NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of March 21, 2024.

Search: Author = R.K.Gupta

Found 226 matches.

    Showing 1 to 100.

   [Next]

Back to query form



2019KA05      Phys.Rev. C 99, 014614 (2019)

M.Kaur, B.B.Singh, S.Kaur, R.K.Gupta

N/Z dependence of decay channels in A=80 compound nuclei

NUCLEAR REACTIONS 40Ca(40Ca, X)80Zr*, E(cm)=62.14 MeV; 64Zn(16O, X)80Sr*, E(cm)=48.0 MeV; 48Ca(32S, X)80Kr*, E(cm)=39.8 MeV; calculated radial scattering potential profiles, fragmentation potential, preformation and penetration probability probabilities as function of fragment mass and angular momentum, fusion σ for emission of light particles, intermediate mass fragments, and symmetric mass fragments. Dynamical cluster-decay model. Comparison with experimental values of fusion σ.

doi: 10.1103/PhysRevC.99.014614
Citations: PlumX Metrics


2018CH53      Phys.Rev. C 98, 041603 (2018)

S.Chopra, Hemdeep, P.Kaushal, R.K.Gupta

Signatures of higher-multipole deformations and non-coplanarity as essential, additional degrees-of-freedom in heavy-ion reactions

NUCLEAR REACTIONS 64Ni(132Sn, X)196Pt*, E*=55-90 MeV; 93Nb(12C, X)105Ag*, E*=40-60 MeV; 100Mo(64Ni, X)164Yb*, E*=25-70 MeV; 235U(11B, X)246Bk*, E*=47.5-72.5 MeV; 172Yb(48Ca, X)220Th*, E*=35-45 MeV; 154Gd(48Ca, X)202Po*, E*=41-54 MeV; 180Hf(40Ar, X)220Th*, E*=36-46 MeV; 138Ba(82Se, X)220Th*, E*=35-45 MeV; 232Th(14N, X)246Bk*, E*=43-61 MeV; calculated compound and non-compound nucleus σ(E) for three deformations β2, β3 and β4 and non-coplanarity using dynamical cluster-decay model. Comparison with experimental values; deduced that higher-multipole deformations together with non-coplanar configurations are important for analysis of a compound nucleus fusion reaction.

doi: 10.1103/PhysRevC.98.041603
Citations: PlumX Metrics


2018HE10      Phys.Rev. C 97, 044623 (2018)

Hemdeep, S.Chopra, A.Kaur, P.Kaushal, R.K.Gupta

Role of higher-multipole deformations and noncoplanarity in the decay of the compound nucleus 220Th* within the dynamical cluster-decay model

NUCLEAR REACTIONS 180Hf(40Ar, X)220Th*, E=35.637.41.37, 46.73 MeV; 172Yb(48Ca, X)220Th*, E=35.4, 39.9, 46.2 MeV; 138Ba(82Se, X)220Th*, E=34.47, 39.47, 44.47 MeV; 204Pb(16O, X)220Th*, E=39-46.75 MeV; calculated fragmentation potential V(A), preformation yields, σ for 1n to 5n decay channels, and best-fitted neck-length parameter of compound nucleus (CN) 220Th; deduced role of octupole (β3) and hexadecupole (β4) deformations with corresponding compact orientations for both coplanar and noncoplanar configurations in decay of 220Th compound nucleus. Dynamical cluster-decay model (DCM) based on the quantum mechanical fragmentation theory (QMFT). Comparison with experimental values.

doi: 10.1103/PhysRevC.97.044623
Citations: PlumX Metrics


2018KA02      Nucl.Phys. A969, 14 (2018)

M.Kaur, B.B.Singh, M.K.Sharma, R.K.Gupta

Analysis of intermediate and light mass fragments from composite systems 26-29Al* formed in 16, 18O + 10, 11B reactions

NUCLEAR REACTIONS 10,11B(16O, x), (18O, x), E=1-4 MeV/nucleon; calculated fragmentation potential for the composite system, fragment mass distribution, fragment preformation probability using DCM (Dynamical Cluster decay Model) for both spherical and deformed nucleus. Light particle emission σ compared to data.

doi: 10.1016/j.nuclphysa.2017.09.014
Citations: PlumX Metrics


2018KA05      Nucl.Phys. A969, 184 (2018)

A.Kaur, P.Kaushal, Hemdeep, R.K.Gupta

Decay analysis of compound nuclei formed in reactions with exotic neutron-rich 9Li projectile and the synthesis of 217At* within the dynamical cluster-decay model

NUCLEAR REACTIONS 208Pb(9Li, γ), E=24.84-42.38 MeV;209Pb(9Li, γ);27Al, 67Cu, 70Zn, 120Sn, 208Pb(9Li, γ), (9Li, xn), E=29.86 MeV;61,63,65,67,73,77,79,80Cu, 70,74,78,80,82Zn(9Li, γ), E(cm)=26.0-26.9 MeV, E=15 MeV; calculated halo nucleus induced fusion σ, evaporation residue σ using (DCM Dynamical Cluster decay Model). Compared with published data.

doi: 10.1016/j.nuclphysa.2017.10.006
Citations: PlumX Metrics


2018KA23      Int.J.Mod.Phys. E27, 1850043 (2018)

A.Kaur, G.Sawhney, M.K.Sharma, R.K.Gupta

Spontaneous fission of the end product in α-decay chain of recoiled superheavy nucleus: A theoretical study

RADIOACTIVITY 266,267,268Db, 267Rf, 281Rg, 266Lr, 282Cn(α), (SF); calculated preformation probability, penetrability, T1/2. Comparison with available data.

doi: 10.1142/S021830131850043X
Citations: PlumX Metrics


2018KA28      Phys.Rev. C 98, 014602 (2018)

P.Kaushal, A.Kaur, Hemdeep, S.Chopra, R.K.Gupta

48Ca-induced reaction on the lanthanide target 154Gd and its decay to ground and metastable states within the dynamical cluster-decay model

NUCLEAR REACTIONS 154Gd(48Ca, xn)202Po*, E*=41.03-53.61 MeV; calculated scattering and fragmentation potentials, preformation and penetration probabilities, σ(E) for 1n to 5n channels, and for evaporation residues. 197m,198,199mPo; investigated decay of 202Po compound nucleus to 198Po g.s. and to 197,199Po metastable states by neutron evaporation channels. Quantum mechanical fragmentation theory (QMFT) based dynamical cluster-decay model (DCM). Comparison with available experimental data, and with other theoretical predictions.

doi: 10.1103/PhysRevC.98.014602
Citations: PlumX Metrics


2018KA43      Nucl.Phys. A980, 67 (2018)

M.Kaur, B.B.Singh, M.K.Sharma, R.K.Gupta

Study of α-induced reactions forming A=60 compound systems within dynamical cluster-decay model

doi: 10.1016/j.nuclphysa.2018.09.079
Citations: PlumX Metrics


2018NI10      Acta Phys.Pol. B49, 639 (2018)

Niyti, R.Singh, A.Deep, R.Kharab, S.Chopra, R.K.Gupta

Dynamical Cluster-decay Model Based on Skyrme Force KDE0(v1) and the Dynamics of208, 206, 204Pb+48Ca → 256, 254, 252No* Reaction

NUCLEAR REACTIONS 204,206,208Pb(48Ca, xn)252,254,256No, E*=19.6-43.6 MeV; calculated channel cross section σxn for fixed x (x=1-4, but most of calculations done for 2n emission) vs E*; compared with available published data; calculated "optimum hot" fusion reactions σ using Dynamical Cluster-decay Model (DCM) with pocket formula for the proximity potential; deduced that they reproduce data well with neck-length parameter fitted.

doi: 10.5506/aphyspolb.49.639
Citations: PlumX Metrics


2018SH08      Nucl.Phys. A972, 1 (2018)

K.Sharma, G.Sawhney, M.K.Sharma, R.K.Gupta

Decay of Plutonium isotopes via spontaneous and heavy-ion induced fission paths

NUCLEAR REACTIONS 238U(6He, x)244Pu, E(cm)=15.0-28.8 MeV; calculated fission σ, fragment mass distribution, using DCM (Dynamical Cluster Decay Model) for spherical and β2-deformed nuclei. Compared with data.

RADIOACTIVITY 234,236,238,240,242,244,246Pu(SF); calculated preformation probability vs fragment mass, preformation yield, preformation T1/2, spontaneous fission T1/2 using PCM (Preformed Cluster Model) for hot and cold nuclei, both spherical and deformed, hot and cold. Compared with fragment mass yield data, experimental T1/2.

doi: 10.1016/j.nuclphysa.2018.02.001
Citations: PlumX Metrics


2018SR01      Int.J.Mod.Phys. E27, 1850032 (2018)

I.Sreeja, M.Balasubramaniam, R.K.Gupta

Preformation probability of two-proton emitters

RADIOACTIVITY 19Mg, 30Ar, 34Ca, 45Fe, 48Ni, 54Zn, 62Se, 66,67Kr, 71Sr(2p); calculated preformation probability distributions.

doi: 10.1142/S0218301318500325
Citations: PlumX Metrics


2017CH21      Phys.Rev. C 95, 044603 (2017)

S.Chopra, Hemdeep, R.K.Gupta

Synthesis of the Z=122 superheavy nucleus via 58Fe- and 64Ni-induced reactions using the dynamical cluster-decay model

NUCLEAR REACTIONS 248Cm(58Fe, xn)306122*, E*=25-68 MeV; 242Pu(64Ni, xn)306122*, E*=25-68 MeV; calculated σ(E*) for 1n-, 2n-, 3n- and 4n-channels, evaporation residue (ER) σ, compound nucleus formation probability, fragmentation potentials, preformation probabilities as function of fragment mass in hot fusion reactions. Dynamical cluster-decay model based on dynamical or quantum mechanical fragmentation theory (QMFT), and two-center shell model (TCSM).

doi: 10.1103/PhysRevC.95.044603
Citations: PlumX Metrics


2017HE03      Phys.Rev. C 95, 014609 (2017)

Hemdeep, S.Chopra, A.Kaur, R.K.Gupta

Formation and decay of the compound nucleus 220Th* within the dynamical cluster-decay model

NUCLEAR REACTIONS 172Yb(48Ca, X)220Th*, 204Pb(16O, X)220Th*, 194Pt(26Mg, X)220Th*, 180Hf(40Ar, X)220Th*, 138Ba(82Se, X)220Th*, 134Xe(86Kr, X)220Th*, 124Sn(96Zr, X)220Th, E*=39.9, 25-50 MeV; calculated scattering and mass-fragmentation potentials, preformation yields for hot-fusion reactions, evaporation residue, and 1n- to 5n-decay channel cross sections, penetrability versus angular momentum. Dynamical cluster-decay model (DCM) based on quantum-mechanical fragmentation theory (QMFT). Comparison with available experimental data.

doi: 10.1103/PhysRevC.95.014609
Citations: PlumX Metrics


2017KA05      Phys.Rev. C 95, 014611 (2017)

M.Kaur, B.B.Singh, S.K.Patra, R.K.Gupta

Clustering effects and decay analysis of the light-mass N=Z and N ≠ Z composite systems formed in heavy ion collisions

NUCLEAR REACTIONS 10B(10B, X)20Ne*, E(cm)=12-25 MeV; 16O(12C, X)28Si*, E(cm)=50.14-68.57 MeV; 28Si(12C, X)40Ca*, E(cm)=53.90 MeV; 10B(11B, X)21Ne*, E(cm)=13.09-26.19 MeV; 11B(11B, X)22Ne*, E(cm)=12-25 MeV; 11B(28Si, X)39K*, E(cm)=45.94 MeV; 12C(27Al, X)39K*, E(cm)=50.53 MeV; calculated preformation and penetration probabilities as function of fragment or cluster mass, scattering and fragment potentials for the decay of α- and non-α conjugate systems, fission-fusion σ(E). Dynamical cluster-decay model (DCM) based on quantum-mechanical fragmentation theory (QMFT). Comparison with experimental data.

doi: 10.1103/PhysRevC.95.014611
Citations: PlumX Metrics


2017KA34      Nucl.Phys. A966, 306 (2017)

A.Kaur, Hemdeep, P.Kaushal, B.R.Behera, R.K.Gupta

Dynamical Cluster-decay Model (DCM) applied to 9Li + 208Pb reaction

NUCLEAR REACTIONS 208Pb(9Li, x), E(cm)=23.9, 28.5, 33.4, 38.1, 40.6, 43.0 MeV; calculated fusion σ for reaction induced by weakly-bound light heavy ions using DCM (Dynamical Cluster decay Model), fusion-fission σ, CN decay σ vs E(cm), non-compound system decay σ, preformation probability vs l; deduced neck length parameter from the fit to data.

doi: 10.1016/j.nuclphysa.2017.07.016
Citations: PlumX Metrics


2017NI04      Phys.Rev. C 95, 034602 (2017)

Niyti, A.Deep, R.Kharab, S.Chopra, R.K.Gupta

Skyrme forces and decay of the266104Rf* nucleus synthesized via different incoming channels

NUCLEAR REACTIONS 248Cm(18O, X)266Rf*, E=88.2-101.3 MeV; 244Pu(22Ne, X)266Rf*, E=109.0-124.8 MeV; calculated mass fragmentation potentials, preformation yields. 248Cm(18O, 4n), (18O, 5n), (18O, 6n), 244Pu(22Ne, 4n), 244Pu(22Ne, 5n)244Pu(22Ne, 6n), E=80-130 MeV; calculated σ(E), neck-length parameters, preformation and penetration probabilities. 258Md(8Li, X), 254Es(12B, X), 242Pu(22Ne, X), 218Po(48Ca, X), 212Pb(54Ti, X), 205Au(61Mn, X), 242Pu(22Ne, X), 195Os(71Ni, X), 192W(74Zn, X), 182Yb(84Se, X), 157Nd(109Ru, X), 132Te(134Te, X), E=94.8 MeV; calculated evaporation residue σ for 4n-, 5n-, and 6n-decay channels of compound nucleus 266Rf in the dynamical cluster-decay model (DCM). Skyrme energy density functional (SEDF) based on semiclassical extended Thomas Fermi (ETF) approach, and using SIII, SIV, new GSkI and KDE0(v1) forces.

doi: 10.1103/PhysRevC.95.034602
Citations: PlumX Metrics


2017SA12      Acta Phys.Pol. B48, 629 (2017)

G.Sawhney, A.Kaur, M.K.Sharma, R.K.Gupta

Analysis of Spontaneous Fission in Superheavy Mass Region Using the Dynamical Cluster-decay Model

RADIOACTIVITY 291Lv(α)[291Lv formed via 245Cm+48Ca followed by 2n emission]; calculated α-decay chain of 291Lv. 267Rf(SF)[nucleus at the end of α-decay chain from 291Lv]; calculated fragments quadrupole deformation, preformation probability, T1/2 using DCM (Dynamical Cluster Model). Halflife compared with experimental value.

doi: 10.5506/APhysPolB.48.629
Citations: PlumX Metrics


2016CH07      Phys.Rev. C 93, 024603 (2016)

S.Chopra, Hemdeep, A.Kaur, R.K.Gupta

Non-coplanar compact configurations of nuclei and non-compound-nucleus contribution in the fusion cross section of the 12C + 93Nb reaction

NUCLEAR REACTIONS 93Nb(12C, X)105Ag*, E(cm)=41.097, 47.828, 54.205 MeV; calculated fragmentation potential as function of fragment mass number, preformation probability and penetrability probability as function of angular momentum, σ(E) for evaporation residue (ER) and summed intermediate mass fragments (IMFs) from A=5-13, fusion σ(CN and nCN) for compound and non-compound nuclei; deduced large non-compound-nucleus (nCN) contribution in the measured fusion cross section. Dynamical cluster-decay model (DCM) with various nuclear interaction potentials. Comparison with experimental data.

doi: 10.1103/PhysRevC.93.024603
Citations: PlumX Metrics


2016CH15      Phys.Rev. C 93, 044604 (2016)

S.Chopra, A.Kaur, Hemdeep, R.K.Gupta

Product PCNPsurv or the "reduced" evaporation residue cross section σERfusion for "hot" fusion reactions studied with the dynamical cluster-decay model

NUCLEAR REACTIONS 93Nb(12C, X)105Ag*, E(*)=40.95-54.06 MeV; 92Mo(32S, X)124Ce*, E(*)=46.5 MeV;100Mo(64Ni, X)164Yb*, E(*)=30.6-66.5 MeV; 112Sn(64Ni, X)176Pt*, E(*)=22.92-61.42 MeV; 118Sn(64Ni, X)182Pt*, E(*)=33.215-70.465 MeV; 124Sn(64Ni, X)188Pt*, E(*)=44.337-77.487 MeV; 64Ni(132Sn, X)196Pt*, E(*)=54.498-84.2 MeV; 154Sm(48Ca, X)202Pb*, E(*)=44.5-65.3 MeV; 194Pt(19F, X)213Fr*, E(*)=47.397-61.059 MeV; 204Pb(11B, X)215Fr*, E(*)=31.21-43.48 MeV; 197Au(18O, X)215Fr*, E(*)=39.10-56.57 MeV; 198Pt(19F, X)217Fr*, E(*)=43.479-69.650 MeV; 232Th(14N, X)246Bk*, E(*)=43-60.9 MeV; 235U(11B, X)246Bk*, E(*)=34.3-55.9 MeV; 243Am(11B, X)254Fm*, E(*)=42.34-53.822 MeV; 238U(48Ca, X)286Cn*, E(*)=33.1-40.78 MeV; 244Pu(48Ca, X)292Fl*, E(*)=35.51-36.73 MeV; calculated product of fusion probability and survival probability in compound nucleus (CN), σ(ER)/σ(fusion) as function of CN excitation energy. Dynamical cluster-decay model (DCM) for hot fusion reactions using Blocki et al. pocket formula for nuclear proximity potential and the SEDF with SIII and GSkI forces.

doi: 10.1103/PhysRevC.93.044604
Citations: PlumX Metrics


2016SA08      Acta Phys.Pol. B47, 959 (2016)

G.Sawhney, R.K.Gupta, M.K.Sharma

Importance of Deformations in Dynamical Evolution of Proton-halo Nuclei

NUCLEAR STRUCTURE 11N, 27,28,29S; calculated one-, two-proton separation energies, fragmentation potentials.

doi: 10.5506/APhysPolB.47.959
Citations: PlumX Metrics


2015BH01      J.Phys.(London) G42, 15105 (2015)

M.Bhuyan, S.K.Patra, R.K.Gupta

The evaporation residue in the fission state of barium nuclei within relativistic mean-field theory

NUCLEAR STRUCTURE 112,114,116,118,120,122,124,126,128,130,132,134Ba; the binding energy, deformation parameter, charge radius and the nucleonic density distributions. An axially deformed relativistic mean field formalism with NL3 parameter set.

doi: 10.1088/0954-3899/42/1/015105
Citations: PlumX Metrics


2015CH06      Phys.Rev. C 91, 014602 (2015)

S.Chopra, A.Kaur, R.K.Gupta

Noncompound nucleus decay contribution in the 12C + 93Nb reaction using various formulations of nuclear proximity potential

NUCLEAR REACTIONS 93Nb(12C, X)105Ag*, E(cm)=41.097, 47.828, 54.205, 60.05 MeV; calculated fusion σ(E), angular momentum as function of beam energy, mass fragmentation potential as function of fragment mass, penetration and preformation probability as function of angular momentum, fusion evaporation residue σ. Dynamical cluster-decay model (DCM) and extended-Wong model using Skyrme energy density functionals (SEDFs) SIII, SIV, SSk, GSkI, and KDE0(v1). Comparison with experimental data.

doi: 10.1103/PhysRevC.91.014602
Citations: PlumX Metrics


2015CH16      Phys.Rev. C 91, 034613 (2015)

S.Chopra, A.Kaur, R.K.Gupta

Determination of the compound nucleus survival probability Psurv for various "hot" fusion reactions based on the dynamical cluster-decay model

NUCLEAR REACTIONS 93Nb(12C, X)105Ag, E=40.95-54.06 MeV; 92Mo(32S, X)124Ce, E=46.5 MeV; 100Mo(64Ni, X)164Yb, E=30.6-66.5 MeV; 112Sn(64Ni, X)176Pt, E=22.92, 61.42 MeV; 118Sn(64Ni, X)182Pt, E=33.21, 70.46 MeV; 124Sn(64Ni, X)188Pt, E=44.34, 77.49 MeV; 64Ni(132Sn, X)196Pt, E=54.50, 84.2 MeV; 154Sm(48Ca, X)202Pb, E=44.5-65.3 MeV; 194Pt(19F, X)213Fr, E=47.40, 61.06 MeV; 197Au(18O, X)215Fr, E=39.10, 56.57 MeV;204Pb(11B, X)215Fr, E=31.21, 43.48 MeV; 198Pt(19F, X)217Fr, E=43.48, 69.65 MeV; 232U(14N, X)246Bk, E=43, 60.9 MeV; 235U(11B, X)246Bk, E=34.3, 55.9 MeV; 238U(48Ca, X)286Cn, E=33.1, 40.78 MeV; 48Ca(244Pu, X)292Fl, E=35.51, 36.73 MeV; calculated survival probability as function of excitation energy of the compound nucleus, evaporation residue and fusion-fission σ(E). Dynamical cluster-decay model (DCM). Comparison with available cross section data.

doi: 10.1103/PhysRevC.91.034613
Citations: PlumX Metrics


2015KA21      Phys.Rev. C 91, 064601 (2015)

A.Kaur, S.Chopra, R.K.Gupta

α versus non-α cluster decays of the excited compound nucleus 124Ce* using various formulations of the nuclear proximity potential

NUCLEAR REACTIONS 92Mo(32S, X)124Ce*, E(cm)=111.29 MeV; calculated lmax, neck-length parameters, mass fragmentation potential, interaction potential for 116Xe+8Be decay channel of 124Ce, relative σ for evaporation residues of 2p, 3p, 4,5Li, 6,7,8,9Be and 10,11,12,13C, pre-formation probability, l-summed fragment preformation probability, penetrability and fusion σ as function of fragment mass; deduced comparison of σ for α decay and non-α decay channels of decay of compound nucleus 124Ce. Dynamical cluster-decay model (DCM) extended to interaction potentials SII, SIII, SIV, SKa, SkM, and SLy4, GSkI and KDE0(v1) from Skyrme energy density functional (SEDF). Comparison with experimental data, and with other theoretical calculations.

doi: 10.1103/PhysRevC.91.064601
Citations: PlumX Metrics


2015KA30      Phys.Rev. C 92, 024623 (2015)

M.Kaur, B.B.Singh, M.K.Sharma, R.K.Gupta

Decay analysis of compound nuclei with masses A ≈ 30-200 formed in reactions involving loosely bound projectiles

NUCLEAR REACTIONS 27Al(7Li, X), E(cm)=7.94 MeV; 28Si(7Li, X), E(cm)=7.79 MeV; 32S(7Li, X), E(cm)=8.21 MeV; 40Ca(7Li, X), E(cm)=8.51 MeV; 48Ti(7Li, X), E(cm)=8.72 MeV; 59Co(7Li, X), E(cm)=9.88 MeV; 27Al(7Be, X), E(cm)=13.50 MeV; 32S(7Be, X), E(cm)=13.99 MeV; 40Ca(7Be, X), E(cm)=14.47 MeV; 48Ti(7Be, X), E(cm)=14.84 MeV; 58Ni(7Be, X), E(cm)=14.99 MeV; 65Cu(7Be, X), E(cm)=15.35 MeV; 27Al(9Be, X), E(cm)=21.00 MeV; 28Si(9Be, X), E(cm)=21.19 MeV; 124Sn(9Be, X), E(cm)=26.18 MeV; 144Sm(9Be, X), E(cm)=26.54 MeV; 169Tm(9Be, X), E(cm)=26.58 MeV; 187Re(9Be, X), E(cm)=26.71 MeV; calculated barrier modification factors, fragmentation potentials for A=1-18 fragments for 7Li projectile, A=30-70 for 7Be projectile, preformation and penetration probabilities, fusion cross sections. Dynamical cluster-decay model (DCM) for heavy-ion reactions at low energies. Comparison with available experimental data.

doi: 10.1103/PhysRevC.92.024623
Citations: PlumX Metrics


2015NI04      Nucl.Phys. A938, 22 (2015)

Niyti, R.K.Gupta, P.O.Hess

Evaporation residue cross-section in the decay of 254No* formed in 206Pb + 48Ca and its isotopic dependence using other Pb targets within the dynamical cluster-decay model

NUCLEAR REACTIONS 206Pb(48Ca, xn), E=212.7-242.5 MeV. 254No* calculated fragment preformation probability, 1n to 4n preformation probability vs angular momentum, channel σ, evaporation σ. 204,206,207,208Pb(48Ca, 2n), E*≈19.8, 23.0, 24.5 MeV; calculated σ; deduced radius variation from the fit to σ data. DCM (dynamic cluster model) with deformation and orientation effects included.

doi: 10.1016/j.nuclphysa.2015.02.009
Citations: PlumX Metrics


2015NI07      Phys.Rev. C 91, 054606 (2015)

Niyti, G.Sawhney, M.K.Sharma, R.K.Gupta

α-decay chains of recoiled superheavy nuclei: A theoretical study

RADIOACTIVITY 271Sg, 270,271,272,274Bh, 275Hs, 274,275,276,278Mt, 279Ds, 278,279,280,282Rg, 283Cn, 282,283,284,285,286Nh, 286,287Fl, 287,288,289,290Mc, 290,291Lv, 293,294Ts, 294Og(α); calculated half-lives of isotopes, Z=113-118 formed in hot fusion heavy-ion reactions 237Np, 243Am, 244Pu, 245Cm, 249Bk, 249Cf(48Ca, xn). Extension of the quantum-mechanical fragmentation theory based on preformed cluster model (PCM) to include temperature dependence. Comparison with experimental values, and with other theoretical calculations.

NUCLEAR REACTIONS 249Bk(48Ca, 4n)293Ts*, E not given; calculated mass fragmentation potential, preformation probability as function of fragment mass number. 237Np(48Ca, 3n)282Mc*, E not given; 242Pu(48Ca, 3n)287Fl*, E not given; 243Am(48Ca, 3n)288Mc*, E not given; 243Am(48Ca, 4n)287Mc*, E not given; 245Cm(48Ca, 3n)290Lv*, E not given; 249Cf(48Ca, 3n)294Og*, E not given; 249Bk(48Ca, 3n)294Ts*, E not given; 249Bk(48Ca, 4n)293Ts*, E not given; calculated best-fit neck-length parameter, preformation probability, penetrability as function of mass number of α-decay chains. Extension of the quantum-mechanical fragmentation theory based on preformed cluster model (PCM) to include temperature dependence.

doi: 10.1103/PhysRevC.91.054606
Citations: PlumX Metrics


2015SA50      Phys.Rev. C 92, 064303 (2015)

G.Sawhney, A.Kaur, M.K.Sharma, R.K.Gupta

Decay of the compound nucleus 297118* formed in the reaction 249Cf + 48Ca using the dynamical cluster-decay model

NUCLEAR REACTIONS 249,250Cf(48Ca, 2n), (48Ca, 3n), (48Ca, 4n), E(*)=29.2, 34.4 MeV; calculated scattering potentials, evaporation residue cross sections, mass fragmentation potential, preformation and penetration probabilities, cross sections for 2n and 3n channels. Dynamical cluster-decay model (DCM). Comparison with available experimental data.

RADIOACTIVITY 294Og, 290Lv, 286Fl(α); calculated half-lives and compared with other calculations and experimental data. 294Og, 290Lv, 286Fl(48Ca), (80Ge), (84Se), (86Kr); calculated preformation and penetration probabilities, half-lives. Preformed cluster model (PCM). Cluster decays.

doi: 10.1103/PhysRevC.92.064303
Citations: PlumX Metrics


2014JA17      Eur.Phys.J. A 50, 155 (2014)

D.Jain, M.K.Sharma, Rajni, R.Kumar, R.K.Gupta

Systematic analysis of hot Yb* isotopes using the energy density formalism

NUCLEAR REACTIONS 100Mo(60Ni, x), (64Ni, x), E(cm)=120-160 MeV;144,148Sm(16O, x), E(cm)=55-80 MeV;100Mo(Ni, x)Yb*, E(cm)=123.0, 149.6 MeV; calculated fusion σ using l-summed extended Wong model with different interactions. Compared to data.

doi: 10.1140/epja/i2014-14155-1
Citations: PlumX Metrics


2014KA09      Phys.Rev. C 89, 034602 (2014)

A.Kaur, S.Chopra, R.K.Gupta

α-cluster versus non-α-cluster decay of the excited compounds nucleus 124Ce using the dynamical cluster-decay model

NUCLEAR REACTIONS 92Mo(32S, X)124Ce*, E=140, 150 MeV; calculated mass and charge fragmentation potentials, σ(channel)/σ(120Cs), quasifusion σ, σ as function of decay channel, angular momentum, charge and mass fragmentation potential, neck-length parameter, l-summed fragment preformation probability, and penetrability, decay σ as function of light fragment mass number, effects of α-cluster and non-α-cluster decay of compound nucleus 124Ce. Dynamical cluster-decay model (DCM) with effects up to hexadecapole deformation. Comparison with experimental data.

doi: 10.1103/PhysRevC.89.034602
Citations: PlumX Metrics


2014KA16      Acta Phys.Pol. B45, 349 (2014)

A.Kaur, S.Chopra, R.K.Gupta

Relative Population of 6Be and 8Be Clusters in the Decay of Excited Compound Nucleus 124Ce* Using the Dynamical Cluster-decay Model

RADIOACTIVITY 124Ce(SF); calculated mass fragment distribution. Dynamical cluster model, PACE4 calculations.

doi: 10.5506/APhysPolB.45.349
Citations: PlumX Metrics


2014KA41      Phys.Rev. C 90, 024619 (2014)

A.Kaur, S.Chopra, R.K.Gupta

Compound nucleus formation probability PCN determined within the dynamical cluster-decay model for various "hot" fusion reactions

NUCLEAR REACTIONS 100Mo(64Ni, X)164Yb*, E(cm)=122.9-158.8 MeV; 154Sm(48Ca, X)202Pb*, E(cm)=135.5-156.8 MeV; 93Nb(12C, X)105Ag*, E(cm)=41.09-54.21 MeV; 92Mo(32S, X)124Ce*, E(cm)=111.3 MeV; 238U(48Ca, X)286Cn*, E(cm)=187.1-201.3 MeV; 48Ca(244Pu, X)292Fl*, E(cm)=190.8-200.2 MeV; 232U(14N, X)246Bk*, E(cm)=68.5-86.4 MeV; 235U(11B, X)246Bk*, E(cm)=49-70.6 MeV; 112Sn(64Ni, X)176Pt*, E(cm)=149.75-188.25 MeV; 118Sn(64Ni, X)182Pt*, E(cm)=155.8-193.05 MeV; 124Sn(64Ni, X)188Pt*, E(cm)=161.85-195.84 MeV; 64Ni(132Sn, X)196Pt*, E(cm)=165.5-195.2 MeV; calculated fusion and formation probability as function of excitation energy of the compound nucleus and target-projectile charge numbers product, variation of fusion probability with fissility parameter. Dynamical cluster-decay model (DCM) for hot fusion reactions.

doi: 10.1103/PhysRevC.90.024619
Citations: PlumX Metrics


2014NI03      Phys.Rev. C 89, 014603 (2014)

Niyti, R.K.Gupta

Synthesis of the doubly magic deformed nucleus 270108Hs162 in the decay of 274Hs formed via hot fusion reactions: Entrance-channel effects and role of magicity of 48Ca and 270Hs

NUCLEAR REACTIONS 248Cm(26Mg, X)274Hs*, 238U(36S, X)274Hs*, 226Ra(48Ca, X)274Hs*; calculated A=6-268 mass fragmentation potentials, preformation yields, scattering potentials for cold fusion, neck-length parameter. Entrance channel effects. Cold and hot fusion. Hot compact and cold elongated configurations. 269,270,271Hs; calculated σ(E) for 3n, 4n and 5n evaporation channels from 274Hs compound nucleus, and comparison with experimental data. Quantum mechanical fragmentation theory (QMFT) for possible target-projectile combinations. Dynamical cluster-decay model (DCM) with quadrupole deformations for decay of compound nucleus.

doi: 10.1103/PhysRevC.89.014603
Citations: PlumX Metrics


2014SA22      J.Phys.(London) G41, 055101 (2014)

G.Sawhney, M.K.Sharma, R.K.Gupta

Neutron-halo structure of light nuclei studied with effects of deformations and orientations included

NUCLEAR STRUCTURE 11Be, 6He, 17B, 22C, 26,27,29F, 22O; calculated fragmentation potential, Q-values; deduced neutron halo. Cluster-core model, comparison with available data.

doi: 10.1088/0954-3899/41/5/055101
Citations: PlumX Metrics


2014SA55      Phys.Rev. C 90, 034610 (2014)

K.Sandhu, M.K.Sharma, A.Kaur, R.K.Gupta

Decay and related stability aspects of the 266104Rf nucleus formed in the 18O +248Cm reaction

NUCLEAR REACTIONS 248Cm(18O, F)266Rf*, E=88.2-101.3 MeV; calculated neutron evaporation σ(E) of 266Fr for 4n, 5n and 6n channels producing 260,261,262Rf using nuclear proximity potentials Prox-00 and Prox-77, excitation functions, scattering potentials, decay barrier heights, preformation and penetration probabilities, fragmentation potentials as functions of fragment mass and angular momentum using dynamic cluster-decay model by including β2 deformations. Role of superheavy magic shells Z= 114, 120, 126 and N=184 investigated. Comparison with available experimental results.

doi: 10.1103/PhysRevC.90.034610
Citations: PlumX Metrics


2014SA74      Eur.Phys.J. A 50, 175 (2014)

G.Sawhney, K.Sandhu, M.K.Sharma, R.K.Gupta

Role of nuclear deformations and proximity interactions in heavy particle radioactivity

NUCLEAR STRUCTURE 278Nh, 287,288,289Mc, 293,294Ts; calculated preformation probability, charge and mass distribution of fragments, Q, T1/2 vs neck parameter using PCM (preformed cluster model) with both spherical and deformed potentials. Compared with other calculations.

doi: 10.1140/epja/i2014-14175-9
Citations: PlumX Metrics


2013CH34      Phys.Rev. C 88, 014615 (2013)

S.Chopra, M.Bansal, M.K.Sharma, R.K.Gupta

One-neutron and noncompound-nucleus decay contributions in the 12C + 93Nb reaction at energies near and below the fusion barrier

NUCLEAR REACTIONS 93Nb(12C, X)105Ag*, E(cm)=41.1, 47.8, 54.2 MeV; calculated fusion evaporation residue (ER) σ, ER+intermediate mass fragments (IMF) σ, quasi-fission cross sections, l-summed fragment preformation probability. 93Nb(12C, X)105Ag*, E(cm)=40-56 MeV; calculated excitation functions, fusion-fission σ. Dynamical cluster-decay model (DCM) with deformation. Comparison with experimental data.

doi: 10.1103/PhysRevC.88.014615
Citations: PlumX Metrics


2013KU11      Phys.Rev. C 87, 054610 (2013)

R.Kumar, K.Sandhu, M.K.Sharma, R.K.Gupta

Fusion-evaporation residues and α-decay chains of the superheavy element Z=115 formed in the 243Am + 48Ca reaction using the dynamical cluster-decay model

NUCLEAR REACTIONS 243Am(48Ca, 2n), (48Ca, 3n), (48Ca, 4n), E*=31-47 MeV; calculated scattering potentials, fragmentation potential, preformation and penetrability probability, barrier penetrability, barrier modification, neck-length parameter, channel σ, neutron evaporation residue σ. Role of isospin in ER σ. Dynamical cluster-decay model. Comparison with experimental data.

RADIOACTIVITY 289Mc, 285Nh, 288Mc, 284Nh, 280Rg, 276Mt, 272Bh, 287Mc, 283Nh, 279Rg, 275Mt, 271Bh(α) [from 243Am(48Ca, xn)]; calculated half-lives, Q values, preformation probability, penetrability, impinging frequency, neck-length parameter. Preformed cluster model (PCM). Comparison with experimental data.

doi: 10.1103/PhysRevC.87.054610
Citations: PlumX Metrics


2013PA26      Phys.Rev. C 88, 034602 (2013)

K.C.Panda, B.C.Sahu, R.K.Gupta

Spin-density contribution in the optical potential of open j-shell nuclei

NUCLEAR REACTIONS 20Ne(16O, X), E(cm)=30.88 MeV; 42Ca(16O, X), E(cm)=43.45 MeV; 44Ca(16O, X), E(cm)=44 MeV; 52Cr(16O, X), E(cm)=45.88 MeV; 54Fe(16O, X), E(cm)=46.29 MeV; 58Ni(16O, X), E(cm)=47.03 MeV; 62Ni(16O, X), E(cm)=47.69 MeV; 64Ni(16O, X), E(cm)=48 MeV; 74Ge(16O, X), E(cm)=46.04 MeV; 76Ge(16O, X), E(cm)=46.26 MeV; 92Zr(16O, X), E(cm)=47.70 MeV; 60Ni(18O, X), E(cm)=48.46 MeV; 62Ni(18O, X), E(cm)=48.82 MeV; 64Ni(18O, X), E(cm)=49.17 MeV; 76Ge(18O, X), E(cm)=45.28 MeV; 32S(24Mg, X), E(cm)=68.57 MeV; 36S(24Mg, X), E(cm)=72 MeV; 34S(32S, X), E(cm)=49.97 MeV; 62Ni(12C, X), E(cm)=40.22 MeV; 64Ni(58Ni, X), E(cm)=114.9 MeV; calculated energy-dependent real and imaginary parts of the optical potential of open j-shell nuclei, contribution of spin-density terms, effect of such contributions on elastic and sub-barrier fusion cross sections. Energy density model using the complex Skyrme III energy density.

doi: 10.1103/PhysRevC.88.034602
Citations: PlumX Metrics


2013SA40      Phys.Rev. C 88, 034603 (2013)

G.Sawhney, G.Kaur, M.K.Sharma, R.K.Gupta

Theoretical study of odd-mass Fr isotopes using the collective clusterization approach of the dynamical cluster-decay model

NUCLEAR REACTIONS 197Au(18O, X)215Fr*, 192,194,196,198,200Pt(19F, X)211Fr*/213Fr*/215Fr*/217Fr*/219Fr*, E(cm)=70-108 MeV; calculated neck length parameter, evaporation σ(E), fusion σ(E), fission anisotropy, fragmentation potential and fragment preformation probability as function of light-fragment mass number, barrier-lowering parameter for decay of 213,215,217Fr compound nuclei into 128,130,132Te+85Br fragments. Dynamical cluster-decay model (DCM). Comparison with experimental data.

doi: 10.1103/PhysRevC.88.034603
Citations: PlumX Metrics


2012BA10      Rom.J.Phys. 57, 18 (2012)

M.Bansal, R.K.Gupta

Cold Nuclear Phenomena and Collisions between Two Non-Coplanar Nuclei

NUCLEAR REACTIONS 238U(48Ca, X)286Cn, 236U(50Ca, X)286Cn, 232Th(54Ti, X)286Cn, 226Ra(60Cr, X)286Cn, 208Pb(78Zn, X)286Cn, 206Hg(80Ge, X)286Cn, 194Os(92Kr, X)286Cn, 192W(94Sr, X)286Cn, 180Yb(106Mo, X)286Cn, 178Yb(108Mo, X)286Cn, 158Sm(128Sn, X)286Cn, 156Sm(130Sn, X)286Cn, 154Nd(132Te, X)286Cn, 152Nd(132Te, X)286Cn, 244Pu(48Ca, X)292Fl, 242Pu(50Ca, X)292Fl, 238U(54Ti, X)292Fl, 234Pu(58Ti, X)292Fl, 232Th(60Cr, X)292Fl, 222Rn(70Ni, X)292Fl, 220Rn(72Ni, X)292Fl, 210Pb(82Ge, X)292Fl, 208Pb(84Ge, X)292Fl, 206Hg(86Se, X)292Fl, 194Os(98Sr, X)292Fl, 192W(100Zr, X)292Fl, 190W(102Zr, X)292Fl, 184Hf(108Mo, X)292Fl, 164Gd(128Sn, X)292Fl, 162Gd(130Sn, X)292Fl, 160Gd(132Sn, X)292Fl, 158Sm(134Te, X)292Fl, E not given; calculated barriers, quadrupole and octupole deformation parameters, scattering and fragmentation potentials.


2012BA43      Phys.Rev. C 86, 034604 (2012)

M.Bansal, S.Chopra, R.K.Gupta, R.Kumar, M.K.Sharma

Dynamical cluster-decay model using various formulations of a proximity potential for compact non-coplanar nuclei: Application to the 64Ni + 100Mo reaction

NUCLEAR REACTIONS 100Mo(64Ni, X)164Yb(*), E(cm)=119.5-158.8 MeV; calculated 1n to 4n evaporation σ(E) as function of angular momentum, fusion-evaporation and fusion-fission σ(E), fragment potentials for charge-favored fragments, fragment preformation probability, neck length parameter as function of incident energy. Dynamical cluster-decay model (DCM). Comparison with experimental data, and with CASCADE calculations.

doi: 10.1103/PhysRevC.86.034604
Citations: PlumX Metrics


2012JA07      Phys.Rev. C 85, 024615 (2012)

D.Jain, R.Kumar, M.K.Sharma, R.K.Gupta

Skyrme forces and the fusion-fission dynamics of the 132Sn +64Ni → 196Pt* reaction

NUCLEAR REACTIONS 132Sn(64Ni, X)196Pt*, E(cm)=148.1-195.2 MeV; calculated fragmentation potential, evaporation residue and compound nucleus fission cross sections, quasifission contribution, preformation probability, neck length parameters, interaction potential, barrier height, fusion cross sections. Dependence of the fusion-fission process on Skyrme forces. 112Sn(64Ni, X)176Pt*, E(cm)=162.9 MeV; calculated fragmentation potential. Dynamical cluster-decay model (DCM), and l-summed extended-Wong model. Comparison with previous studies and experimental data.

doi: 10.1103/PhysRevC.85.024615
Citations: PlumX Metrics


2012KA39      Phys.Rev. C 86, 064610 (2012)

M.Kaur, M.K.Sharma, R.K.Gupta

Effects of deformations and orientations in the fission of the actinide nuclear system 254Fm* formed in the 11B + 243Am reaction

NUCLEAR REACTIONS 243Am(11B, X)254Fm*, E=60-72 MeV; calculated fragmentation potential, preformation probability, asymmetric to symmetric fission yields, fusion-fission σ(E), neck-length parameter, barrier-lowering parameter using spherical, β2, and β2 to β4 deformations. Dynamical cluster decay model (DCM). Comparison with experimental data.

doi: 10.1103/PhysRevC.86.064610
Citations: PlumX Metrics


2012SA55      Phys.Rev. C 86, 064611 (2012)

K.Sandhu, M.K.Sharma, R.K.Gupta

Deformation and orientation effects in the decay of 268Sg* formed in a 30Si-induced reaction across the Coulomb barrier

NUCLEAR REACTIONS 238U(30Si, xn)268Sg*, E(cm)=125-169 MeV; calculated evaporation residue σ(E), scattering and fragmentation potentials, preformation probability, fusion-fission σ(E) for static and dynamic quadrupole deformations, neck-length parameter, potential energy surfaces. Dynamical cluster decay model (DCM). Role of cold fusion in sub-barrier region. Comparison with experimental data.

doi: 10.1103/PhysRevC.86.064611
Citations: PlumX Metrics


2012SI01      J.Phys.(London) G39, 025101 (2012)

B.B.Singh, M.Bhuyan, S.K.Patra, R.K.Gupta

Optical potential obtained from relativistic-mean-field theory-based microscopic nucleon-nucleon interaction: applied to cluster radioactive decays

RADIOACTIVITY 222Ra(14C), 230U(22Ne), 231Pa(23F), 232U(24Ne), 236Pu(28Mg), 238Pu(30Mg); calculated WKB penetration probabilities for the M3Y+EX interaction optical model potentials. Comparison with the M3Y+EX NN-interaction potential.

doi: 10.1088/0954-3899/39/2/025101
Citations: PlumX Metrics


2011BH04      Int.J.Mod.Phys. E20, 1227 (2011)

M.Bhuyan, S.K.Patra, P.Arumugam, R.K.Gupta

Nuclear sub-structure in 112-122Ba nuclei within relativistic mean field theory

NUCLEAR STRUCTURE 112,114,116,118,120,122Ba; calculated binding energies, rms radii, deformation parameters, clustering structures. Relativistic mean field theory.

doi: 10.1142/S021830131101837X
Citations: PlumX Metrics


2011BH05      Phys.Rev. C 84, 014317 (2011)

M.Bhuyan, S.K.Patra, R.K.Gupta

Relativistic mean-field study of the properties of Z = 117 nuclei and the decay chains of the 293, 294117 isotopes

NUCLEAR STRUCTURE 286,288,290,292,294,296,298,300,302,304,306,308,310Ts; calculated binding energies, S(2n), pairing energy, β2 parameter, charge and matter rms radii. Axially deformed relativistic mean-field (RMF) model with NL3 interaction. Comparison with FRDM predictions.

RADIOACTIVITY 293,294Ts, 289,290Mc, 285,286Nh, 282Rg, 278Mt, 274Bh(α); calculated half-life, Qα. Axially deformed relativistic mean-field (RMF) model. Comparison with FRDM predictions.

doi: 10.1103/PhysRevC.84.014317
Citations: PlumX Metrics


2011KU20      Nucl.Phys. A870-871, 42 (2011)

R.Kumar, M.K.Sharma, R.K.Gupta

Fusion reaction cross-sections using the Wong model within Skyrme energy density based semiclassical extended Thomas Fermi approach

NUCLEAR REACTIONS 64Ni(64Ni, X), E(cm)=108.327 MeV;238U(48Ca, X), E(cm)=201.07 MeV; calculated interaction potential. 58Ni(58Ni, X), E(cm)=93-109 MeV;64Ni(64Ni, X), E(cm)=85-109 MeV;100Mo(64Ni, X), E(cm)=121-158 MeV;238U(48Ca, X), E(cm)=181-220 MeV;244Pu(48Ca, X), E(cm)=190-220 MeV; 248Cm(48Ca, X), E(cm)=195-220 MeV; calculated interaction potential, σ, maximal angular momentum. Sudden and frozen approximations, Skyrme forces, Extended Thomas-Fermi, Wong model. Cross section calculations compared to data.

doi: 10.1016/j.nuclphysa.2011.09.010
Citations: PlumX Metrics


2011KU31      J.Phys.:Conf.Ser. 312, 082025 (2011)

R.Kumar, R.K.Gupta

Barrier modification in sub-barrier fusion reaction 64Ni+100Mo using Wong formula with Skyrme forces in semiclassical formalism

NUCLEAR REACTIONS 100Mo(58Ni, X), E(cm)=120-160 MeV; calculated fusion-evaporation σ using ETF (extended Thomas-Fermi) in SEDF (Skyrme energy density formalism). Compared with data.

doi: 10.1088/1742-6596/312/4/082025
Citations: PlumX Metrics


2011SA28      Phys.Rev. C 83, 064610 (2011)

G.Sawhney, M.K.Sharma, R.K.Gupta

Role of higher-multipole deformations in exotic 14C cluster radioactivity

RADIOACTIVITY 221Fr, 221,222,223,224,226Ra, 223,225Ac, 226Th(14C); calculated fragmentation potential, half-lives, preformation probability, penetration probability, branching ratios. Preformed cluster model.

doi: 10.1103/PhysRevC.83.064610
Citations: PlumX Metrics


2011SH14      J.Phys.(London) G38, 055104 (2011)

M.K.Sharma, S.Kanwar, G.Sawhney, R.K.Gupta, W.Greiner

Fusion excitation functions of 64Ni+112-132Sn reactions studied on the dynamical cluster-decay model

NUCLEAR REACTIONS 112,118,124Sn(64Ni, X)176Pt/182Pt/188Pt/196Pt, 64Ni(132Sn, X)196Pt, E(cm)<200 MeV; calculated fusion σ, fragmentation potentials. Dynamical cluster-decay model.

doi: 10.1088/0954-3899/38/5/055104
Citations: PlumX Metrics


2011SH27      J.Phys.(London) G38, 105101 (2011)

M.K.Sharma, G.Sawhney, R.K.Gupta, W.Greiner

The decay of the compound nucleus 215Fr* formed in the 11B+204Pb and 18O+197Au reaction channels using the dynamical cluster-decay model

NUCLEAR REACTIONS 204Pb(11B, X)215Fr, 197Au(18O, X)215Fr, E(cm)=60.24 MeV; calculated cross sections, compound nucleus decay barrier for fusion-fission mode. Dynamical cluster-decay model.

doi: 10.1088/0954-3899/38/10/105101
Citations: PlumX Metrics


2011SI13      Int.J.Mod.Phys. E20, 1003 (2011)

B.Singh, S.K.Patra, R.K.Gupta

Importance of preformation probability in cluster radioactive-decays using relativistic mean field theory within the preformed cluster model

RADIOACTIVITY 222Ra(14C), 230U(22Ne), 231Pa(23F), 232U(24Ne), 236Pu(28Mg), 238Pu(30Mg); calculated decay constants, Q-values. Preformed cluster model.

doi: 10.1142/S0218301311019143
Citations: PlumX Metrics


2010GU12      Nucl.Phys. A834, 176c (2010)

R.K.Gupta, S.K.Arun, R.Kumar, M.Bansal

Dynamical cluster-decay model for fusion cross-sections below the barrier

NUCLEAR REACTIONS 64Ni(64Ni, xn), E(cm)=85-110 MeV; calculated σ, fusion barriers using DCM (Dynamical Cluster Model) and Wong formula. Comparison with data.

doi: 10.1016/j.nuclphysa.2009.12.032
Citations: PlumX Metrics


2010NI16      J.Phys.(London) G37, 115103 (2010)

Niyti, R.K.Gupta, W.Greiner

Establishing the island of stability for superheavy nuclei via the dynamical cluster-decay model applied to a hot fusion reaction 48Ca + 238U → 286112*

NUCLEAR REACTIONS 238U(48Ca, X)286Cn, E(cm)=200.6 MeV; calculated scattering potentials, preformation probability for compound system, neck-length parameter, fusion ER σ. Dynamical cluster model (DCM).

doi: 10.1088/0954-3899/37/11/115103
Citations: PlumX Metrics


2010SI12      Phys.Rev. C 82, 014607 (2010)

B.Singh, S.K.Patra, R.K.Gupta

Cluster radioactive decay within the preformed cluster model using relativistic mean-field theory densities

RADIOACTIVITY 221Fr, 221,222,223,224,226Ra, 223,225Ac, 226Th(14C); 223Ac(15N); 226Th(18O); 228Th(20O); 230Th, 231Pa, 230U(22Ne); 231Pa(23F); 230,232,233,234U(24Ne); 232,233,234,235,236U, 236,238Pu(28Mg); 234U(25Ne), (26Ne); 238U, 241Am, 242Cm(34Si); 237Np, 238Pu(30Mg); 238Pu(32Si); calculated empirical preformation probabilities for cluster decays using preformed cluster model (PCM) and relativistic mean-field (RMF) theory densities.

doi: 10.1103/PhysRevC.82.014607
Citations: PlumX Metrics


2009AR05      Phys.Rev. C 79, 064616 (2009)

S.K.Arun, R.K.Gupta, B.Singh, S.Kanwar, M.K.Sharma

208Pb-daughter cluster radioactivity and the deformations and orientations of nuclei

RADIOACTIVITY 221Fr, 222Ra, 225Ac(14C), 226Th(18O), 228Th(20O), 231Pa(23F), 230U(22Ne), 232U(24Ne), 234U(26Ne), 236Pu(28Mg), 238Pu(30Mg), 242Cm(34Si); calculated half-lives, preformation and penetration probabilities, deformation parameters, fragmentation and scattering potentials for using preformed-cluster model (PCM).

doi: 10.1103/PhysRevC.79.064616
Citations: PlumX Metrics


2009AR06      J.Phys.(London) G36, 085105 (2009)

S.K.Arun, R.Kumar, R.K.Gupta

Fusion-evaporation cross-sections for the 64Ni+100Mo reaction using the dynamical cluster-decay model

NUCLEAR REACTIONS 100Mo(64Ni, X), E=119.5-158.8 MeV; 164Yb; calculated fusion-evaporation σ, fusion excitation function; deduced fission-fission σ. Dynamical cluster-decay model, comparison with experimental data.

doi: 10.1088/0954-3899/36/8/085105
Citations: PlumX Metrics


2009AR11      Phys.Rev. C 80, 034317 (2009)

S.K.Arun, R.K.Gupta, S.Kanwar, B.Singh, M.K.Sharma

Cluster radioactivity with effects of deformations and orientations of nuclei included

RADIOACTIVITY 114Ba(12C), 221Fr, 221,222,223,224,226Ra, 223,225Ac, 226Th(14C), 223Ac(15N), 226Th(18O), 228Th(20O), 230U(22Ne), 230,232,233,234U, 230Th, 231Pa(24Ne), 231Pa(23F), 234U(25Ne), 234U(26Ne), 232,233,234,235,236U, 236,238Pu(28Mg), 237Np, 238Pu(30Mg), 238Pu(32Si), 238U, 241Am, 242Cm(34Si), 252Cf(46Ar), (48Ca), (50Ca); calculated half-lives of cluster decays for different deformations using preformed cluster model (PCM). Comparison with experimental data.

doi: 10.1103/PhysRevC.80.034317
Citations: PlumX Metrics


2009GU06      Int.J.Mod.Phys. E18, 601 (2009)

R.K.Gupta, Niyti, M.Manhas, S.Hofmann, W.Greiner

Role of static deformation and compact orientation of target nucleus in measured fusion, fusion-fission and capture cross-sections of 244Pu + 48Ca reaction

NUCLEAR REACTIONS 244Pu(48Ca, X), E≈ 31-53 MeV; calculated the fusion evaporation, fusion-fusion and quasi-fission excitation functions, neutron evaporation σ. Dynamical cluster decay model.

doi: 10.1142/S0218301309012744
Citations: PlumX Metrics


2009GU09      J.Phys.(London) G36, 075104 (2009)

R.K.Gupta, D.Singh, R.Kumar, W.Greiner

Universal functions of nuclear proximity potential for Skyrme nucleus-nucleus interaction in a semiclassical approach

NUCLEAR REACTIONS 32S(40Ca, X), 64Ni(64Ni, X), E(cm)=109 MeV;Calculated nuclear proximity potential. Thomas-Fermi approach.

doi: 10.1088/0954-3899/36/7/075104
Citations: PlumX Metrics


2009GU25      J.Phys.(London) G36, 115105 (2009)

R.K.Gupta, Niyti, M.Manhas, W.Greiner

Island of stability for superheavy elements and the dynamical cluster-decay model for fusion evaporation residue cross sections: 48Ca+238U → 286112* as an example

NUCLEAR REACTIONS 238U(48Ca, X)286Cn, E(cm)=200.6 MeV; calculated fusion evaporation residue σ for 3- and 4-neutron emission; deduced island of stability around Z=126 and N=184.

doi: 10.1088/0954-3899/36/11/115105
Citations: PlumX Metrics


2009KA23      Int.J.Mod.Phys. E18, 1453 (2009)

S.Kanwar, M.K.Sharma, B.Singh, R.K.Gupta, W.Greiner

Decay of 202Pb formed in 48Ca+154Sm reaction using the dynamical cluster-decay model

NUCLEAR REACTIONS 154Sm(48Ca, X)202Pb, E(cm)=140.4, 156.36 MeV; 144Sm(48Ca, X)192Pb, E(cm)=143.6 MeV;calculated scattering and fragmentation potentials for decay of 202Pb, fusion-evaporation residue, compound nucleus fission, fusion-fission, and quasi-fission σ, mass distribution yields. Dynamical cluster-decay model.

doi: 10.1142/S0218301309013725
Citations: PlumX Metrics


2009KU06      Phys.Rev. C 79, 034602 (2009)

R.Kumar, R.K.Gupta

Decay of 118, 122Ba* compound nuclei formed in 78, 82Kr + 40Ca reactions using the dynamical cluster-decay model of preformed clusters

NUCLEAR REACTIONS 78Kr(40Ca, X)118Ba, E(cm)=145.42 MeV; 82Kr(40Ca, X)122Ba, E(cm)=147.87 MeV; calculated σ, preformation probability as a function of fragment mass for the 118Ba and 122Ba compound nuclei. Dynamical cluster-decay model calculations. Comparison with statistical model calculations.

doi: 10.1103/PhysRevC.79.034602
Citations: PlumX Metrics


2009KU18      Phys.Rev. C 80, 034618 (2009)

R.Kumar, M.Bansal, S.K.Arun, R.K.Gupta

Angular momentum effects and barrier modification in sub-barrier fusion reactions using the proximity potential in the Wong formula

NUCLEAR REACTIONS 58Ni(58Ni, X), E(cm)=92-110 MeV; 64Ni(64Ni, X), E(cm)=84-110 MeV; 100Mo(64Ni, X), E(cm)=120-158 MeV; 238U, 244Pu, 248Cm(48Ca, X), E(cm)=180-210 MeV; analyzed σ, interaction potentials, barrier heights and maximum angular momentum using Wong formula.

doi: 10.1103/PhysRevC.80.034618
Citations: PlumX Metrics


2009PA15      Phys.Rev. C 79, 044303 (2009)

S.K.Patra, F.H.Bhat, R.N.Panda, P.Arumugam, R.K.Gupta

Isomeric state in 53Co: A mean field analysis

NUCLEAR STRUCTURE 53Co, 53Fe; calculated potential energy as a function of quadrupole deformation, ground and isomeric state binding energies, charge radii, deformation parameters, single-particle energy levels, occupation probabilities of proton and neutron orbits. Relativistic and non-relativistic mean field formalism, Skyrme Hartree-Fock method calculations. Comparison with experimental data.

doi: 10.1103/PhysRevC.79.044303
Citations: PlumX Metrics


2009PA36      Phys.Rev. C 80, 034312 (2009)

S.K.Patra, M.Bhuyan, M.S.Mehta, R.K.Gupta

Superdeformed and hyperdeformed states in Z=122 isotopes

NUCLEAR STRUCTURE 282,284,286,288,290,292,294,296,298,300,302,304,306,308,310,312,314,316,318,320122; calculated rms radii, quadrupole deformation parameter, binding energy, two neutron separation energies, and superdeformed and hyperdeformed states using axially deformed relativistic mean-field (RMF) and nonrelativistic Skyrme Hartree-Fock (SHF) calculations.

RADIOACTIVITY 232U, 236Pu, 240Cm, 244Cf, 248Fm, 252No, 256Rf, 260Sg, 264Hs, 268Ds, 272Cn, 276Fl, 280Lv, 284Og, 288120, 292122(α); calculated half-lives, binding energies and Q(α). Comparison with experimental data.

doi: 10.1103/PhysRevC.80.034312
Citations: PlumX Metrics


2009PA46      Phys.Rev. C 80, 064602 (2009)

S.K.Patra, R.N.Panda, P.Arumugam, R.K.Gupta

Nuclear reaction cross sections of exotic nuclei in the Glauber model for relativistic mean field densities

NUCLEAR REACTIONS 12C(6Li, X), (7Li, X), (8Li, X), (9Li, X), (11Li, X), E=790 MeV/nucleon; 12C(20Mg, X), (20Na, X), (20Ne, X), (20F, X), (20O, X), (20N, X), E=30-2200 MeV/nucleon; 208Pb(α, X), (6He, X), (8He, X), (6Li, X), (7Li, X), (8Li, X), (9Li, X), (11Li, X), (10B, X), E=30-1000 MeV/nucleon; 235U(α, X), (6He, X), (8He, X), (6Li, X), (7Li, X), (8Li, X), (9Li, X), (11Li, X), (20C, X), E=30-1000 MeV/nucleon; 230Th(α, X), (6Li, X), (7Li, X), (8Li, X), (9Li, X), (11Li, X), E=30-1000 MeV/nucleon; 218,228,248,260Pb, 250,260,270U(6Li, X), E=30-1000 MeV/nucleon; 218,228,248,260Pb, 250,260,270U(11Li, X), 30-1000 MeV/nucleon; 218,228,248Pb(10B, X), E=30-1000 MeV/nucleon; 240,250,270Th(α, X), E=30-1000 MeV/nucleon; 250,260,270U(8He, X), E=30-1000 MeV/nucleon; 250,260,270U(20C, X), E=30-1000 MeV/nucleon; 208,210,260Pb(6Li, 6Li), E=30-1000 MeV/nucleon; 260Pb, 292,320122(11Li, X), E=30-1000 MeV/nucleon; 260Pb, 292,320122(11Li, 11Li), E=30-1000 MeV/nucleon; 208Pb, 235,238,250U(12C, 12C), E=30-1000 MeV/nucleon; 235,238,250U(20C, 20C), E=30-1000 MeV/nucleon; calculated σ and σ(θ) using the relativistic mean field (RMF(NL3) and E-RMF(G2)) formalisms and the Glauber model. Comparison with experimental data.

NUCLEAR STRUCTURE 4,5,6,7,8He, 6,7,8,9,10,11Li, 10,15,17,20B, 12,14,16,18,20C, 208,210,218,228,238,248,258,260Pb, 230,240,250,260,270Th, 235,238,250,260,270,280U, 292,320122; calculated binding energies, rms radii and ground-state densities for lighter projectiles and heavier target nuclei using relativistic mean field (RMF(NL3) and E-RMF(G2)) formalisms. Comparison with experimental data.

doi: 10.1103/PhysRevC.80.064602
Citations: PlumX Metrics


2008GU11      J.Phys.(London) G35, 075106 (2008)

R.K.Gupta, S.K.Patra, P.D.Stevenson, C.Beck, W.Greiner

Fission of hyper-hyperdeformed 56Ni: a clustering analysis within mean-field approaches

NUCLEAR STRUCTURE 56Ni; calculated binding energy, radii, matter density distributions; deduced alpha-clustering effect. Compared two models.

doi: 10.1088/0954-3899/35/7/075106
Citations: PlumX Metrics


2008GU20      Int.J.Mod.Phys. E17, 2244 (2008)

R.K.Gupta, S.K.Arun, D.Singh, R.Kumar, Niyti, SK.Patra, P.Arumugam, B.K.Sharma

Clusters in light, heavy, super-heavy and super-superheavy nuclei

doi: 10.1142/S0218301308011422
Citations: PlumX Metrics


2008SI17      Phys.Rev. C 77, 054613 (2008)

B.B.Singh, M.K.Sharma, R.K.Gupta

Decay of 246Bk* formed in similar entrance channel reactions of 11B+235U and 14N+232Th at low energies using the dynamical cluster-decay model

RADIOACTIVITY 246Bk(SF) [from 235U(11B, X); 232Th(14N, X), E=70.6 MeV]; calculated fission σ, scattering potentials, fragmentation potentials, preformation probabilities, angular momenta. Dynamical cluster decay model.

doi: 10.1103/PhysRevC.77.054613
Citations: PlumX Metrics


2007GU04      Phys.Rev. C 75, 024603 (2007)

R.K.Gupta, D.Singh, W.Greiner

Semiclassical and microscopic calculations of the spin-orbit density part of the Skyrme nucleus-nucleus interaction potential with temperature effects included

NUCLEAR REACTIONS 28Si(28Si, X), 24Mg(24Mg, X), 26Mg(26Mg, X), E not given; calculated spin-orbit interaction potential for transfer reactions. Comparison of semiclassical and microscopic shell model approaches.

doi: 10.1103/PhysRevC.75.024603
Citations: PlumX Metrics


2007GU20      Int.J.Mod.Phys. E16, 1721 (2007)

R.K.Gupta, S.K.Patra, P.D.Stevenson, W.Greiner

A highly neutron-rich cluster and/or a superheavy nucleus in the compound nucleus 238U+238U: A Mean field study

NUCLEAR REACTIONS 238U(238U, X), E not given; calculated neutron and proton matter density distributions, resonance state properties, clustering structures in the superheavy nucleus using a relativistic mean field and non-relativistic Hartree-Fock approach.

doi: 10.1142/S0218301307006137
Citations: PlumX Metrics


2007PA30      J.Phys.(London) G34, 2073 (2007)

S.K.Patra, R.K.Gupta, B.K.Sharma, P.D.Stevenson, W.Greiner

Exotic clustering in heavy and superheavy nuclei within the relativistic and non-relativistic mean field formalisms

NUCLEAR STRUCTURE 222Ra, 232U, 236Pu, 242Cm; Z=114; calculated binding energies, deformation parameters, and rms charge radii within the relativistic mean field approach and the non-relativistic Skyrme-Hartree-Fock formalism.

doi: 10.1088/0954-3899/34/9/016
Citations: PlumX Metrics


2006GU05      J.Phys.(London) G32, 345 (2006)

R.K.Gupta, M.Balasubramaniam, R.Kumar, D.Singh, S.K.Arun, W.Greiner

The dynamical cluster-decay model of preformed clusters for a hot rotating 116Ba* nucleus produced in the low-energy 58Ni + 58Ni reaction

NUCLEAR REACTIONS 58Ni(58Ni, X), E(cm)=100-400 MeV; calculated fragment mass distributions, light charged particle and intermediate mass fragment production σ, preformation probability, angular momentum effects. Dynamical cluster-decay model.

doi: 10.1088/0954-3899/32/3/009
Citations: PlumX Metrics


2006GU07      J.Phys.(London) G32, 565 (2006)

R.K.Gupta, M.Balasubramaniam, S.Kumar, S.K.Patra, G.Munzenberg, W.Greiner

Magic numbers in exotic light nuclei near drip lines

NUCLEAR STRUCTURE 12,14Be, 18Ne, 29F; calculated cluster configurations potential energies; deduced shell closure features.

doi: 10.1088/0954-3899/32/4/012
Citations: PlumX Metrics


2006GU12      Phys.Rev. C 73, 054307 (2006)

R.K.Gupta, M.Manhas, W.Greiner

Compactness of the 48Ca induced hot fusion reactions and the magnitudes of quadrupole and hexadecapole deformations

NUCLEAR REACTIONS 232Th, 238U, 244Pu, 248Cm(48Ca, X), 236U, 242Pu, 246Cm(50Ca, X), 226Ra, 232Th, 238U, 242Pu(54Ti, X), 220Rn, 226Ra, 232Th, 236U(60Cr, X), 220Rn(66Fe, X), 222Rn(70Ni, X), 208Pb, 220Rn(72Ni, X), 206Hg(74Zn, X), (80Ge, X), 208Pb(78Zn, X), (88Se, X), 210Pb(82Ge, X), (86Se, X), 195Os(85Se, X), 206Pb(90Se, X), 194Os, 206Hg, 210Pb(86Se, X), 194Os(92Kr, X), (98Sr, X), (102Zr, X), 192W(100Zr, X), 180Yb, 190W(106Mo, X), 178Yb, 184Hf(108Mo, X), 172Dy(108Ru, X), 146Ce, 152Nd, 158Sm, 162Gd(134Te, X), E not given; calculated scattering and fragmentation potentials, role of quadrupole and hexadecapole deformation, orientation effects. Fragmentation theory.

doi: 10.1103/PhysRevC.73.054307
Citations: PlumX Metrics


2006MA61      Phys.Rev. C 74, 034603 (2006)

M.Manhas, R.K.Gupta, Q.Li, S.K.Patra, W.Greiner

Higher-multipole deformations and compactness of hot fusion reactions

NUCLEAR REACTIONS 226Ra(54Ti, X), (60Cr, X), 184W, 238U, 244Pu(48Ca, X), 198Os(92Kr, X), 232Th(60Cr, X), E not given; calculated fusion barrier energies, effects of high-multipole deformations.

doi: 10.1103/PhysRevC.74.034603
Citations: PlumX Metrics


2006ME12      Int.J.Mod.Phys. E15, 1149 (2006)

M.S.Mehta, B.K.Sharma, S.K.Patra, R.K.Gupta, W.Greiner

Decrease of the spin-orbit interaction in drip-line nuclei, using relativistic mean field models

NUCLEAR STRUCTURE F, Mg, Sb, Pb, Bi; calculated spin-orbit splitting energy vs neutron excess. 120,130,140,150,160,170,180,190Nd; calculated radial dependence of spin-orbit potential.

doi: 10.1142/S0218301306004740
Citations: PlumX Metrics


2006SH01      J.Phys.(London) G32, L1 (2006)

B.K.Sharma, P.Arumugam, S.K.Patra, P.D.Stevenson, R.K.Gupta, W.Greiner

Clustering in superheavy nuclei within the relativistic mean field approach

NUCLEAR STRUCTURE 292,296,300,304120; calculated binding energies, deformation parameters, radii, matter density distributions; deduced cluster configurations. Relativistic mean field approach.

doi: 10.1088/0954-3899/32/1/L01
Citations: PlumX Metrics


2006SH20      J.Phys.(London) G32, 2089 (2006)

B.K.Sharma, S.K.Patra, R.K.Gupta, A.Shukla, P.Arumugam, P.D.Stevenson, W.Greiner

Reaction cross-sections for light nuclei on 12C using relativistic mean field formalism

NUCLEAR REACTIONS 12C(8B, X), (9B, X), (10B, X), (11B, X), (12B, X), (13B, X), (14B, X), (15B, X), (16B, X), (17B, X), (18B, X), (19B, X), (7Be, X), (8Be, X), (9Be, X), (10Be, X), (11Be, X), (12Be, X), (13Be, X), (14Be, X), (6Li, X), (7Li, X), (8Li, X), (9Li, X), (10Li, X), (11Li, X), E ≈ 800 MeV/nucleon; calculated reaction σ. Relativistic mean field approach.

NUCLEAR STRUCTURE 6,7,8,9,10,11Li, 10,11,12,13,14Be, 15,16,17B; calculated binding energies, deformation. Relativistic mean field approach.

doi: 10.1088/0954-3899/32/11/004
Citations: PlumX Metrics


2006SI09      Int.J.Mod.Phys. E15, 699 (2006)

B.Singh, M.K.Sharma, R.K.Gupta, W.Greiner

Entrance-channel effects in the dynamical cluster-decay model for the decay of hot and rotating compound nucleus 48Cr at E8CN ≈ 60 MeV

NUCLEAR REACTIONS 24Mg(24Mg, X), E(cm)=44.4 MeV; 12C(36Ar, X), E(cm)=47 MeV; calculated fragment mass, kinetic energy, and angular distributions; deduced entrance channel effects. Dynamical cluster-decay model.

doi: 10.1142/S0218301306004521
Citations: PlumX Metrics


2005GU02      Phys.Rev. C 71, 014601 (2005)

R.K.Gupta, M.Balasubramaniam, R.Kumar, D.Singh, C.Beck, W.Greiner

Dynamical cluster-decay model for hot and rotating light-mass nuclear systems applied to the low-energy 32S + 24Mg → 56Ni* reaction

NUCLEAR REACTIONS 24Mg(32S, X), E(cm)=51.6, 60.5 MeV; calculated light particle and intermediate mass fragment yields, evaporation residue σ. Dynamical cluster-decay model.

doi: 10.1103/PhysRevC.71.014601
Citations: PlumX Metrics


2005GU20      J.Phys.(London) G31, 631 (2005)

R.K.Gupta, M.Balasubramaniam, R.Kumar, N.Singh, M.Manhas, W.Greiner

Optimum orientations of deformed nuclei for cold synthesis of superheavy elements and the role of higher multipole deformations

NUCLEAR REACTIONS 238Pu(48Ar, X), 208Pb(62Fe, X), (62Ni, X), 230Ra(56Cr, X), E not given; calculated scattering potentials, barrier heights vs deformation, orientation. Generalized nuclear proximity potential.

NUCLEAR STRUCTURE 286Cn, 270Hs; calculated compound nucleus fragmentation potentials following hot and cold fusion.

doi: 10.1088/0954-3899/31/7/009
Citations: PlumX Metrics


2005GU22      Phys.Rev. C 72, 014607 (2005)

R.K.Gupta, M.Manhas, G.Munzenberg, W.Greiner

Theory of the compactness of the hot fusion reaction 48Ca + 244Pu → 292114*

NUCLEAR REACTIONS 244Pu(48Ca, X), E not given; calculated orientation-dependent scattering potential, barrier heights, related features. Fragmentation theory.

doi: 10.1103/PhysRevC.72.014607
Citations: PlumX Metrics


2005LI21      Phys.Rev. C 71, 054907 (2005)

Q.Li, Z.Li, E.Zhao, R.K.Gupta

Σ-+ ratio as a candidate for probing the density dependence of the symmetry potential at high nuclear densities

NUCLEAR REACTIONS 132Sn(132Sn, X), E=1.5, 2.5, 3.5 GeV/nucleon; calculated pion and hyperon yield ratios, role of symmetry potential. Ultrarelativistic quantum molecular dynamics model.

doi: 10.1103/PhysRevC.71.054907
Citations: PlumX Metrics


2005LI45      J.Phys.(London) G31, 1359 (2005)

Q.Li, Z.Li, S.Soff, R.K.Gupta, M.Bleicher, H.Stocker

Probing the density dependence of the symmetry potential in intermediate-energy heavy ion collisions

NUCLEAR REACTIONS 132Sn(132Sn, X), E=0.5 GeV/nucleon; calculated charged pion and Δ yields, rapidity and transverse momentum distributions, effects of density-dependent symmetry potential. Ultrarelativistic quantum molecular dynamics model.

doi: 10.1088/0954-3899/31/11/016
Citations: PlumX Metrics


2005MA62      Phys.Rev. C 72, 024606 (2005)

M.Manhas, R.K.Gupta

Proximity potential for deformed, oriented nuclei: "Gentle" fusion and "hugging" fusion

NUCLEAR REACTIONS 150Nd(150Nd, X), 180Hf(86Kr, X), 238U(48Ca, X), E not given; calculated proximity potential vs deformation, orientation. Two fusion configurations discussed.

doi: 10.1103/PhysRevC.72.024606
Citations: PlumX Metrics


2004BA64      Phys.Rev. C 70, 017301 (2004)

M.Balasubramaniam, S.Kumarasamy, N.Arunachalam, R.K.Gupta

New semiempirical formula for exotic cluster decay

RADIOACTIVITY 221Fr, 221,222,223,224,226Ra, 225Ac(14C); 228Th(20O); 230U(22Ne); 231Pa(23F); 230Th, 231Pa, 232,233,234,235U(24Ne); 233,235U(25Ne); 234U(26Ne); 234,236U, 236,238Pu(28Mg); 236U, 238Pu(30Mg); 238Pu(32Si); 177,178,179,180,181,182,183,184,185,186,187Hg(8Be), (12C), (16O); calculated cluster decay T1/2. Semiempirical formula, comparison with data.

doi: 10.1103/PhysRevC.70.017301
Citations: PlumX Metrics


2004GU11      Nucl.Phys. A738, 479 (2004)

R.K.Gupta, M.Balasubramaniam, R.Kumar, D.Singh, C.Beck

Collective clusterization effects in light heavy ion reactions

NUCLEAR REACTIONS 32S(24Mg, X), E(cm)=51.6, 60.5 MeV; calculated light particle and intermediate mass fragment production σ; deduced clusterization effects.

doi: 10.1016/j.nuclphysa.2004.04.091
Citations: PlumX Metrics


2004GU18      Phys.Rev. C 70, 034608 (2004)

R.K.Gupta, N.Singh, M.Manhas

Generalized proximity potential for deformed, oriented nuclei

NUCLEAR REACTIONS 180Hf(86Kr, X), 238U(84Kr, X), E not given; calculated proximity potentials, deformation and orientation dependences. Pocket formula.

doi: 10.1103/PhysRevC.70.034608
Citations: PlumX Metrics


2004ME13      Pramana 62, 841 (2004)

M.S.Mehta, T.K.Jha, S.K.Patra, R.K.Gupta

Potential energy surfaces for N = Z, 20Ne-112Ba nuclei

NUCLEAR STRUCTURE 20Ne, 24Mg, 28Si, 32S, 36Ar, 40Ca, 44Ti, 48Cr, 52Fe, 56Ni, 60Zn, 64Ge, 68Se, 72Kr, 76Sr, 80Zr, 84Mo, 88Ru, 92Pd, 96Cd, 100Sn, 104Te, 108Xe, 112Ba; calculated energy vs deformation. Deformed relativistic mean field approach.

doi: 10.1007/BF02706133
Citations: PlumX Metrics


2003BA98      J.Phys.(London) G29, 2703 (2003)

M.Balasubramaniam, R.Kumar, R.K.Gupta, C.Beck, W.Scheid

Emission of intermediate mass fragments from hot 116Ba* formed in low-energy 58Ni + 58Ni reaction

NUCLEAR REACTIONS 58Ni(58Ni, X), E(cm)=174, 185.5, 197, 315 MeV; calculated light fragments charge distribution, intermediate mass fragment preformation probabilities, cluster decay constants. 58Ni(58Ni, X)99Cd/100In/101Sn/102In, E(cm)=174, 185.5, 197 MeV; calculated production σ. Dynamical cluster-decay model, comparisons with data.

doi: 10.1088/0954-3899/29/12/003
Citations: PlumX Metrics


2003GU08      Phys.Rev. C 68, 014610 (2003); Erratum Phys.Rev. C 68, 039902 (2003)

R.K.Gupta, R.Kumar, N.K.Dhiman, M.Balasubramaniam, W.Scheid, C.Beck

Cluster decay of hot 56Ni* formed in the 32S + 24Mg reaction

NUCLEAR REACTIONS 24Mg(32S, X), E(cm)=51.6, 60.5 MeV; calculated fragment yields, kinetic energy spectra. Preformed cluster-decay model.

doi: 10.1103/PhysRevC.68.014610
Citations: PlumX Metrics


2003GU13      Phys.Rev. C 68, 034321 (2003)

R.K.Gupta, S.Dhaulta, R.Kumar, M.Balasubramaniam, G.Munzenberg, W.Scheid

Closed-shell effects from the stability and instability of nuclei against cluster decays in the mass regions 130-158 and 180-198

NUCLEAR STRUCTURE 133,134,135,136,137Nd, 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158Gd, 176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194Hg, 192,193,194,195,196,197,198Pb; calculated α-decay and cluster-decay associated fragmentation potentials, preformation probabilities, T1/2; deduced shell effects.

doi: 10.1103/PhysRevC.68.034321
Citations: PlumX Metrics


2003GU29      Acta Phys.Hung.N.S. 18, 347 (2003)

R.K.Gupta

Collective Clusterization in Excited Light Nuclear Systems

NUCLEAR REACTIONS 24Mg(32S, X), E(cm)=51.5 MeV; 58Ni(58Ni, X), E(cm)=197, 315 MeV; calculated intermediate mass fragment yields, kinetic energy spectra. Dynamical cluster decay process.

doi: 10.1556/APH.18.2003.2-4.39
Citations: PlumX Metrics


2003JH01      Pramana 61, 517 (2003)

T.K.Jha, M.S.Mehta, S.K.Patra, B.K.Raj, R.K.Gupta

A relativistic mean-field study of magic numbers in light nuclei from neutron to proton drip-lines

NUCLEAR STRUCTURE 11Li, 12Be, 13B, 14,20,22C, 15,23N, 16,24O, 17,25F, 18,26Ne, 19,27Na, 20,28Mg; calculated single-particle level energies; A=4-44; calculated one- and two-neutron separation energies; deduced shell closure and drip-line features.

doi: 10.1007/BF02705475
Citations: PlumX Metrics


2003KU05      J.Phys.(London) G29, 625 (2003)

S.Kumar, M.Balasubramaniam, R.K.Gupta, G.Munzenberg, W.Scheid

The formation and decay of superheavy nuclei produced in 48Ca-induced reactions

NUCLEAR REACTIONS 232Th, 238U, 242,244Pu, 248Cm(48Ca, X), E not given; calculated fragmentation potentials of excited compound nuclei, fragment yields. Quantum mechanical fragmentation theory.

RADIOACTIVITY 269Sg, 273Hs, 277,281Ds, 284,285Cn, 287,288,298Fl, 292Lv(α); calculated T1/2, Qα. Generalized liquid drop model, preformed cluster model, comparison with data.

doi: 10.1088/0954-3899/29/4/303
Citations: PlumX Metrics


2002GU06      Phys.Rev. C65, 024601 (2002)

R.K.Gupta, M.Balasubramaniam, C.Mazzocchi, M.La Commara, W.Scheid

Decay of Excited 116Ba* Formed in the 58Ni + 58Ni Reaction via the Emission of Intermediate Mass Fragments

NUCLEAR REACTIONS 58Ni(58Ni, X), E(cm) ≈ 170-200 MeV; calculated fragments charge and mass distributions, kinetic energy, role of cluster decay process.

doi: 10.1103/PhysRevC.65.024601
Citations: PlumX Metrics


Back to query form    [Next]