NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 26, 2024.

Search: Author = P.Arumugam

Found 52 matches.

Back to query form



2023AU03      Phys.Rev. C 108, L011303 (2023)

K.Auranen, P.Siwach, P.Arumugam, A.D.Briscoe, L.S.Ferreira, T.Grahn, P.T.Greenlees, A.Herzan, A.Illana, D.T.Joss, H.Joukainen, R.Julin, H.Jutila, M.Leino, J.Louko, M.Luoma, E.Maglione, J.Ojala, R.D.Page, J.Pakarinen, P.Rahkila, J.Romero, P.Ruotsalainen, M.Sandzelius, J.Saren, A.Tolosa-Delgado, J.Uusitalo, G.Zimba

Probing triaxiality beyond the proton drip line: Spectroscopy of 147Tm

NUCLEAR REACTIONS 92Mo(58Ni, 2np)147Tm, E=250 MeV; measured Eγ, Iγ, fusion-evaporation residues, recoils, γγ-coin, (recoils)γ-coin, γ(θ). 147Tm; deduced levels, J, π, angular distribution coefficients, high-spin states, spin-parity of the isomeric proton decaying state, triaxiality evidences for ground-state ans isomeric state, configurations. Comparison to nonadiabatic quasiparticle model calculation. Recoil-decay tagging study using the vacuum-mode recoil separator MARA coupled with the JUROGAM3 g-ray spectrometer at Accelerator Laboratory of University of Jyvaskyla.

RADIOACTIVITY 147mTm(p) [from 92Mo(58Ni, 2np), E=250 MeV]; measured Eγ, Iγ, recoils, γγ-coin, (recoils)γ-coin; deduced T1/2 of the 5/2+ isomeric state proton decay. Recoil-decay tagging study using the vacuum-mode recoil separator MARA coupled with the JUROGAM3 g-ray spectrometer at Accelerator Laboratory of University of Jyvaskyla.

doi: 10.1103/PhysRevC.108.L011303
Citations: PlumX Metrics


2022SI09      Phys.Rev. C 105, L031302 (2022)

P.Siwach, P.Arumugam, S.Modi, L.S.Ferreira, E.Maglione

Fine structure in the odd-odd proton emitter 144Tm

RADIOACTIVITY 144Tm(p); calculated T1/2, branching ratios. 144Tm; calculated J, π of the ground state, configuration. 143Er; J, π, levels. Nonadiabatic quasiparticle approach. Proposed triaxial deformation for the ground state of 144Tm. Comparison to available experimental data.

doi: 10.1103/PhysRevC.105.L031302
Citations: PlumX Metrics


2022SI13      Phys.Rev. C 105, 064318 (2022)

P.Siwach, P.Arumugam

Quantum computation of nuclear observables involving linear combinations of unitary operators

NUCLEAR STRUCTURE 2H; calculated binding energy, quadrupole moment. Quantum computation of linear combinations of unitaries (LCU) using the Hadamard test as used in the variational quantum eigensolver (VQE) algorithm.

doi: 10.1103/PhysRevC.105.064318
Citations: PlumX Metrics


2022SI26      Phys.Rev. C 106, 044322 (2022)

P.Siwach, P.Arumugam, S.Modi, L.S.Ferreira, E.Maglione

Effects of triaxiality and residual $np$ interaction in the proton emission from 140Ho

RADIOACTIVITY 140Ho(p); calculated T1/2, branching ratios to excited states in 139Dy. 139Dy, 140Ho; calculated levels, J, π, neutron single-particle energy levels, rotational energies, contributions of various single-particle configurations to rotational states. Calculations within nonadiabatic quasiparticle approach considering the role of residual neutron-proton interaction and triaxiality. Comparison to experimental data.

doi: 10.1103/PhysRevC.106.044322
Citations: PlumX Metrics


2021SI06      Phys.Rev. C 103, 024327 (2021)

P.Siwach, P.Arumugam, L.S.Ferreira, E.Maglione

Behavior of chiral bands in 128, 130Cs and 130La

NUCLEAR STRUCTURE 128,130Cs, 130La; calculated rotational energies, odd-even staggering, B(M1), B(M1)/B(E2), B(E2), contributions of single-particle configurations as a function of spin for positive-parity chiral doublet bands, root mean square (rms) values of the core, proton, and neutron angular momentum components. Nonadiabatic quasiparticle approach. Comparison with experimental data.

doi: 10.1103/PhysRevC.103.024327
Citations: PlumX Metrics


2021SI10      Phys.Rev. C 103, L031303 (2021)

P.Siwach, P.Arumugam, S.Modi, L.S.Ferreira, E.Maglione

Interpretation of 108I as an odd-odd γ-deformed proton emitter

NUCLEAR STRUCTURE 107Te, 107I; calculated Single-particle and quasiparticle levels for neutrons in 107Te and for protons in 107I, rotational energies, J, π of 107Te. 108I; calculated rotational energies, J, π, configurations, proton emission half-life as function of γ and β2 deformation parameters, contribution of single-particle configurations with and without np interaction. 108I; deduced g.s. Jπ from GM splitting and Newby shift. Comparison with experimental proton emission half-life of 108I. Nonadiabatic quasiparticle microscopic approach to interpret the data for triaxial odd-odd proton emitters.

doi: 10.1103/PhysRevC.103.L031303
Citations: PlumX Metrics


2021SI25      Phys.Rev. C 104, 034301 (2021)

P.Siwach, P.Arumugam

Quantum simulation of nuclear Hamiltonian with a generalized transformation for Gray code encoding

NUCLEAR STRUCTURE 2H; calculated binding energy in a hybrid quantum-classical approach by considering three cases (Jordan-Wigner, Bravyi-Kitaev, Gray code) of encodings and corresponding transformations, with the potential derived from pionless effective field theory, and the central potential for which the operator is not tridiagonal, and by proposing an ansatze in the form of quantum circuits with parameters evaluated utilizing the variational quantum eigensolver (VQE). Comparison with experimental value.

doi: 10.1103/PhysRevC.104.034301
Citations: PlumX Metrics


2020CH11      Eur.Phys.J. A 56, 50 (2020)

S.Chakraborty, H.P.Sharma, S.S.Tiwary, C.Majumder, P.Banerjee, S.Ganguly, S.Rai, P.Popli, S.Modi, P.Arumugam, M.Singh, S.Kumar, A.Kumar, S.S.Bhattacharjee, R.P.Singh, S.Muralithar, R.Palit

Signature splitting in the positive parity bands of 127Xe

doi: 10.1140/epja/s10050-020-00066-3
Citations: PlumX Metrics


2020SI25      J.Phys.(London) G46, 125105 (2020)

P.Siwach, P.Arumugam, S.Modi, L.S.Ferreira, E.Maglione

Nonadiabatic quasiparticle description of rotation-particle coupling in triaxial odd-odd nuclei

NUCLEAR STRUCTURE 138Pm, 180Ta; calculated single-particle and quasiparticle energies, bands, staggering, J, π.

doi: 10.1088/1361-6471/abb6c2
Citations: PlumX Metrics


2020SI29      Phys.Lett. B 811, 135937 (2020)

P.Siwach, P.Arumugam, L.S.Ferreira, E.Maglione

Chirality in 136, 138Pm

NUCLEAR STRUCTURE 136,138Pm; analyzed available data; calculated rotational energies, band staggering, B(E2), B(M1), chiral geometry, probability of single-particle configurations; deduced the assignment of J and π to theband-head of yrast band.

doi: 10.1016/j.physletb.2020.135937
Citations: PlumX Metrics


2020TI04      Phys.Scr. 95, 095304 (2020)

S.S.Tiwary, H.P.Sharma, S.Chakraborty, C.Majumder, A.K.Gupta, S.Modi, P.Arumugam, P.Banerjee, S.Ganguly, K.Rojeeta Devi, Neelam, S.Kumar, S.K.Chamoli, A.Sharma, V.V.Jyothi, Mayank, A.Kumar, S.S.Bhattacharjee, I.Bala, S.Muralithar, R.P.Singh

Structure of positive parity states in 139Pm

NUCLEAR REACTIONS 127I(16O, 4n)139Pm, E=84 MeV; measured reaction products, Eγ, Iγ; deduced γ-ray energies and intensities, J, π, partial level scheme, bands. Comparison with systematics, particle rotor model calculations.

doi: 10.1088/1402-4896/abaea8
Citations: PlumX Metrics


2019MO25      Phys.Rev. C 100, 011602 (2019)

G.Mohanto, A.Parihari, P.C.Rout, S.De, E.T.Mirgule, B.Srinivasan, K.Mahata, S.P.Behera, M.Kushwaha, D.Sarkar, B.K.Nayak, A.Saxena, A.K.R.Kumar, A.Gandhi, Sangeeta, N.K.Deb, P.Arumugam

Collective enhancement in nuclear level density

NUCLEAR REACTIONS 181Ta, 197Au(11B, X)192Pt*/208Pb*, E=61.5, 63.0 MeV; measured Eα, Iα, neutron time of flight, E(n), I(n), and αn-coin from the compound nuclei using ΔE-E telescopes for charged particle detection and liquid scintillator array for neutron detection at the BARC-TIFR LINAC-Pelletron facility. 188Os, 204Pb; deduced inverse level density parameters as a function of excitation energy, and energy-dependent collective enhancement factor obtained from simultaneous fitting of the neutron spectra. 169Tm, 181Ta(α, X), E=26-40 MeV; analyzed previous experimental yields with model calculations. 187Os, 203Pb; calculated temperature dependent free energy surfaces. Comparison with statistical model calculations.

doi: 10.1103/PhysRevC.100.011602
Citations: PlumX Metrics


2018CH24      Phys.Rev. C 97, 054311 (2018); Erratum Phys.Rev. C 98, 059902 (2018)

S.Chakraborty, H.P.Sharma, S.S.Tiwary, C.Majumder, P.Banerjee, S.Ganguly, S.Rai, Pragati, S.Modi, P.Arumugam, Mayank, S.Kumar, R.Palit, A.Kumar, S.S.Bhattacharjee, R.P.Singh, S.Muralithar

Rotational band on a three-quasineutron isomer in 127Xe

NUCLEAR REACTIONS 122Sn(9Be, 4n), E=48 MeV; measured Eγ, Iγ, γγ-coin, γγ(θ)(DCO), γγ(linear polarization), and half-lives of isomers by γγ(t) using INGA array at 15UD pelletron accelerator of IUAC-New Delhi. 127Xe; deduced high-spin levels, J, π, bands, multipolarities, configurations, alignment plots, 3-qp states, reduced K-hindrance factors for γ transitions from 3-qp states in 127Xe and 129Ba. Comparison with modified particle rotor model (MPRM) calculations.

doi: 10.1103/PhysRevC.97.054311
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2018DE02      Phys.Rev. C 97, 014317 (2018)

B.Dey, C.Ghosh, D.Pandit, A.K.R.Kumar, S.Pal, V.Nanal, R.G.Pillay, P.Arumugam, S.De, G.Gupta, H.Krishnamoorthy, E.T.Mirgule, S.Pal, P.C.Rout

Study of the Jacobi shape transition in A ≈ 30 nuclei

NUCLEAR REACTIONS 12C(19F, X)28Si*, E=127 MeV; 12C(16O, X)31P*, E=125 MeV; measured fold-gated high-energy Eγ, Iγ using an array of seven closely-packed hexagonal BaF2 detectors, and a 14-element BGO multiplicity filter at Pelletron Linac Facility (PLF), Mumbai. 28Si, 31P; deduced average angular momentum, energy, width and strength of giant dipole resonances (GDR), Jacobi shape transition in 31P; calculated free energy surfaces. Comparison with thermal shape fluctuation model (TSFM).

doi: 10.1103/PhysRevC.97.014317
Citations: PlumX Metrics


2017GH06      Phys.Rev. C 96, 014309 (2017)

C.Ghosh, A.K.R.Kumar, B.Dey, V.Nanal, R.G.Pillay, P.Arumugam, K.V.Anoop, N.Dokania, A.Garai, G.Gupta, E.T.Mirgule, G.Mishra, D.Mondal, S.Pal, M.S.Pose, P.C.Rout

Giant dipole resonance studies in Ba isotopes at E/A ≈ 5 MeV

NUCLEAR REACTIONS 112Sn(12C, X)124Ba*, E=64 MeV; 124Sn(12C, X)136Ba*, E=52 MeV/nucleon; measured Eγ, Iγ, γγ-coin, multiplicity, giant dipole resonance (GDR) strength functions at TIFR-Mumbai Pelletron Linac Facility. 124,136Ba; deduced GDR parameters of centroids, widths and nuclear deformation parameter β using simulated Monte Carlo statistical model analysis; calculated the free energy surfaces (FESs) at different temperatures and angular momenta. Comparison with thermal shape fluctuation model (TSFM) calculations.

doi: 10.1103/PhysRevC.96.014309
Citations: PlumX Metrics


2017KU16      Phys.Rev. C 96, 024322 (2017)

A.K.R.Kumar, P.Arumugam, N.Dinh Dang, I.Mazumdar

Giant dipole resonance and shape transitions in hot and rotating 88Mo

NUCLEAR REACTIONS 40Ca(48Ti, X)88Mo*/86Zr/84Zr/80Sr/76Kr/74Se/70Ge/68Ge, E=300, 600 MeV; calculated giant-dipole resonance (GDR) cross sections within the thermal shape fluctuation model (TSFM) for different daughter nuclei formed at different temperatures and angular momenta. Comparison of experimental GDR cross sections and widths for 88Mo with the TSFM calculations. 88Mo; calculated free energy surfaces (FES) in (β2, γ) plane as functions of temperature and angular momentum.

doi: 10.1103/PhysRevC.96.024322
Citations: PlumX Metrics


2017MO08      Phys.Rev. C 95, 024326 (2017)

S.Modi, M.Patial, P.Arumugam, E.Maglione, L.S.Ferreira

Nonadiabatic quasiparticle approach for rotation-particle coupling in triaxial odd-A nuclei

NUCLEAR STRUCTURE 132,134Ba, 134,136Ce, 136,138Nd, 136,138Sm, 140,142Gd; analyzed parameters of the Variable moment of inertia (VMI) model from fitting of the experimental levels for ground and γ band using four different methods, including triaxial deformation. 136Nd, 137Pm; calculated levels, J, π, bands using the parameters from VMI model analysis, and considering β2 and γ deformation. Comparison with experimental data.

doi: 10.1103/PhysRevC.95.024326
Citations: PlumX Metrics


2017MO17      Phys.Rev. C 95, 054323 (2017)

S.Modi, M.Patial, P.Arumugam, E.Maglione, L.S.Ferreira

Triaxiality in the proton emitter 109I

NUCLEAR STRUCTURE 108Te; calculated levels, J, π with different triaxial deformations and compared with experimental data. 109I; calculated single-particle and quasiparticle energies as function deformation parameters β2 and γ, negative- and positive-parity bands as functions of deformation parameters β2, β4 and γ, yrast states, probability density of different single-particle angular momentum states. Nonadiabatic quasiparticle approach with the inclusion of triaxial degree of freedom.

RADIOACTIVITY 109I(p); calculated half-life of proton emission from the yrast states of 109I as function of β2 and γ, and compared to the experimental value.

doi: 10.1103/PhysRevC.95.054323
Citations: PlumX Metrics


2017MO22      Phys.Scr. 92, 094002 (2017)

S.Modi, M.Patial, P.Arumugam, E.Maglione, L.S.Ferreira

Modified particle-rotor model and low-lying rotational bands in odd-A triaxial nuclei

doi: 10.1088/1402-4896/aa81ec
Citations: PlumX Metrics


2017MO42      Phys.Rev. C 96, 064308 (2017)

S.Modi, M.Patial, P.Arumugam, L.S.Ferreira, E.Maglione

Decay of 147Tm and the role of triaxiality studied with a nonadiabatic quasiparticle approach

NUCLEAR STRUCTURE 140,142,144Dy, 141Ho, 145,147Tm; calculated levels, J, π, rotational bands, single-particle and quasiparticle energies in 147Tm using modified particle-rotor model, with the microscopic nonadiabatic quasiparticle approach. Comparison with experimental data.

RADIOACTIVITY 147,147mTm(p); calculated half-lives; deduced Jπ of g.s. and isomer of 147Tm. Comparison with experimental values.

doi: 10.1103/PhysRevC.96.064308
Citations: PlumX Metrics


2016GH09      Phys.Rev. C 94, 014318 (2016)

C.Ghosh, G.Mishra, A.K.R.Kumar, N.Dokania, V.Nanal, R.G.Pillay, Suresh Kumar, P.C.Rout, S.Joshi, P.Arumugam

Temperature dependence of the giant dipole resonance width in 152Gd

NUCLEAR REACTIONS 124Sn(28Si, X)152Gd*, E=135 MeV; measured Eγ, Iγ, γγ-coin at TIFR-BARC Pelletron Linac facility; deduced GDR centroids, widths, average angular momentum for oblate and prolate deformations. Comparison with thermal shape fluctuation model (TSFM) calculations with and without including thermal fluctuations.

doi: 10.1103/PhysRevC.94.014318
Citations: PlumX Metrics


2016KU24      Phys.Rev. C 94, 049802 (2016)

A.K.R.Kumar, P.Arumugam

Reply to "Comment on 'Thermal shape fluctuation model study of the giant dipole resonance in 152Gd' "

doi: 10.1103/PhysRevC.94.049802
Citations: PlumX Metrics


2015KU11      Phys.Rev. C 91, 044305 (2015)

A.K.R.Kumar, P.Arumugam, N.Dinh Dang

Effects of thermal shape fluctuations and pairing fluctuations on the giant dipole resonance in warm nuclei

NUCLEAR STRUCTURE 97Tc, 120Sn, 179Au, 208Pb; calculated average pairing gap and average quadrupole deformation parameter as function of temperature, probability distribution for gap parameter of protons and neutrons, free energy surface contours in (β, γ) plane, giant-dipole resonance (GDR) strength functions. Thermal shape fluctuation model (TSFM) extended to include the fluctuations in the pairing field. Comparison with experimental data.

doi: 10.1103/PhysRevC.91.044305
Citations: PlumX Metrics


2015KU27      Phys.Rev. C 92, 044314 (2015)

A.K.R.Kumar, P.Arumugam

Thermal shape fluctuation model study of the giant dipole resonance in 152Gd

NUCLEAR STRUCTURE 152Gd; analyzed experimental σ, GDR widths, free energy surfaces (FES) in (β2, γ) plane as functions of temperature and angular momentum in 124Sn(28Si, X)152Gd*, E=149, 185 MeV reaction; calculated average deformation and probability distribution of 152Gd shapes. Discussed occurrence of γ softness in the free energy surfaces of 152Gd and its role on GDR. Thermal shape fluctuation model (TSFM) built on the microscopic-macroscopic calculations of the free energies with a macroscopic approach for GDR.

doi: 10.1103/PhysRevC.92.044314
Citations: PlumX Metrics


2014KU24      Phys.Rev. C 90, 044308 (2014)

A.K.R.Kumar, P.Arumugam, N.Dinh Dang

Pairing effect in the thermal shape-fluctuation model on the width of the giant dipole resonance

NUCLEAR STRUCTURE 97Tc, 120Sn, 208Pb; calculated neutron and proton pairing gaps, widths of giant dipole resonances (GDR), free energy surface contours, shell effects and fluctuations of the pairing field dependence on temperature using the thermal shape-fluctuation model (TSFM). Comparison with experimental results.

doi: 10.1103/PhysRevC.90.044308
Citations: PlumX Metrics


2014MU11      J.Phys.(London) G41, 115103 (2014)

I.Mukul, A.Roy, P.Sugathan, J.Gehlot, G.Mohanto, S.Nath, N.Madhavan, R.Dubey, T.Banerjee, N.Saneesh, I.Mazumdar, D.A.Gothe, A.K.R.Kumar, P.Arumugam, M.Kaur

Decoupling the effect of temperature on GDR widths in excited compound nucleus 144Sm

NUCLEAR REACTIONS 116Cd(28Si, X)144Sm, E=170, 196.5 MeV; measured reaction products, Eγ, Iγ; deduced fusion σ, giant dipole resonance parameters. Thermal shape fluctuation model calculations.

doi: 10.1088/0954-3899/41/11/115103
Citations: PlumX Metrics


2013GU07      Phys.Rev. C 87, 028801 (2013)

N.Gupta, P.Arumugam

"Pasta phases" in neutron stars studied with extended relativistic mean field models

doi: 10.1103/PhysRevC.87.028801
Citations: PlumX Metrics


2013GU15      Phys.Rev. C 87, 045802 (2013)

N.Gupta, P.Arumugam

Neutron stars with antikaons: Comparison between two ways of extending the relativistic mean field models

doi: 10.1103/PhysRevC.87.045802
Citations: PlumX Metrics


2013GU24      Phys.Rev. C 88, 015803 (2013)

N.Gupta, P.Arumugam

Impact of hyperons and antikaons in an extended relativistic mean-field description of neutron stars

doi: 10.1103/PhysRevC.88.015803
Citations: PlumX Metrics


2013IS10      Phys.Rev. C 88, 024312 (2013)

Ish Mukul, A.Roy, P.Sugathan, J.Gehlot, G.Mohanto, N.Madhavan, S.Nath, R.Dubey, I.Mazumdar, D.A.Gothe, M.Kaur, A.K.R.Kumar, P.Arumugam

Effect of angular momentum on giant dipole resonance observables in the 28Si+116Cd reaction

NUCLEAR REACTIONS 116Cd(28Si, X)144Sm*, E=125, 140 MeV; measured Eγ, Iγ, γγ-coin, time-of-flight, fold distribution using 4π spin spectrometer at Pelletron facility of IUAC; deduced γ-ray multiplicity, angular momentum distribution, average angular momentum, GDR energies, centroids, widths, deformation parameter, and strength distribution. Statistical model analysis using CASCADE computer code. Comparison with thermal shape fluctuation model (TSFM)calculations. 144Sm; calculated potential energy surface contours at different angular momenta and temperatures in (β, γ) plane.

doi: 10.1103/PhysRevC.88.024312
Citations: PlumX Metrics


2013PA37      Phys.Rev. C 88, 054302 (2013)

M.Patial, P.Arumugam, A.K.Jain, E.Maglione, L.S.Ferreira

Nonadiabatic quasiparticle approach for deformed odd-odd nuclei and the proton emitter 130Eu

RADIOACTIVITY 130Eu(p); calculated half-lives for different combinations of spins and parities of 130Eu, and different parameters for Coriolis and residual np interactions. Confirmation of 1+ for 130Eu parent state.

NUCLEAR STRUCTURE 180Ta; calculated proton and neutron Nilsson levels as function of β2 deformation, ground-state band, odd-even staggering for ground-state band. 178Hf, 132Sm; calculated levels of ground-state band as function of VMI parameter. 129Sm; calculated Nilsson neutron levels as function of β2 deformation, and as function of Coriolis attenuation factor. 130Eu; calculated Nilsson neutron levels as function of β2 deformation, and energies of lowest states for various configurations. Nonadiabatic approach for two quasiparticle plus rotor model (TQPRM) in the strong coupling limit with meanfield from deformed Woods-Saxon potential. Comparison with experimental data.

doi: 10.1103/PhysRevC.88.054302
Citations: PlumX Metrics


2012GU01      Phys.Rev. C 85, 015804 (2012)

N.Gupta, P.Arumugam

Role of higher order couplings in the presence of kaons in relativistic mean field description of neutron stars

doi: 10.1103/PhysRevC.85.015804
Citations: PlumX Metrics


2011BH04      Int.J.Mod.Phys. E20, 1227 (2011)

M.Bhuyan, S.K.Patra, P.Arumugam, R.K.Gupta

Nuclear sub-structure in 112-122Ba nuclei within relativistic mean field theory

NUCLEAR STRUCTURE 112,114,116,118,120,122Ba; calculated binding energies, rms radii, deformation parameters, clustering structures. Relativistic mean field theory.

doi: 10.1142/S021830131101837X
Citations: PlumX Metrics


2011FE11      J.Phys.:Conf.Ser. 312, 092024 (2011)

L.S.Ferreira, E.Maglione, P.Arumugam

Nuclear Structure Studies at the Borders of Stability

NUCLEAR STRUCTURE 142Dy, 145Tm; calculated rotational levels, J, π. 145Tm; calculated proton emission width, branching ratio, deformation parameter. Nonadiabatic quasiparticle approach; rotational levels compared with data.

doi: 10.1088/1742-6596/312/9/092024
Citations: PlumX Metrics


2010CH54      Phys.Rev. C 82, 061308 (2010); Comm.On Phys.Rev. C 87, 059801 (2013)

D.Choudhury, A.K.Jain, M.Patial, N.Gupta, P.Arumugam, A.Dhal, R.K.Sinha, L.Chaturvedi, P.K.Joshi, T.Trivedi, R.Palit, S.Kumar, R.Garg, S.Mandal, D.Negi, G.Mohanto, S.Muralithar, R.P.Singh, N.Madhavan, R.K.Bhowmik, S.C.Pancholi

Evidence of antimagnetic rotation in odd-A 105Cd

NUCLEAR REACTIONS 94Zr(16O, 5n), E=93 MeV; measured Eγ, Iγ, γγ-coin, γγ(θ)(DCO), and half-lives using Doppler shift attenuation method. 105Cd; deduced levels, J, π, band, B(E2), antimagnetic rotation. Comparison with semiclassical particle rotor model (SCM).

doi: 10.1103/PhysRevC.82.061308
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2009AR12      Phys.Lett. B 680, 443 (2009)

P.Arumugam, L.S.Ferreira, E.Maglione

Proton emission, gamma deformation, and the spin of the isomeric state of 141Ho

NUCLEAR STRUCTURE 140Dy, 141Ho; calculated rotational level energies using triaxial rigid rotor model. Comparison with data.

RADIOACTIVITY 141Ho(p); calculated decay widths, branching ratio and excitation spectra using the nonadiabatic quasiparticle method with triaxial deformation. Comparison with data.

doi: 10.1016/j.physletb.2009.09.038
Citations: PlumX Metrics


2009PA15      Phys.Rev. C 79, 044303 (2009)

S.K.Patra, F.H.Bhat, R.N.Panda, P.Arumugam, R.K.Gupta

Isomeric state in 53Co: A mean field analysis

NUCLEAR STRUCTURE 53Co, 53Fe; calculated potential energy as a function of quadrupole deformation, ground and isomeric state binding energies, charge radii, deformation parameters, single-particle energy levels, occupation probabilities of proton and neutron orbits. Relativistic and non-relativistic mean field formalism, Skyrme Hartree-Fock method calculations. Comparison with experimental data.

doi: 10.1103/PhysRevC.79.044303
Citations: PlumX Metrics


2009PA46      Phys.Rev. C 80, 064602 (2009)

S.K.Patra, R.N.Panda, P.Arumugam, R.K.Gupta

Nuclear reaction cross sections of exotic nuclei in the Glauber model for relativistic mean field densities

NUCLEAR REACTIONS 12C(6Li, X), (7Li, X), (8Li, X), (9Li, X), (11Li, X), E=790 MeV/nucleon; 12C(20Mg, X), (20Na, X), (20Ne, X), (20F, X), (20O, X), (20N, X), E=30-2200 MeV/nucleon; 208Pb(α, X), (6He, X), (8He, X), (6Li, X), (7Li, X), (8Li, X), (9Li, X), (11Li, X), (10B, X), E=30-1000 MeV/nucleon; 235U(α, X), (6He, X), (8He, X), (6Li, X), (7Li, X), (8Li, X), (9Li, X), (11Li, X), (20C, X), E=30-1000 MeV/nucleon; 230Th(α, X), (6Li, X), (7Li, X), (8Li, X), (9Li, X), (11Li, X), E=30-1000 MeV/nucleon; 218,228,248,260Pb, 250,260,270U(6Li, X), E=30-1000 MeV/nucleon; 218,228,248,260Pb, 250,260,270U(11Li, X), 30-1000 MeV/nucleon; 218,228,248Pb(10B, X), E=30-1000 MeV/nucleon; 240,250,270Th(α, X), E=30-1000 MeV/nucleon; 250,260,270U(8He, X), E=30-1000 MeV/nucleon; 250,260,270U(20C, X), E=30-1000 MeV/nucleon; 208,210,260Pb(6Li, 6Li), E=30-1000 MeV/nucleon; 260Pb, 292,320122(11Li, X), E=30-1000 MeV/nucleon; 260Pb, 292,320122(11Li, 11Li), E=30-1000 MeV/nucleon; 208Pb, 235,238,250U(12C, 12C), E=30-1000 MeV/nucleon; 235,238,250U(20C, 20C), E=30-1000 MeV/nucleon; calculated σ and σ(θ) using the relativistic mean field (RMF(NL3) and E-RMF(G2)) formalisms and the Glauber model. Comparison with experimental data.

NUCLEAR STRUCTURE 4,5,6,7,8He, 6,7,8,9,10,11Li, 10,15,17,20B, 12,14,16,18,20C, 208,210,218,228,238,248,258,260Pb, 230,240,250,260,270Th, 235,238,250,260,270,280U, 292,320122; calculated binding energies, rms radii and ground-state densities for lighter projectiles and heavier target nuclei using relativistic mean field (RMF(NL3) and E-RMF(G2)) formalisms. Comparison with experimental data.

doi: 10.1103/PhysRevC.80.064602
Citations: PlumX Metrics


2008AR11      Phys.Rev. C 78, 041305 (2008)

P.Arumugam, L.S.Ferreira, E.Maglione

Fine structure in proton radioactivity: An accurate tool to ascertain the breaking of axial symmetry in 145Tm

NUCLEAR STRUCTURE 142Dy, 145Tm; calculated rotational level energies using triaxial rigid rotor, particle rigid rotor calculations.

RADIOACTIVITY 145Tm(p); calculated level energies, decay widths, fine structure in proton spectra. Comparison with experimental data.

doi: 10.1103/PhysRevC.78.041305
Citations: PlumX Metrics


2008GU20      Int.J.Mod.Phys. E17, 2244 (2008)

R.K.Gupta, S.K.Arun, D.Singh, R.Kumar, Niyti, SK.Patra, P.Arumugam, B.K.Sharma

Clusters in light, heavy, super-heavy and super-superheavy nuclei

doi: 10.1142/S0218301308011422
Citations: PlumX Metrics


2007AR30      Phys.Rev. C 76, 044311 (2007)

P.Arumugam, E.Maglione, L.S.Ferreira

Nonadiabatic quasiparticle description of triaxially deformed proton emitters

NUCLEAR STRUCTURE 161Re, 185Bi; calculated proton emission half-lives, level energies, triaxial deformation parameters, pairing effects.

doi: 10.1103/PhysRevC.76.044311
Citations: PlumX Metrics


2007SH33      Phys.Rev. C 76, 034601 (2007)

A.Shukla, B.K.Sharma, R.Chandra, P.Arumugam, S.K.Patra

Nuclear reaction studies of unstable nuclei using relativistic mean field formalisms in conjunction with the Glauber model

NUCLEAR REACTIONS 12C(12C, X), E < 1000 MeV/nucleon; 12C(Li, X), (Be, X), (B, X)E=800 MeV/nucleon; 12C(11Li, X), (14Be, X), (11Be, X), E=30, 85 MeV/nucleon; calculated σ, angular distributions and total reaction cross sections within the Glauber model. Compared results to available data.

doi: 10.1103/PhysRevC.76.034601
Citations: PlumX Metrics


2006SH01      J.Phys.(London) G32, L1 (2006)

B.K.Sharma, P.Arumugam, S.K.Patra, P.D.Stevenson, R.K.Gupta, W.Greiner

Clustering in superheavy nuclei within the relativistic mean field approach

NUCLEAR STRUCTURE 292,296,300,304120; calculated binding energies, deformation parameters, radii, matter density distributions; deduced cluster configurations. Relativistic mean field approach.

doi: 10.1088/0954-3899/32/1/L01
Citations: PlumX Metrics


2006SH20      J.Phys.(London) G32, 2089 (2006)

B.K.Sharma, S.K.Patra, R.K.Gupta, A.Shukla, P.Arumugam, P.D.Stevenson, W.Greiner

Reaction cross-sections for light nuclei on 12C using relativistic mean field formalism

NUCLEAR REACTIONS 12C(8B, X), (9B, X), (10B, X), (11B, X), (12B, X), (13B, X), (14B, X), (15B, X), (16B, X), (17B, X), (18B, X), (19B, X), (7Be, X), (8Be, X), (9Be, X), (10Be, X), (11Be, X), (12Be, X), (13Be, X), (14Be, X), (6Li, X), (7Li, X), (8Li, X), (9Li, X), (10Li, X), (11Li, X), E ≈ 800 MeV/nucleon; calculated reaction σ. Relativistic mean field approach.

NUCLEAR STRUCTURE 6,7,8,9,10,11Li, 10,11,12,13,14Be, 15,16,17B; calculated binding energies, deformation. Relativistic mean field approach.

doi: 10.1088/0954-3899/32/11/004
Citations: PlumX Metrics


2005AR09      Acta Phys.Pol. B36, 1181 (2005)

P.Arumugam, A.Ganga Deb, S.K.Patra

Giant dipole resonance and shape fluctuations in rapidly rotating hot nuclei

NUCLEAR STRUCTURE 46Ti, 84Zr, 147Eu; calculated GDR parameters, thermal fluctuations, spin-dependent features. Macroscopic approach.


2005AR12      Phys.Rev. C 71, 064308 (2005)

P.Arumugam, B.K.Sharma, S.K.Patra, R.J.K.Gupta

Relativistic mean field study of clustering in light nuclei

NUCLEAR STRUCTURE 16O, 32S; calculated binding energies, rms radii, matter density distributions, deformation parameters. 6,7,8,9,10,11,12,13,14Be, 11,13,15,17,19B; calculated binding energies, deformation parameters, neutron and proton density distributions. 12C, 20Ne, 24Mg, 28Si; calculated binding energies, matter density distributions, deformation parameters. Comparison with data, relativistic mean field approach.

doi: 10.1103/PhysRevC.71.064308
Citations: PlumX Metrics


2005AR23      Eur.Phys.J. A 25, 199 (2005)

P.Arumugam, A.Ganga Deb, S.K.Patra

Giant dipole resonance and shape transitions in warm and rapidly rotating nuclei

NUCLEAR STRUCTURE 147Eu, 160,164,166Er, 179Au; calculated GDR strength distributions vs spin and temperature, potential energy surfaces, shape transitions.

doi: 10.1140/epja/i2005-10080-8
Citations: PlumX Metrics


2004AR11      Phys.Rev. C 69, 054313 (2004)

P.Arumugam, G.Shanmugam, S.K.Patra

Giant dipole resonance and Jacobi transition with exact treatment of fluctuations

NUCLEAR STRUCTURE 45Sc, 90Zr, 92Mo, 120Sn, 184Hg, 208Pb; calculated GDR energies, widths at finite temperature and spin, role of Jacobi transition. Nilsson-Strutinsky approach, Landau theory, comparison with data.

doi: 10.1103/PhysRevC.69.054313
Citations: PlumX Metrics


2004AR23      Phys.Lett. B 601, 51 (2004)

P.Arumugam, B.K.Sharma, P.K.Sahu, S.K.Patra, T.Sil, M.Centelles, X.Vinas

Versatility of field theory motivated nuclear effective Lagrangian approach

doi: 10.1016/j.physletb.2004.09.026
Citations: PlumX Metrics


2004NA22      Pramana 62, 827 (2004)

Z.Naik, B.K.Sharma, T.K.Jha, P.Arumugam, S.K.Patra

Shape change in Hf, W and Os-isotopes: A non-relativistic Hartree-Fock versus relativistic Hartree approximation

NUCLEAR STRUCTURE Hf, W, Os; calculated binding energies, quadrupole deformation parameters. Comparison of relativistic and nonrelativistic approaches.

doi: 10.1007/BF02706132
Citations: PlumX Metrics


2001SH43      Pramana 57, 223 (2001)

G.Shanmugam, P.Arumugam

Inclusion of Temperature Dependent Shell Corrections in Landau Theory for Hot Rotating Nuclei

NUCLEAR STRUCTURE 80Zr; calculated deformation vs temperature, spin. Temperature-dependent shell corrections, Landau theory.

doi: 10.1007/s12043-001-0180-z
Citations: PlumX Metrics


1999SH45      Pramana 53, 457 (1999)

G.Shanmugam, V.Ramasubramanian, P.Arumugam

Rotational Co-Existence in Selenium Isotopes

NUCLEAR STRUCTURE 72,73,74Se; calculated rotational bands energies; deduced shape coexistence features. Cranked Nilsson-Strutinsky approach.

doi: 10.1007/s12043-999-0015-x
Citations: PlumX Metrics


Back to query form