 2n), E*=36.0 MeV; 234Th(42S, 4n), E*=43.0 MeV; 228Ra(46Ar, 2n), E*=34.0 MeV; 234Th(43S, 5n), E*=51.0 MeV; 234Th(42S, 3n), E*=41.0 MeV; 234Th(43S, 4n), E*=46.0 MeV; 234Th(44S, 5n), E*=59.0 MeV; 234Th(44Cl, 2n), E*=37.0 MeV; 234Th(45Cl, 3n), E*=44.0 MeV; 228Ra(50K, 2n), E*=36.0 MeV; 234Th(46Ar, 2n), E*=34.0 MeV; 238U(43S, 3n), E*=41.0 MeV; 238U(42S, 2n), E*=37.0 MeV; 238U(44Cl, 3n), E*=38.0 MeV; 238U(43Cl, 2n), E*=36.0 MeV; 238U(43S, 3n), E*=41.0 MeV; 234Th(47K, 2n), E*=33.0 MeV; 244Pu(41S, 3n), E*=38.0 MeV; 244Pu(42S, 4n), E*=42.0 MeV; 238U(46Ar, 2n), E*=33.0 MeV; 244Pu(43Cl, 4n), E*=44.0 MeV; 242Pu(44Cl, 3n), E*=37.0 MeV; 244Pu(42Cl, 3n), E*=38.0 MeV; 244Pu(46Ar, 4n), E*=38.0 MeV; 244Pu(45Ar, 3n), E*=44.0 MeV; 242Pu(46Ar, 2n), E*=33.0 MeV; 248Cm(43Cl, 4n), E*=38.0 MeV; 250Cm(42Cl, 5n), E*=43.0 MeV; 248Cm(44Cl, 5n), E*=43.0 MeV; 248Cm(44Cl, 4n), E*=38.0 MeV; 250Cm(42Cl, 4n), E*=39.0 MeV; 250Cm(43Cl, 5n), E*=45.0 MeV; 254Cf(41S, 5n), E*=40.0 MeV; 253Cf(42S, 5n), E*=40.0 MeV; 250Cm(44Ar, 4n), E*=37.0 MeV; 255Es(41S, 5n), E*=40.0 MeV; 254Cf(42Cl, 5n), E*=40.0 MeV; 253Cf(43Cl, 5n), E*=39.0 MeV; 255Es(41S, 4n), E*=37.0 MeV; 253Cf(43Cl, 4n), E*=36.0 MeV; 254Cf(42Cl, 4n), E*=37.0 MeV; 250Cm(48Ca, 4n), E*=35.0 MeV; 248Cm(48Ca, 2n), E*=31.0 MeV; 250Cm(46Ca, 2n), E*=35.0 MeV; 255Es(44Cl, 5n), E*=40.0 MeV; 254Cf(44Ar, 4n), E*=36.0 MeV; 257Fm(41S, 4n), E*=37.0 MeV; 250Cm(48Ca, 3n), E*=31.0 MeV; 255Es(44Cl, 4n), E*=36.0 MeV; 253Cf(46Ar, 4n), E*=34.0 MeV; 254Cf(46Ar, 5n), E*=41.0 MeV; 250Cf(48Ca, 3n), E*=34.0 MeV; 250Cm(49Ti, 4n), E*=42.0 MeV; 252Cf(46Ca, 3n), E*=36.0 MeV; 260Md(38Cl, 3n), E*=41.0 MeV; 260Md(39Cl, 4n), E*=42.0 MeV; 257Fm(42Ar, 4n), E*=41.0 MeV; 251Cf(48Ca, 3n), E*=30.0 MeV; 252Cf(48Ca, 4n), E*=38.0 MeV; 250Cm(49Ti, 3n), E*=34.0 MeV; 257Fm(42Ar, 3n), E*=33.0 MeV; 257Fm(43Ar, 4n), E*=38.0 MeV; 260Md(39Cl, 3n), E*=37.0 MeV; 244Pu(43Cl, n), E*=40.0 MeV; 238Cm(48Ca, 2np), E*=41.0 MeV; 254Cf(41S, 5n), E*=40.0 MeV; 248Cm(48Ca, 2nα), E*=46.0 MeV; 248Cm(43Cl, 4n), E*=38.0 MeV; 242Pu(48Ca, 2np), E*=35.0 MeV; 248Cm(44Cl, 4n), E*=38.0 MeV; 242Pu(48Ca, np), E*=40.0 MeV; 244Pu(48Ca, 3np), E*=45.0 MeV; 255Es(41S, 5n), E*=40.0 MeV; 245Cm(48Ca, np), E*=32.0 MeV; 249Bk(48Ca, 2nα), E*=37.0 MeV; 255Es(41S, 4n), E*=37.0 MeV; 248Cm(48Ca, 3np), E*=44.0 MeV; 249Bk(48Ca, nα), E*=32.0 MeV; calculated evaporation residue σ, and optimal incident beam energies. 48Ca(238U, 2n), (238U, 3n), (238U, 4n), E(cm)=184.13-214.13 MeV; calculated evaporation residue σ, potential energy surface, driving potential, survival and complete fusion probabilities, and capture σ. Dinuclear system model. 271Db, 272,273Sg, 276Bh, 278Hs, 279Mt, 282Ds, 283Rg, 286Cn, 287,288Nh, 290Fl, 291,292Mc, 294,295Lv, 295,296Og; calculated evaporation residue σ, and optimal incident beam energies for various reactions. Comparison with available experimental data. Relevance to synthesis of neutron-rich superheavy nuclei using radioactive ion beams, such as those at ATLAS-ANL.

doi: 10.1103/PhysRevC.97.064609
Citations: PlumX Metrics


2018ZH17      Phys.Rev. C 97, 044614 (2018)

L.Zhu, P.-W.Wen, C.-J.Lin, X.-J.Bao, J.Su, C.Li, C.-C.Guo

Shell effects in a multinucleon transfer process

NUCLEAR REACTIONS 198Pt(136Xe, X), E(cm)=643, 420 MeV; 208Pb(136Xe, X), E(cm)=450, 526 MeV; 186W(136Xe, X), E(cm)=408 MeV; 186W(150Nd, X), E(cm)=451 MeV; calculated potential energy surfaces, total kinetic energy losses (TKEL), and production σ with and without shell corrections using dinuclear system (DNS) model; deduced shell effects on producing trans-target nuclei. Comparison with experimental values.

doi: 10.1103/PhysRevC.97.044614
Citations: PlumX Metrics


2018ZH39      Phys.Rev. C 98, 034609 (2018)

L.Zhu, J.Su, P.-W.Wen, C.-C.Guo, C.Li

Multinucleon transfer process in the reaction 160Gd + 186W

NUCLEAR REACTIONS 186W(160Gd, X), E(cm)=430, 450, 503, 550 MeV; calculated potential energy surface as a function of mass asymmetry and β2 deformation, σ(E) for production of primary products as function of mass number, TKEL and β2, N/Z distribution of primary products, and production σ(E) of Os and Np isotopes, 202Os, 201Re, 240Np, 241U, and isotopes of Z=60-100, N=90-150. Dinuclear system (DNS) model with GEMINI code for multinucleon transfer (MNT) process.

doi: 10.1103/PhysRevC.98.034609
Citations: PlumX Metrics


2017GU14      Phys.Rev. C 95, 054622 (2017)

C.Q.Guo, Y.G.Ma, W.B.He, X.G.Cao, D.Q.Fang, X.G.Deng, C.L.Zhou

Isovector dipole resonance and shear viscosity in low energy heavy-ion collisions

NUCLEAR REACTIONS 100Mo(40Ca, X), E=5, 7.5, 10, 12.5, 15 MeV/nucleon; calculated time evolution of nuclear matter density and kinetic-energy density, temperature, chemical potential, and the entropy density of the compound nucleus, post equilibration time evolution of the stress tensor, ratio of shear viscosity over entropy density as function of temperature, giant dipole moment in coordinate space, isovector giant dipole resonance (IVGDR) photon spectra and centroid energies. Green-Kubo method in the framework of an extended quantum molecular dynamics model (EQMD).

doi: 10.1103/PhysRevC.95.054622
Citations: PlumX Metrics


2017GU22      Chin.Phys.Lett. 34, 092101 (2017)

C.-C.Guo, W.-B.He, Y.-G.Ma

Collective Flows of 16O+16O Collisions with α-Clustering Configurations

NUCLEAR REACTIONS 16O(16O, X), E=40-60 MeV/nucleon; calculated flow parameters. An extended quantum molecular dynamics model, four α-clustering (linear chain, kite, square and tetrahedron) configurations.

doi: 10.1088/0256-307X/34/9/092101
Citations: PlumX Metrics


2017GU32      Eur.Phys.J. A 53, 233 (2017)

C.-Q.Guo, C.-J.Zhang, J.Xu

Revisiting directed flow in relativistic heavy-ion collisions from a multiphase transport model

doi: 10.1140/epja/i2017-12431-2
Citations: PlumX Metrics


2017QU02      Phys.Rev. C 95, 044616 (2017)

W.W.Qu, G.L.Zhang, S.Terashima, T.Furumoto, Y.Ayyad, Z.Q.Chen, C.L.Guo, A.Inoue, X.Y.Le, H.J.Ong, D.Y.Pang, H.Sakaguchi, Y.Sakuragi, B.H.Sun, A.Tamii, I.Tanihata, T.F.Wang, R.Wada, Y.Yamamoto

Repulsive three-body force and channel-coupling effects via 12C+12C scattering at 100A MeV

NUCLEAR REACTIONS 12C(12C, 12C), (12C, 12C'), E=100 MeV/nucleon; measured scattered 12C using Grand Raiden high-resolution magnetic spectrometer, and 10B, 11C and other particles by the energy loss and time-of-flight (TOF) information, differential cross sections for the ground state, 4.44 MeV, 2+ state, and the sum of the 7.65 MeV, 0+ and the 9.64 MeV, 3- states in 12C using the Ring Cyclotron facility at RCNP-Osaka. Comparison with microscopic coupled-channel calculations, using the double folding method with three different complex G-matrix interactions, the ESC, CEG07b, and MPa.

doi: 10.1103/PhysRevC.95.044616
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetE2546.


2016WA18      Phys.Rev. C 94, 024608 (2016)

Y.Wang, C.Guo, Q.Li, Z.Li, J.Su, H.Zhang

Influence of differential elastic nucleon-nucleon cross section on stopping and collective flow in heavy-ion collisions at intermediate energies

NUCLEAR REACTIONS 1H(p, p), (n, n), E=150, 250, 400, 800 MeV; calculated normalized NN differential cross sections versus the cosine of the center-of-mass scattering angle, and compared with experimental data at ≈400 MeV. 197Au(197Au, X), E=150, 250, 400, 800 MeV/nucleon; calculated longitudinal and transverse rapidity distributions, directed and elliptic flows of free protons using three nucleon-nucleon (NN) elastic differential cross sections: parameterized differential cross section, differential cross section from the collision term of the self-consistent relativistic Boltzmann-Uehling-Uhlenbeck equation, and the isotropic differential cross section within the new version of the ultrarelativistic quantum molecular dynamics (UrQMD) model.

doi: 10.1103/PhysRevC.94.024608
Citations: PlumX Metrics


2015FU02      Acta Phys.Pol. B46, 127 (2015)

H.Fujioka, Y.Ayyad, J.Benlliure, K.-T.Brinkmann, S.Friedrich, H.Geissel, J.Gellanki, C.Guo, E.Gutz, E.Haettner, M.N.Harakeh, R.S.Hayano, Y.Higashi, S.Hirenzaki, C.Hornung, Y.Igarashi, N.Ikeno, K.Itahashi, M.Iwasaki, D.Jido, N.Kalantar-Nayestanaki, R.Kanungo, R.Knoebel, N.Kurz, V.Metag, I.Mukha, T.Nagae, H.Nagahiro, M.Nanova, T.Nishi, H.J.Ong, S.Pietri, A.Prochazka, C.Rappold, M.P.Reiter, J.L.Rodriguez-Sanchez, C.Scheidenberger, H.Simon, B.Sitar, P.Strmen, B.Sun, K.Suzuki, I.Szarka, M.Takechi, Y.K.Tanaka, I.Tanihata, S.Terashima, Y.N.Watanabe, H.Weick, E.Widmann, J.S.Winfield, X.Xu, H.Yamakami, J.Zhao

Search for η'(958)-nucleus Bound States by (p, d) Reaction at GSI and FAIR

NUCLEAR REACTIONS C(p, d), E=2.5 GeV; measured reaction products, Ep, Ip; deduced preliminary results for η'-mesic nuclei.

doi: 10.5506/APhysPolB.46.127
Citations: PlumX Metrics


2015GU07      Phys.Rev. C 91, 054615 (2015)

C.Guo, Y.Wang, Q.Li, Pe.Wen, F.-S.Zhang

Mass-splitting effect on flows in heavy-ion collisions in the Fermi-energy domain

NUCLEAR REACTIONS 197Au(197Au, X), E=100 MeV/nucleon; calculated time evolution of neutron and proton densities, rapidity distributions and transverse momentum of neutrons and protons, and effect of neutron-proton effective mass splitting (NPEMS) on flows in heavy-ion collisions at the Fermi-energy domain for directed and elliptic flows. Ultrarelativistic quantum molecular dynamics (UrQMD) model.

doi: 10.1103/PhysRevC.91.054615
Citations: PlumX Metrics


2015GU14      Int.J.Mod.Phys. E24, 1550040 (2015)

C.L.Guo, G.L.Zhang, M.Li

Calculation of α half-lives for Z ≥ 94 nuclei by proximity potential with a new universal function

RADIOACTIVITY 232,233,234,235,236,237,238,239,240Pu, 238,239,240,241,242,243Am, 240,241,242,243,244Cm, 245,247Bk, 242,244Cf, 250,251,252,253,254Cf, 251,252,253Es, 255Es, 251,252Fm, 254,256Fm, 254No, 261,263,265Sg, 266Sg, 271Sg, 264,265,266,267Bh, 272Bh, 264,265,266,267Hs, 269Hs, 275Hs, 270Ds, 284Cn, 286,288Fl, 290,292Lv, 294Og(α); calculated T1/2. Comparison with experimental data.

doi: 10.1142/S0218301315500408
Citations: PlumX Metrics


2015GU16      Phys.Rev. C 92, 014615 (2015)

C.L.Guo, G.L.Zhang, S.P.Hu, J.C.Yang, H.Q.Zhang, P.R.S.Gomes, J.Lubian, X.G.Wu, J.Zhong, C.Y.He, Y.Zheng, C.B.Li, G.S.Li, W.W.Qu, F.Wang, L.Zheng, L.Yu, Q.M.Chen, P.W.Luo, H.W.Li, Y.H.Wu, W.K.Zhou, B.J.Zhu, H.B.Sun

Coupling effects on the fusion of 6Li + 154Sm at energies slightly above the Coulomb barrier

NUCLEAR REACTIONS 154Sm(6Li, X)154Eu/156Gd/156Tb/157Tb, E=26-36 MeV; measured Eγ, Iγ from different evaporation residues formed via complete and incomplete fusion, complete and incomplete fusion σ(E), σ(E) for 3n+4n channels using on-line γ method at HI-13 Tandem Accelerator of CIAE-Beijing; deduced complete fusion suppression factor as a function of energy. Comparison with theoretical estimates using PACE2.

doi: 10.1103/PhysRevC.92.014615
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetS0190.


2015QU02      Phys.Lett. B 751, 1 (2015)

W.W.Qu, G.L.Zhang, S.Terashima, T.Furumoto, Y.Ayyad, Z.Q.Chen, C.L.Guo, A.Inoue, X.Y.Le, H.J.Ong, D.Y.Pang, H.Sakaguchi, Y.Sakuragi, B.H.Sun, A.Tamii, I.Tanihata, T.F.Wang, R.Wada, Y.Yamamoto

Effects of repulsive three-body force in 12C + 12C scattering at 100A MeV

NUCLEAR REACTIONS 12C(12C, 12C), (12C, 12C'), E=100 MeV/nucleon; measured reaction products; deduced σ(θ). Three double-folding models with complex G-matrix interactions, the CEG07b, MPa, and ESC model calculations.

doi: 10.1016/j.physletb.2015.10.008
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetE2494.


2015WA10      Eur.Phys.J. A 51, 37 (2015)

Y.Wang, C.Guo, Q.Li, H.Zhang

3H/3He ratio as a probe of the nuclear symmetry energy at sub-saturation densities

NUCLEAR REACTIONS 40Ca(40Ca, t), (40Ca, 3He), 90Zr(90Zr, t), (90Zr(3He), 96Ru(96Ru, t), (96Ru), 3He), 197Au(197Au, t), (197Au, 3He), E=0.12-1 GeV/nucleon; calculated 3H to 3He ratio using UrQMG (ultrarelativistic QMD) with different Skyrme forces; deduced symmetry energy using FOPI data.

doi: 10.1140/epja/i2015-15037-8
Citations: PlumX Metrics


2014GU18      Phys.Rev. C 90, 034606 (2014)

C.Guo, Y.Wang, Q.Li, F.-S.Zhang

Effect of the spin-orbit interaction on flows in heavy-ion collisions at intermediate energies

doi: 10.1103/PhysRevC.90.034606
Citations: PlumX Metrics


2014GU28      Eur.Phys.J. A 50, 187 (2014)

C.L.Guo, G.L.Zhang

Analysis of proton radioactivity of nuclei by using proximity potential with a new universal function

RADIOACTIVITY 105Sb, 109I, 112,113Cs, 145,146,147Tm, 150,151Lu, 155,156,157Ta, 160,161Re, 164,165,166,167Ir, 171Au, 177Tl, 185Bi(p); calculated T1/2. Compared with other calculations and data.

doi: 10.1140/epja/i2014-14187-5
Citations: PlumX Metrics


2014WA06      Phys.Rev. C 89, 034606 (2014)

Y.Wang, C.Guo, Q.Li, H.Zhang, Z.Li, W.Trautmann

Collective flow of light particles in Au + Au collisions at intermediate energies

doi: 10.1103/PhysRevC.89.034606
Citations: PlumX Metrics


2014WA13      Phys.Rev. C 89, 044603 (2014)

Y.Wang, C.Guo, Q.Li, H.Zhang, Y.Leifels, W.Trautmann

Constraining the high-density nuclear symmetry energy with the transverse-momentum-dependent elliptic flow

doi: 10.1103/PhysRevC.89.044603
Citations: PlumX Metrics


2013GU01      Nucl.Phys. A897, 54 (2013)

C.L.Guo, G.L.Zhang, X.Y.Le

Study of the universal function of nuclear proximity potential from density-dependent nucleon-nucleon interaction

NUCLEAR REACTIONS 40Ca(16O, X), (40Ca, X), 48Ca(48Ca, X), 89Y(32S, X), (34S, X), 90,96Zr(36S, X), (40Ca, X), 92Zr(12C, X), (16O, X), (28Si, X), (35Cl, X), 124Sn(40Ca, X), 144Sm(16O, X), (17O, X), (28Si, X), 148Sm(16O, X), 197Au(19F, X), 204Pb(12C, X), 208Pb(9Be, X), (16O, X), (19F, X), (28Si, X), (64Ni, X), (70Zn, X), (86Kr, X), E not given; calculated proximity interaction barrier using double-folding model with density dependent NN interaction. Compared with other calculations and data.

doi: 10.1016/j.nuclphysa.2012.10.003
Citations: PlumX Metrics


2012GU04      Chin.Phys.C 36, 205 (2012)

C.-L.Guo, G.-L.Zhang, I.Tanihata, X.-Y.Le

Simulation of 12C+12C elastic scattering at high energy by using the Monte Carlo method

NUCLEAR REACTIONS 12C(12C, X), E=200-400 MeV/nucleon; calculated the relation between scattering angles and kinetic energy. Monte Carlo method.

doi: 10.1088/1674-1137/36/3/003
Citations: PlumX Metrics


2011LI11      Phys.Rev. C 83, 044617 (2011)

Q.Li, C.Shen, C.Guo, Y.Wang, Z.Li, J.Lukasik, W.Trautmann

Nonequilibrium dynamics in heavy-ion collisions at low energies available at the GSI Schwerionen Synchrotron

doi: 10.1103/PhysRevC.83.044617
Citations: PlumX Metrics


1993JI03      Phys.Lett. 172A, 263 (1993)

Z.Jiang, W.Peng, C.Guo, Y.Yu, H.Yu

Hyperfine Structure of Some Odd Parity Levels in the Thulium Spectrum

NUCLEAR MOMENTS 169Tm; measured hfs; deduced magnetic dipole hyperfine constant. Laser atomic beam spectroscopy.

doi: 10.1016/0375-9601(93)91018-Z
Citations: PlumX Metrics


Back to query form


Note: The following list of authors and aliases matches the search parameter C.Guo: , C.C.GUO, C.L.GUO, C.Q.GUO, C.Y.GUO