NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 26, 2024.

Search: Author = M.Tohyama

Found 63 matches.

Back to query form



2023TO01      Prog.Theor.Exp.Phys. 2023, 023D02 (2023)

M.Tohyama

Number conservation in odd-particle number random phase approximation and extensions

NUCLEAR STRUCTURE 16O; calculated single-particle energies and occupation probabilities in time-dependent density-matrix theory (TDDM) for the pairing model. Comparison with exact diagonalization approach (EDA).

doi: 10.1093/ptep/ptad005
Citations: PlumX Metrics


2022TO03      Prog.Theor.Exp.Phys. 2022, 041D02 (2022)

M.Tohyama

Effects of ground-state correlations on the damping of giant dipole resonances in LS closed-shell nuclei

NUCLEAR STRUCTURE 16O, 40Ca; calculated isovector dipole strength distributions, single-particle energies using extended random phase approximati on (RPA) approaches derived from the time-dependent density matrix theory.

doi: 10.1093/ptep/ptac037
Citations: PlumX Metrics


2022TO06      Phys.Rev. C 106, L011302 (2022)

M.Tohyama

Extended random-phase-approximation study of the fragmentation of the giant quadrupole resonance in 16O

NUCLEAR STRUCTURE 16O; calculated isoscalar quadrupole strength distributions. Extended random-phase approximation approaches (ERPA), the small amplitude limit of time-dependent density-matrix theory (STDDM) and exact diagonalization approach (EDA) calculations. Found that the effects of ground state correlations bring strong fragmentation of quadrupole strength.

doi: 10.1103/PhysRevC.106.L011302
Citations: PlumX Metrics


2021TO10      Prog.Theor.Exp.Phys. 2021, 083D01 (2021)

M.Tohyama

Properties of Skyrme force as a residual interaction in beyond-mean-field theories

NUCLEAR STRUCTURE 16O, 40Ca; calculated ground states using the five standard parametrizations of the Skyrme interaction, which differ in densityand momentum dependence; deduced that the Skyrme interaction, which has strong density dependence and weak momentum dependence, induces substantial ground-state correlations comparable to the results of other theoretical calculations.

doi: 10.1093/ptep/ptab092
Citations: PlumX Metrics


2019TO07      Eur.Phys.J. A 55, 74 (2019)

M.Tohyama, P.Schuck

Truncation scheme of time-dependent density-matrix approach III

doi: 10.1140/epja/i2019-12746-x
Citations: PlumX Metrics


2018TO04      Prog.Theor.Exp.Phys. 2018, 043D02 (2018)

M.Tohyama

Effects of ground-state correlations on dipole and quadrupole excitations of 40Ca and 48Ca

NUCLEAR STRUCTURE 40,48Ca; calculated single-particle energies and occupation probabilities, strength functions, B(E1), B(E2) using the extended random phase approximation (ERPA) derived from the time-dependent density-matrix theory. Comparison with available data.

doi: 10.1093/ptep/pty035
Citations: PlumX Metrics


2017TO10      Eur.Phys.J. A 53, 186 (2017)

M.Tohyama, P.Schuck

Truncation scheme of time-dependent density-matrix approach II

doi: 10.1140/epja/i2017-12377-3
Citations: PlumX Metrics


2016SC23      Eur.Phys.J. A 52, 307 (2016)

P.Schuck, M.Tohyama

Self-consistent RPA and the time-dependent density matrix approach

doi: 10.1140/epja/i2016-16307-7
Citations: PlumX Metrics


2016TO02      Prog.Theor.Exp.Phys. 2016, 023D01 (2016)

M.Tohyama

Accuracy of pairing theory for a trapped magnetic dipole fermion gas

doi: 10.1093/ptep/ptw001
Citations: PlumX Metrics


2016TO05      Phys.Rev. C 93, 034607 (2016)

M.Tohyama, A.S.Umar

Two-body dissipation effects on the synthesis of superheavy elements

NUCLEAR REACTIONS 208Pb(82Ge, X), E(cm)=284, 292-388, 468-626 MeV; 208Pb(84Se, X), E(cm)=299, 298-403 MeV; 208Pb(86Kr, X), E(cm)=341 MeV; 208Pb(88Sr, X), E(cm)=340 MeV; calculated contour density plots for low-energy head-on collisions. Synthesis of superheavy elements. Time-dependent density-matrix theory (TDDM), as an extension of the time-dependent Hartree-Fock (TDHF) theory.

doi: 10.1103/PhysRevC.93.034607
Citations: PlumX Metrics


2016TO18      Prog.Theor.Exp.Phys. 2016, 113D01 (2016)

M.Tohyama

Density-matrix theory versus coupled-cluster theory

doi: 10.1093/ptep/ptw152
Citations: PlumX Metrics


2015TO03      Phys.Rev. C 91, 017301 (2015)

M.Tohyama

New truncation scheme for a time-dependent density-matrix approach applied to the ground state of 16O

NUCLEAR STRUCTURE 16O; calculated ground state by time-dependent density-matrix approach from a new truncation scheme of the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy, with three-body density matrix approximated by antisymmetrized product of two-body density matrices.

doi: 10.1103/PhysRevC.91.017301
Citations: PlumX Metrics


2015TO06      Phys.Rev. C 91, 034316 (2015)

M.Tohyama, P.Schuck

Extension of time-dependent Hartree-Fock-Bogoliubov equations

NUCLEAR STRUCTURE 106,116,126Sn; calculated pairing energy as a function of an artificial factor f; deduced higher order effects of the pairing correlation. Extended time-dependent Hartree-Fock-Bogoliubov theory (ETDHFB) using a truncation scheme of the time-dependent density matrix theory.

doi: 10.1103/PhysRevC.91.034316
Citations: PlumX Metrics


2014TO06      Eur.Phys.J. A 50, 77 (2014)

M.Tohyama, P.Schuck

Truncation scheme of time-dependent density-matrix approach

doi: 10.1140/epja/i2014-14077-x
Citations: PlumX Metrics


2013TO06      Phys.Rev. C 87, 044316 (2013)

M.Tohyama, P.Schuck

Odd particle number random-phase approximation and extensions: Applications to particle and hole states around 16O

NUCLEAR STRUCTURE 15N, 17F; calculated proton-hole and proton-particle state spectral functions S(E), spectroscopic factors, strength distributions using the hole-state and the particle-state random-phase approximation with a 16O core. Comparison with experimental data.

doi: 10.1103/PhysRevC.87.044316
Citations: PlumX Metrics


2013TO07      Phys.Rev. C 87, 054330 (2013)

M.Tohyama

Effects of ground-state correlations on collective excitations of 16O

NUCLEAR STRUCTURE 16O; calculated neutron and proton occupation probabilities, correlation matrix, single-particle energies, strength functions S(E) for octupole and isovector dipole excitations. Ground-state correlation effects. Extended random phase approximation (ERPA) derived from time-dependent density-matrix theory.

doi: 10.1103/PhysRevC.87.054330
Citations: PlumX Metrics


2012TO02      Phys.Rev. C 85, 031302 (2012)

M.Tohyama, T.Nakatsukasa

Fragmentation of electric dipole strength in N=82 isotones

NUCLEAR STRUCTURE 140Ce, 142Nd, 144Sm; calculated E1 strength functions, low energy E1 strength distributions, excitation energies, B(E1). Second random-phase approximation (SRPA). Comparison with experimental data.

doi: 10.1103/PhysRevC.85.031302
Citations: PlumX Metrics


2010TO15      Eur.Phys.J. A 45, 257 (2010)

M.Tohyama, P.Schuck

Density-matrix formalism with three-body ground-state correlations

doi: 10.1140/epja/i2010-11002-5
Citations: PlumX Metrics


2008TO09      Eur.Phys.J. A 36, 349 (2008)

M.Tohyama, P.Schuck

Extended random-phase approximation with three-body ground-state correlations

doi: 10.1140/epja/i2008-10596-3
Citations: PlumX Metrics


2007TO11      Phys.Rev. C 75, 044310 (2007)

M.Tohyama

Damping of collective states in an extended random-phase approximation with ground-state correlations

NUCLEAR STRUCTURE 16,20,22O; calculated single-particle energies, quadrupole strength functions, effects of ground-state correlations. Extended RPA, time-dependent density-matrix theory.

doi: 10.1103/PhysRevC.75.044310
Citations: PlumX Metrics


2007TO20      Eur.Phys.J. A 32, 139 (2007)

M.Tohyama, P.Schuck

Spurious states in extended RPA theories, part II

doi: 10.1140/epja/i2007-10369-6
Citations: PlumX Metrics


2005TO19      Prog.Theor.Phys.(Kyoto) 114, 1021 (2005)

M.Tohyama

Comparison of Density-Matrix Theory and Pairing Theory

NUCLEAR STRUCTURE 20,22O; calculated excited states energies, B(E2), strength functions. Comparison of density-matrix theory and pairing theory.

doi: 10.1143/PTP.114.1021
Citations: PlumX Metrics


2004TA38      Phys.Rev. C 70, 057307 (2004)

S.Takahara, M.Tohyama, P.Schuck

Extended RPA with ground-state correlations in a solvable model

doi: 10.1103/PhysRevC.70.057307
Citations: PlumX Metrics


2004TO04      Eur.Phys.J. A 19, 203 (2004)

M.Tohyama, P.Schuck

Spurious modes in Extended RPA theories

doi: 10.1140/epja/i2003-10110-7
Citations: PlumX Metrics


2004TO05      Eur.Phys.J. A 19, 215 (2004)

M.Tohyama, P.Schuck

Eigenstates of the time-dependent density-matrix theory

NUCLEAR STRUCTURE 24O; calculated low-lying 2+ states strength distribution. Small-amplitude limit of time-dependent density-matrix theory.

doi: 10.1140/epja/i2003-10145-8
Citations: PlumX Metrics


2004TO20      Eur.Phys.J. A 21, 217 (2004)

M.Tohyama, S.Takahara, P.Schuck

Extended RPA with ground-state correlations

NUCLEAR STRUCTURE 22O; calculated ground-state configuration, quadrupole mode and two-phonon strength distributions. Time-dependent density matrix theory, small amplitude limit.

doi: 10.1140/epja/i2003-10199-6
Citations: PlumX Metrics


2004TO23      Prog.Theor.Phys.(Kyoto) 112, 499 (2004)

M.Tohyama, S.Takahara

Relation between Density-Matrix Theory and Pairing Theory

doi: 10.1143/PTP.112.499
Citations: PlumX Metrics


2002TO06      Phys.Rev. C65, 037601 (2002)

M.Tohyama, A.S.Umar

Fusion Window Problem in Time-Dependent Hartree-Fock Theory Revisited

NUCLEAR REACTIONS 16O(16O, X), 22O(22O, X), E(cm) ≈ 30-80 MeV; calculated fusion threshold energies for various model assumptions. Time-dependent density-matrix theory.

doi: 10.1103/PhysRevC.65.037601
Citations: PlumX Metrics


2002TO20      Phys.Lett. 549B, 72 (2002)

M.Tohyama, A.S.Umar

Quadrupole Resonances in Unstable Oxygen Isotopes in Time-Dependent Density-Matrix Formalism

NUCLEAR STRUCTURE 22,24O; calculated quadrupole resonance strength distributions. Time-dependent density-matrix theory.

doi: 10.1016/S0370-2693(02)02885-X
Citations: PlumX Metrics


2001TO26      Phys.Rev. C64, 067304 (2001)

M.Tohyama

Collectivity of Double Giant Resonances in Extended RPA Theories

NUCLEAR STRUCTURE 40Ca; calculated double GDR and GQR strength functions; deduced collectivity features. Extended RPA approaches.

doi: 10.1103/PhysRevC.64.067304
Citations: PlumX Metrics


2000TO05      Phys.Lett. 484B, 231 (2000)

M.Tohyama

Double Giant Dipole Resonances in Time-Dependent Density-Matrix Theory

NUCLEAR STRUCTURE 16O, 40Ca; calculated double GDR strength functions. Time-dependent density-matrix theory.

doi: 10.1016/S0370-2693(00)00685-7
Citations: PlumX Metrics


1999TO15      Nucl.Phys. A657, 343 (1999)

M.Tohyama

Giant Quadrupole Resonances in Time-Dependent Density-Matrix Theory

NUCLEAR STRUCTURE 40Ca; calculated GQR strength distributions, ground-state correlations, damping features. Time-dependent density-matrix theory.

doi: 10.1016/S0375-9474(99)00327-9
Citations: PlumX Metrics


1998TO11      Prog.Theor.Phys.(Kyoto) 99, 109 (1998)

M.Tohyama

Correlated Ground State and Giant Resonances Built on It

NUCLEAR STRUCTURE 22O, 40Ca; calculated correlated ground states, associated giant resonance strength distributions. Modified time-dependent density-matrix theory.

doi: 10.1143/PTP.99.109
Citations: PlumX Metrics


1998TO22      Phys.Rev. C58, 2603 (1998)

M.Tohyama

Correlated Ground State of 16O and E2 Giant Resonance Built on It

NUCLEAR STRUCTURE 16O; calculated correlated ground state, E2 strength distribution; deduced E2 resonance features. Time-dependent density-matrix theory.

doi: 10.1103/PhysRevC.58.2603
Citations: PlumX Metrics


1998TO29      Prog.Theor.Phys.(Kyoto) 100, 1293 (1998)

M.Tohyama

Double Giant Quadrupole Resonance in Time-Dependent Density-Matrix Theory

NUCLEAR STRUCTURE 16O; calculated double-phonon GQR strength distribution. Time-dependent density matrix theory, comparison with RPA results.

doi: 10.1143/PTP.100.1293
Citations: PlumX Metrics


1995KI12      Nucl.Phys. A588, 105c (1995)

K.-H.Kim, T.Otsuka, M.Tohyama

Transfer and Fusion Reactions of Unstable Nuclei

NUCLEAR REACTIONS 40Ca(16O, X), (28O, X), E(cm) ≤ 300 MeV; calculated impact parameter vs E. 40Ca(28O, X), (28Si, X), E not given; calculated total density contours. Two-dimensional time-dependent Hartree-Fock method.

doi: 10.1016/0375-9474(95)00107-C
Citations: PlumX Metrics


1995TO05      Nucl.Phys. A588, 141c (1995)

M.Tohyama

E1 and E2 Giant Resonances in 22O

NUCLEAR STRUCTURE 22O; calculated E1, E2 distribution strength function. Time-dependent density-matrix theory.

doi: 10.1016/0375-9474(95)00113-F
Citations: PlumX Metrics


1995TO14      Prog.Theor.Phys.(Kyoto) 94, 147 (1995)

M.Tohyama

Correlated Ground State and E2 Giant Resonance Built on It

NUCLEAR STRUCTURE 16O; calculated E2 transition strength distribution, giant resonance characteristics. Time-dependent density-matrix formalism.

doi: 10.1143/ptp/94.1.147
Citations: PlumX Metrics


1994BO11      Nucl.Phys. A569, 237c (1994)

P.F.Bortignon, C.Riva, M.Braguti, F.V.De Blasio, R.A.Broglia, W.Cassing, M.Tohyama

Limiting Temperature for the Existence of Collective Motion in Highly Excited Nuclei ( Question )

NUCLEAR STRUCTURE 16O, 40Ca; analyzed dipole, quadrupole motion time evolution vs temperature; deduced GDR spreading width temperature independence role.

doi: 10.1016/0375-9474(94)90114-7
Citations: PlumX Metrics


1994KI10      Phys.Rev. C50, R566 (1994)

K.-H.Kim, T.Otsuka, M.Tohyama

Transfer and Fusion Reactions of Unstable Nuclei

NUCLEAR REACTIONS 28,16O(40Ca, X), E(cm) ≈ 23.1 MeV; 28Si(40Ca, X), E(cm)=38.1 MeV; calculated total density contour plots; deduced nucleon transfer enhancement, neutron skin characteristics.

doi: 10.1103/PhysRevC.50.R566
Citations: PlumX Metrics


1994TO02      Phys.Lett. 323B, 257 (1994)

M.Tohyama

Giant Resonances in a Neutron Rich Nucleus

NUCLEAR STRUCTURE 22O; calculated density, E1 transition moments vs time evolution, E1, E2 transition strength distributions. Time-dependent density matrix theory.

doi: 10.1016/0370-2693(94)91216-5
Citations: PlumX Metrics


1993BO10      Acta Phys.Pol. B24, 129 (1993)

P.F.Bortignon, F.V.De Blasio, W.Cassing, M.Tohyama, R.A.Broglia

Collective Motion in Very Excited Nuclei

NUCLEAR STRUCTURE 40Ca, 16O; calculated quadrupole, dipole moments, modes widths. TDHF, time-dependent density-matrix approaches.


1992DE06      Phys.Rev.Lett. 68, 1663 (1992)

F.V.De Blasio, W.Cassing, M.Tohyama, P.F.Bortignon, R.A.Broglia

Nonperturbative Study of the Damping of Giant Resonances in Hot Nuclei

NUCLEAR STRUCTURE 16O, 40Ca; calculated dipole, quadrupole resonance width vs temperature. Mean field theory.

doi: 10.1103/PhysRevLett.68.1663
Citations: PlumX Metrics


1991TO01      Phys.Rev. C43, R1518 (1991)

M.Tohyama, E.Suraud

Weighted Particle Method for Solving the Boltzmann Equation

NUCLEAR STRUCTURE 12C; calculated quadrupole moment time evolution. Weighted particle method, quadrupole motion.

doi: 10.1103/PhysRevC.43.R1518
Citations: PlumX Metrics


1990GO04      Z.Phys. A335, 153 (1990)

M.Gong, M.Tohyama

Application of a Time-Dependent Density-Matrix Formalism I. Small-Amplitude Collective Motions

NUCLEAR STRUCTURE 16O, 40Ca; calculated quadrupole strength distributions. TDHF.


1990GO06      Z.Phys. A335, 331 (1990)

M.Gong, M.Tohyama, J.Randrup

Time-Dependent Density-Matrix Theory II. Mass Dispersion in Damped Nuclear Reactions

NUCLEAR REACTIONS 16O(16O, X), E=185 MeV; calculated fragment mass dispersion, diffusion coefficients vs time. Time-dependent density matrix theory.


1989TS02      Phys.Rev. C40, 1685 (1989)

M.B.Tsang, G.F.Bertsch, W.G.Lynch, M.Tohyama

Impact Parameter and Energy Dependence of Observables in Intermediate Energy Heavy-Ion Reactions

NUCLEAR REACTIONS 154Sm(14N, X), E=35 MeV/nucleon; 197Au(40Ar, X), E=60 MeV/nucleon; 197Au(16O, X), E=60-400 MeV; 40Ar(40Ar, X), E=35-400 MeV/nucleon; calculated impact parameter dependence, nucleon multiplicity, longitudinal momentum, angular momentum transfers. Nucleon anisotropy, Boltzmann equations.

doi: 10.1103/PhysRevC.40.1685
Citations: PlumX Metrics


1988TO09      Phys.Rev. C38, 553 (1988)

M.Tohyama

Damping of Quadrupole Motion in Time-Dependent Density-Matrix Theory

NUCLEAR STRUCTURE 16O; calculated isoscalar quadrupole motion damping.

doi: 10.1103/PhysRevC.38.553
Citations: PlumX Metrics


1988TS03      Phys.Rev.Lett. 60, 1479 (1988)

M.B.Tsang, W.G.Lynch, R.M.Ronningen, Z.Chen, C.K.Gelbke, T.Nayak, J.Pochodzalla, F.Zhu, M.Tohyama, W.Trautmann, W.Dunnweber

Polarization, Dynamics, and Nonequilibrium Complex-Fragment Emission

NUCLEAR REACTIONS 154Sm(14N, X), E=35 MeV/nucleon; measured fragment σ(θ, E); deduced nonequilibrium emission features.

doi: 10.1103/PhysRevLett.60.1479
Citations: PlumX Metrics


1987KA04      Z.Phys. A326, 97 (1987)

R.Kaps, W.Cassing, U.Mosel, M.Tohyama

Microscopic Investigations of Pion Production in Heavy-Ion Collisions

NUCLEAR REACTIONS 16O(16O, π+), E=40, 80 MeV/nucleon; calculated pion momentum spectra, various channels relative strengths, parallel momentum distributions, heavy-ion dynamical variations; deduced pion production mechanism. Microscopic model.


1987TO10      Phys.Rev. C36, 187 (1987)

M.Tohyama

Application of Quantum Theory of Particle Collisions to 16O + 16O Reactions

NUCLEAR REACTIONS 16O(16O, X), E=100 MeV; calculated fusion window, total energy time evolution. Extended time-dependent Hartree-Fock method.

doi: 10.1103/PhysRevC.36.187
Citations: PlumX Metrics


1986BA30      Nucl.Phys. A456, 159 (1986)

W.Bauer, W.Cassing, U.Mosel, M.Tohyama, R.Y.Cusson

High Energy γ-Ray Emission in Heavy-Ion Collisions

NUCLEAR REACTIONS 12C(12C, γ), E=84 MeV/nucleon; 16O(16O, γ), E=80 MeV/nucleon; calculated σ(Eγ, θγ). TDHF.

doi: 10.1016/0375-9474(86)90371-4
Citations: PlumX Metrics


1986CA26      Phys.Lett. 181B, 217 (1986)

W.Cassing, T.Biro, U.Mosel, M.Tohyama, W.Bauer

High Energy γ-Rays: A Probe for Momentum- and Energy-Distributions in the Reaction Zone ( Question )

NUCLEAR REACTIONS 40Ca(40Ca, 40Caγ), 12C(12C, 12Cγ), E=40-84 MeV/nucleon; calculated γ production σ(E), σ(θ, Eγ). Microscopic phase space model.

doi: 10.1016/0370-2693(86)90035-3
Citations: PlumX Metrics


1986TO14      Nucl.Phys. A459, 711 (1986)

M.Tohyama, U.Mosel

Microscopic Calculation of Pion Production Cross Section in the 16O + 16O Reaction

NUCLEAR REACTIONS 16O(16O, π), E(cm)=20 MeV/nucleon; 12C(12C, π), E=84 MeV/nucleon; calculated forward pion yield vs impact parameter. Time-dependent Hartree-Fock formalism.

doi: 10.1016/0375-9474(86)90170-3
Citations: PlumX Metrics


1985TO06      Nucl.Phys. A437, 739 (1985)

M.Tohyama, R.Kaps, D.Masak, U.Mosel

Microscopic Approach to Subthreshold Pion Production in Heavy-Ion Collisions

NUCLEAR REACTIONS 16O(16O, π+), E(cm)=20, 30, 40 MeV/nucleon; calculated pion momentum spectra. 16O(16O, π+), (16O, π-), (16O, π0), E(cm)=40 MeV/nucleon; calculated pion charge state dependence. Microscopic theory, subthreshold production.

doi: 10.1016/0375-9474(85)90065-X
Citations: PlumX Metrics


1985TO07      Nucl.Phys. A437, 443 (1985)

M.Tohyama

A Phenomenological Treatment of Two-Body Collisions

NUCLEAR REACTIONS 16O(16O, 16O), E(cm)=10 MeV/nucleon; calculated two-nuclear density vs time, density contours. Phenomenological model.

doi: 10.1016/0375-9474(85)90100-9
Citations: PlumX Metrics


1985TO17      Phys.Lett. 160B, 235 (1985)

M.Tohyama

Two-Body Collision Effects on the Low-L Fusion Window in 16O + 16O Reactions

NUCLEAR REACTIONS 16O(16O, X), E=100 MeV; calculated fusion time; deduced fusion (L) window sensitivity to two-body collisions. Extended TDHF.

doi: 10.1016/0370-2693(85)91317-6
Citations: PlumX Metrics


1984TO02      Phys.Lett. 136B, 226 (1984)

M.Tohyama, R.Kaps, D.Masak, U.Mosel

Mean Field Approach to Pion Production in Intermediate Energy Heavy Ion Collisions

NUCLEAR REACTIONS 20Ne(20Ne, πX), E=20-40 MeV/nucleon; measured forward pion production σ vs momentum. Mean field approach.

doi: 10.1016/0370-2693(84)91151-1
Citations: PlumX Metrics


1984YA08      Phys.Lett. 147B, 399 (1984)

S.Yamaji, M.Tohyama

Effects of Two-Particle - Two-Hole Excitations on the Mass Distributions in the 16O + 40Ca Reaction

NUCLEAR REACTIONS 40Ca(16O, X), E=157.3 MeV; calculated fragment yield vs mass, variances. TDHF, 2p-2h excitations.

doi: 10.1016/0370-2693(84)91390-X
Citations: PlumX Metrics


1983TO09      Nucl.Phys. A401, 211 (1983)

M.Tohyama

Isotope Dependence of Widths of Hole Analog States

NUCLEAR STRUCTURE 89,91,93,95Zr, 91,93,95,97Mo; calculated hole configuration IAS escape widths. 113,115,117,119,121,123Sn; calculated Coulomb displacement energies, hole configuration IAS, proton decay energy, escape, spreading widths; deduced width isotopic dependence. Microscopic model.

doi: 10.1016/0375-9474(83)90527-4
Citations: PlumX Metrics


1983TO16      J.Phys.Soc.Jpn. 52, 2332 (1983)

M.Tohyama, N.Onishi

Proton Spin-Orbit Splittings in the Continuum

NUCLEAR STRUCTURE 90Zr, 120Sn, 208Pb; calculated proton single particle energies. 91Nb, 121Sb, 209Bi; calculated proton resonance spin-orbit splittings. Hartree-Fock approach, Skyrme interaction.

doi: 10.1143/JPSJ.52.2332
Citations: PlumX Metrics


1982TO09      Prog.Theor.Phys.(Kyoto) 68, 317 (1982)

M.Tohyama

Proton Particle-Neutron Quasiparticle Calculation of the Isobaric Analog Resonances of the Tin Isotopes

NUCLEAR STRUCTURE 112,114,116,118,120,122,124Sn; calculated IAR escape, spreading widths. Response function method, coupling to T=0 monopole resonance.

doi: 10.1143/PTP.68.317
Citations: PlumX Metrics


1981TO10      Prog.Theor.Phys.(Kyoto) 65, 2056 (1981)

M.Tohyama

Isotope Dependence of Widths of Hole Analog States

NUCLEAR STRUCTURE 113,117,123Sn; calculated IAS, Γ, spreading width, neutron decay width. Green Function method, doorway model, TDA.

doi: 10.1143/PTP.65.2056
Citations: PlumX Metrics


Back to query form