NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 27, 2024.

Search: Author = E.Suraud

Found 31 matches.

Back to query form



2009ME13      Phys.Rev. C 80, 054314 (2009)

J.Messud, M.Bender, E.Suraud

Density functional theory and Kohn-Sham scheme for self-bound systems

doi: 10.1103/PhysRevC.80.054314
Citations: PlumX Metrics


2008DI08      Int.J.Mod.Phys. E17, 120 (2008)

P.M.Dinh, P.G.Reinhard, E.Suraud

Time-resolved fission of metal clusters and nuclei

doi: 10.1142/S0218301308009616
Citations: PlumX Metrics


2006NA36      Eur.Phys.J. A 30, 333 (2006)

J.Navarro, P.-G.Reinhard, E.Suraud

Small fermionic systems: The common methods and challenges

doi: 10.1140/epja/i2006-10127-4
Citations: PlumX Metrics


2006SU19      Int.J.Mod.Phys. E15, 1549 (2006)

E.Suraud, P.G.Reinhard

Metal clusters and nuclei

doi: 10.1142/S021830130600523X
Citations: PlumX Metrics


2001ZH10      Nucl.Phys. A684, 655c (2001)

F.-S.Zhang, F.Wang, E.Suraud, F.Spiegelmann

Temperature Dependence of the Vibrational Properties of Sodium Microclusters

doi: 10.1016/S0375-9474(01)00514-0
Citations: PlumX Metrics


1998GE10      Phys.Lett. 437B, 19 (1998)

M.Germain, Ch.Hartnack, J.L.Laville, J.Aichelin, M.Belkacem, E.Suraud

Beyond Mean Field Confrontation of Different Models with High Transverse Momentum Proton Spectra

NUCLEAR REACTIONS Ta(Ar, X), E=92 MeV/nucleon; analyzed proton spectra; deduced no collective effects.

doi: 10.1016/S0370-2693(98)00943-5
Citations: PlumX Metrics


1997CA64      Nuovo Cim. 110A, 1175 (1997)

F.Calvayrac, S.El-Gammal, C.Kohl, P.-G.Reinhard, E.Suraud

Nonlinear Dynamics of Nuclei and Metal Clusters

doi: 10.1007/BF03035961
Citations: PlumX Metrics


1996AB40      Phys.Rep. 275, 49 (1996)

Y.Abe, S.Ayik, P.-G.Reinhard, E.Suraud

On Stochastic Approaches of Nuclear Dynamics

doi: 10.1016/0370-1573(96)00003-8
Citations: PlumX Metrics


1996BE09      Phys.Rev. C53, 1440 (1996)

G.F.Bertsch, P.-G.Reinhard, E.Suraud

Particle Evaporation from Semiclassical Dynamics

NUCLEAR STRUCTURE A=64; calculated particle evaporation related features. BUU equation.

doi: 10.1103/PhysRevC.53.1440
Citations: PlumX Metrics


1996RE17      Z.Phys. A355, 339 (1996)

P.G.Reinhard, E.Suraud

Towards a Fermionic Vlasov Equation

doi: 10.1007/s002180050118
Citations: PlumX Metrics


1996SU22      Ann.Phys.(Paris) 21, 461 (1996)

E.Suraud

On Kinetic Equations in Heavy-Ion Physics


1995RE22      Ann.Phys.(New York) 239, 216 (1995)

P.G.Reinhard, E.Suraud

On Dissipative Features of the Vlasov Equation. II. Analysis of a Dissipative Pattern

doi: 10.1006/aphy.1995.1033
Citations: PlumX Metrics


1995ZH14      Phys.Rev. C51, 3201 (1995)

F.-S.Zhang, E.Suraud

Analysis of Multifragmentation in a Boltzmann-Langevin Approach

NUCLEAR REACTIONS 40Ca(40Ca, X), E=20-90 MeV/nucleon; calculated intermediate mass fragments, multiplicity distributions; deduced dynamical fluctuations energy dependence. Boltzmann-Langevin equation coupled to the coalescence model.

doi: 10.1103/PhysRevC.51.3201
Citations: PlumX Metrics


1994BO37      Z.Phys. A349, 119 (1994)

D.Boilley, Y.Abe, S.Ayik, E.Suraud

A Bohr-Mottelson Model of Nuclei at Finite Temperature

doi: 10.1007/BF01291169
Citations: PlumX Metrics


1994SU26      Nucl.Phys. A580, 323 (1994)

E.Suraud, S.Ayik, M.Belkacem, F.-S.Zhang

On Transient Effects in Violent Nuclear Collisions

NUCLEAR REACTIONS 12C(12C, X), E=60 MeV/nucleon; calculated ensemble averaged quadrupole moment time evolution, other properties; deduced transient behavior role in particle production σ below threshold. Boltzmann-Langevin model.

doi: 10.1016/0375-9474(94)90777-3
Citations: PlumX Metrics


1993BE01      Phys.Rev. C47, R16 (1993)

M.Belkacem, E.Suraud, S.Ayik

K+ Production Far Below the Free Nucleon-Nucleon Threshold in Heavy-Ion Collisions

NUCLEAR REACTIONS 12C(12C, K+X), E > 200 MeV/nucleon; 42Ca(42Ca, K+X), E=90 MeV/nucleon; calculated inclusive K+ production σ. Boltzmann and Boltzmann-Langevin equations simulations.

doi: 10.1103/PhysRevC.47.R16
Citations: PlumX Metrics


1993BO19      Nucl.Phys. A556, 67 (1993)

D.Boilley, E.Suraud, Y.Abe, S.Ayik

Nuclear Fission with a Langevin Equation

NUCLEAR REACTIONS 205At, 248Cf(n, F), E=thermal; calculated fission rate vs temperature, time. Langevin equation.

doi: 10.1016/0375-9474(93)90238-S
Citations: PlumX Metrics


1993ZH29      Phys.Lett. 319B, 35 (1993)

F.-S.Zhang, E.Suraud

Boltzmann-Langevin Equation, Dynamical Instability, and Multifragmentation

NUCLEAR REACTIONS 40Ca(40Ca, X), E=90 MeV/nucleon; calculated intermediate mass fragment, charged particle multiplicities. Boltzmann-Langevin equation, dynamical fluctuations.

doi: 10.1016/0370-2693(93)90777-F
Citations: PlumX Metrics


1992AY03      Nucl.Phys. A545, 35c (1992)

S.Ayik, E.Suraud, M.Belkacem, D.Boilley

The Boltzmann-Langevin Model for Nuclear Collisions

NUCLEAR REACTIONS 12C(12C, 12C), E=40-100 MeV/nucleon; calculated total quadrupole momentum distribution associated collision rate, diffusion coeffient, mean value, variance time evolutions. 12C(12C, K+X), E ≈ 400-1400 MeV/nucleon; calculated K+ production σ(E). Boltzmann-Langevin model.

doi: 10.1016/0375-9474(92)90444-O
Citations: PlumX Metrics


1992SU10      Nucl.Phys. A542, 141 (1992)

E.Suraud, S.Ayik, M.Belkacem, J.Stryjewski

Applications of Boltzmann-Langevin Equation to Nuclear Collisions

NUCLEAR REACTIONS 12C(12C, X), E=40 MeV/nucleon; calculated quadrupole, octupole moments, momentum distribution mean value time evolution, dispersion. Approximate numerical solutions to Boltzmann-Langevin equations.

doi: 10.1016/0375-9474(92)90403-7
Citations: PlumX Metrics


1991PI04      Nucl.Phys. A524, 537 (1991)

M.Pi, E.Suraud, P.Schuck

Quasi-Fusion of 139La + 12C at Intermediate Energies ( Question ) A study within the Landau-Vlasov approach

NUCLEAR REACTIONS 12C(139La, X), E=50-170 MeV/nucleon; analyzed data; deduced fusion threshold beam energy dependence.

doi: 10.1016/0375-9474(91)90284-D
Citations: PlumX Metrics


1991TO01      Phys.Rev. C43, R1518 (1991)

M.Tohyama, E.Suraud

Weighted Particle Method for Solving the Boltzmann Equation

NUCLEAR STRUCTURE 12C; calculated quadrupole moment time evolution. Weighted particle method, quadrupole motion.

doi: 10.1103/PhysRevC.43.R1518
Citations: PlumX Metrics


1990GA25      Z.Phys. A337, 261 (1990)

F.Garcias, M.Barranco, J.Navarro, E.Suraud

High Temperature Giant Dipole and Isoscalar Resonances

NUCLEAR STRUCTURE 63Cu, 90Zr, 114Sn, 140Ce, 160Er, 208Pb; calculated GDR energy vs temperature. Semi-classical approximation, RPA sum rules.


1989SU05      Nucl.Phys. A492, 294 (1989)

E.Suraud, M.Pi, P.Schuck

Giant Dipole Modes in Heavy-Ion Reactions

NUCLEAR REACTIONS 12C(12Be, 12Be'), 40Ca(16O, 16O'), E=5 MeV/nucleon; calculated dipole mode time evolution.

doi: 10.1016/0375-9474(89)90088-2
Citations: PlumX Metrics


1989SU10      Nucl.Phys. A495, 73c (1989)

E.Suraud, D.Cussol, Ch.Gregoire, D.Boilley, M.Pi, P.Schuck, B.Remaud, F.Sebille

Explosions in Landau Vlasov Dynamics

NUCLEAR REACTIONS 40Ca(40Ca, X), E=20-100 MeV/nucleon; 50Ti(40Ar, X), E=20, 44 MeV/nucleon; 197Au(40Ar, X), E=60 MeV/nucleon; calculated average density time evolution. Landau-Vlasov simulations.

doi: 10.1016/0375-9474(89)90309-6
Citations: PlumX Metrics


1988SU03      Nucl.Phys. A480, 29 (1988)

E.Suraud, M.Barranco, J.Treiner

A Semi-Classical Model for Isoscalar Giant Resonances at Finite Temperatures

NUCLEAR STRUCTURE 56Fe, 208Pb; calculated neutron, proton rms radii. 90Zr, 40Ca, 120Sn, 208Pb; calculated isoscalar giant resonances. Semi-classical model, finite temperatures.

doi: 10.1016/0375-9474(88)90382-X
Citations: PlumX Metrics


1988SU05      Nucl.Phys. A482, 187c (1988)

E.Suraud, M.Pi, P.Schuck

Excitation of Giant Dipole Modes in Heavy-Ion Reactions

NUCLEAR REACTIONS 12C(12Be, X), E=5 MeV/nucleon; calculated GDR excitation strength function. Nonlinearized Vlasov equation.

doi: 10.1016/0375-9474(88)90584-2
Citations: PlumX Metrics


1987SU02      Nucl.Phys. A462, 109 (1987)

E.Suraud

Semi-Classical Calculations of Hot Nuclei

NUCLEAR STRUCTURE 56Fe, 208Pb; calculated neutron, proton density profiles, mean square radii, chemical potentials, total energies; 90Rh; calculated neutron, proton density profiles. 56Fe, 208Pb, Sb, Xe, Ba, Cs, Ce, Nd, Pr, Sm, Gd, Eu, Dy, Er; calculated excitation energies per particle. Bonche-Levit-Vautherin formalism.

doi: 10.1016/0375-9474(87)90382-4
Citations: PlumX Metrics


1987SU19      J.Phys.(Paris), Colloq.C-2, 11 (1987)

E.Suraud, M.Barranco, J.Treiner

A Semi-Classical Description of Giant Resonances at Finite Temperature

NUCLEAR STRUCTURE 90Zr, 120Sn, 208Pb; calculated giant resonance energies vs temperature. Semi-classical model.


1985SU14      Phys.Lett. 164B, 212 (1985)

E.Suraud, P.Schuck, R.W.Hasse

On the Temperature Dependence of the Level Density Parameter

NUCLEAR STRUCTURE 208Pb, 90Zr, 40Ca; calculated level density parameter vs temperature; deduced Bethe formula validity. Self-consistent, semi-classical model.

doi: 10.1016/0370-2693(85)90311-9
Citations: PlumX Metrics


1984SU04      Phys.Lett. 138B, 325 (1984)

E.Suraud, D.Vautherin

Thomas-Fermi Calculations of Hot Dense Matter

NUCLEAR STRUCTURE 208Pb; calculated proton distribution. Thomas-Fermi calculation, finite temperature.

doi: 10.1016/0370-2693(84)91908-7
Citations: PlumX Metrics


Back to query form