NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 26, 2024.

Search: Author = M.Smolen

Found 15 matches.

Back to query form



2022PA09      Phys.Rev. C 105, 034303 (2022)

E.Parr, J.F.Smith, P.T.Greenlees, P.A.Butler, K.Auranen, R.Chapman, D.M.Cox, D.M.Cullen, L.P.Gaffney, T.Grahn, E.T.Gregor, L.Grocutt, A.Herzan, R.-D.Herzberg, D.Hodge, U.Jakobsson, R.Julin, S.Juutinen, J.M.Keatings, J.Konki, M.Leino, P.P.McKee, C.McPeake, D.Mengoni, A.K.Mistry, B.S.Nara Singh, G.G.O'Neill, J.Pakarinen, P.Papadakis, J.Partanen, P.Peura, P.Rahkila, P.Ruotsalainen, M.Sandzelius, J.Saren, M.Scheck, C.Scholey, M.Siciliano, M.Smolen, J.Sorri, P.Spagnoletti, K.M.Spohr, S.Stolze, M.J.Taylor, J.Uusitalo

Single-particle states and parity doublets in odd-Z 221Ac and 225Pa from α-decay spectroscopy

RADIOACTIVITY 225Pa, 221Ac(α)[225Pa from 208Pb(20Ne, 2np), E=105 MeV, 221Ac from 208Pb(18O, 4np), E=95 MeV, 208Pb(20Ne, 2npα), E=105 MeV and 225Pa α decay]; 217Fr(α)[from 221Ac α decay]; 213At(α)[from 217Fr α decay]; measured reaction products, Eα, Iα, Eγ, Iγ, αγ-coin, summed α+ce(K); deduced T1/2 decays of ground states of 225Pa, 221Ac, 217Fr, 213At. 221Ac, 217Fr; deduced levels, J, π, α- and γ-branching ratios, total conversion coefficients, multipolarities, α-hindrance factors, configurations, parity-doublet states in 221Ac. 225Pa; deduced ground state J, π. Comparison with previous experimental data, and with model predictions. RITU gas-filled recoil separator, silicon strip detectors (DSSD) for ion implantation measurements and GREAT spectrometer combined with 3 HPGe clover detectors at the University of Jyvaskyla accelerator facility.

doi: 10.1103/PhysRevC.105.034303
Citations: PlumX Metrics


2020OD01      J.Phys.(London) G47, 095103 (2020)

D.O'Donnell, R.D.Page, T.Grahn, F.A.Ali, K.Auranen, L .Capponi, R.J.Carroll, M.M.R.Chishti, M.C.Drummond, P.T.Greenlees, J.Henderson, A.Herzan, U.Jakobsson, D.T.Joss, R.Julin, S.Juutinen, J.Konki, M.Labiche, M.Leino, P.J.R.Mason, C.G.McPeake, J.Pakarinen, P.Papadakis, J.Partanen, P.Peura, P.Rahkila, J.Revill, P.Ruotsalainen, M.Sandzelius, J.Saren, B.Saygi, C.Scholey, J.Simpson, J.F.Smith, M.Smolen, J.Sorri, S.Stolze, C.M.Sullivan, A.Thornthwaite, J.Uusitalo, A.Kumar, P.C.Srivastava

High-spin states of 218Th

NUCLEAR REACTIONS 174Yb(48Ca, 4n), E=207 MeV; measured reaction products, Eγ, Iγ; deduced γ-ray energies and intensities, angular anisotropy ratios, J, π, level scheme, high-spin states. Comparison with theoretical calculations.

doi: 10.1088/1361-6471/aba16c
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2020PA44      Phys.Rev. C 102, 054335 (2020)

E.Parr, J.F.Smith, P.T.Greenlees, K.Auranen, R.Chapman, D.M.Cullen, T.Grahn, L.Grocutt, A.Herzan, R.-D.Herzberg, D.Hodge, U.Jakobsson, R.Julin, S.Juutinen, J.Konki, C.McPeake, D.Mengoni, A.K.Mistry, K.F.Mulholland, G.G.O'Neill, J.Pakarinen, P.Papadakis, J.Partanen, P.Peura, P.Rahkila, P.Ruotsalainen, M.Sandzelius, J.Saren, M.Scheck, C.Scholey, M.Siciliano, M.Smolen, J.Sorri, S.Stolze, M.J.Taylor, J.Uusitalo

Excited states in 217Ra populated in the α decay of 221Th

RADIOACTIVITY 221Th(α)[from 208Pb(18O, 5n), E=95 MeV at the University of Jyvaskyla Accelerator Laboratory]; measured Eα, Iα, Eγ, Iγ, αγ- and γγ-coin, ce, x rays, half-life of 221Th decay using SAGE and GREAT spectrometers, the latter consisting of double-sided silicon-strip detectors (DSSDs), PIN-diode detectors, and Clover HPGe detectors. 217Ra; deduced levels, J, π, conversion coefficients, multipolarities, α-branching ratios, α-hindrance factors, configurations. Comparison with previous experimental results, and with predictions of spherical shell and reflection-asymmetric models. Systematics of low-energy states in odd-A, N=129 isotones: 211Pb, 213Po, 215Rn, 217Ra and 219Th.

doi: 10.1103/PhysRevC.102.054335
Citations: PlumX Metrics


2019GA29      Phys.Rev. C 100, 044309 (2019)

E.R.Gamba, A.M.Bruce, S.Lalkovski, M.Rudigier, S.Bottoni, M.P.Carpenter, S.Zhu, J.T.Anderson, A.D.Ayangeakaa, T.A.Berry, I.Burrows, M.Carmona-Gallardo, R.J.Carroll, P.Copp, D.M.Cullen, T.Daniel, G.Fernandez-Martinez, J.P.Greene, L.A.Gurgi, D.J.Hartley, R.Ilieva, S.Ilieva, F.G.Kondev, T.Kroll, G.J.Lane, T.Lauritsen, I.Lazarus, G.Lotay, C.R.Nita, Zs.Podolyak, V.Pucknell, M.Reed, P.H.Regan, J.Rohrer, J.Sethi, D.Seweryniak, C.M.Shand, J.Simpson, M.Smolen, E.A.Stefanova, V.Vedia, O.Yordanov

Fast-timing measurements in the ground-state band of 114Pd

RADIOACTIVITY 252Cf(SF); measured Eγ, Iγ, γγ-coin, level half-lives by fast-timing γγ(t) technique using Gammasphere array with 51 HPGe detectors, and FATIMA array with 25 LaBr3(Ce) detectors at the Argonne National Laboratory. 114Pd; deduced levels, J, π, half-lives for the first 2+, 4+ and 6+ states, B(E2), transition quadrupole moments, β2. Comparison of experimental B(E2) values with those predicted by the vibrator, rigid axial rotor, Wilets-Jean and Davydov-Filippov models. Systematics of B(E2) values for the first 2+ state in Z=44-48, N=56-74 even-even nuclei.

doi: 10.1103/PhysRevC.100.044309
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2019PA27      Phys.Rev. C 99, 054307 (2019)

E.Parr, R.D.Page, D.T.Joss, F.A.Ali, K.Auranen, L.Capponi, T.Grahn, P.T.Greenlees, J.Henderson, A.Herzan, U.Jakobsson, R.Julin, S.Juutinen, J.Konki, M.Labiche, M.Leino, P.J.R.Mason, C.McPeake, D.O'Donnell, J.Pakarinen, P.Papadakis, J.Partanen, P.Peura, P.Rahkila, J.P.Revill, P.Ruotsalainen, M.Sandzelius, J.Saren, C.Scholey, J.Simpson, J.F.Smith, M.Smolen, J.Sorri, S.Stolze, A.Thornthwaite, J.Uusitalo

Fine structure in the α decay of 156Lu and 158Ta

RADIOACTIVITY 156mLu, 158mTa(α)[from 106Cd(58Ni, X), E=318 MeV using RITU separator and GREAT spectrometer at the accelerator laboratory of the University of Jyvaskyla]; measured Eα, Iα, Eγ, Iγ, αγ-coin using HPGe and planar Ge strip detectors for γ detection, and double-sided silicon strip detectors and silicon PIN diode detectors for α detection; deduced fine structure in the α decay of high-spin isomers in 156Lu and 158Ta. 152Tm, 154Lu; deduced levels, J, π, α-branching ratios, α-reduced decay widths, and α-hindrance factors, configurations. 152mHo, 154mTm, 156mLu, 158mTa(α); systematics of α-decay hindrance factors, and excitation energies, Jπ values and configurations in daughter nuclides of 148Tb, 150Ho, 152Tm, 154Lu. 152Er, 153Tm, 154,155Yb, 155Lu, 157,158Hf, 157Ta, 159,160W(α); measured (ER)α correlated spectra.

doi: 10.1103/PhysRevC.99.054307
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2019PA45      Phys.Rev. C 100, 044323 (2019)

E.Parr, J.F.Smith, P.T.Greenlees, K.Auranen, P.A.Butler, R.Chapman, D.M.Cox, D.M.Cullen, L.P.Gaffney, T.Grahn, E.T.Gregor, L.Grocutt, A.Herzan, R.-D.Herzberg, D.Hodge, U.Jakobsson, R.Julin, S.Juutinen, J.Keatings, J.Konki, M.Leino, P.P.McKee, C.McPeake, D.Mengoni, A.K.Mistry, K.F.Mulholland, B.S.Nara Singh, G.G.O'Neill, J.Pakarinen, P.Papadakis, J.Partanen, P.Peura, P.Rahkila, P.Ruotsalainen, M.Sandzelius, J.Saren, M.Scheck, C.Scholey, M.Siciliano, M.Smolen, J.Sorri, P.Spagnoletti, K.M.Spohr, S.Stolze, M.J.Taylor, J.Uusitalo

α-decay spectroscopy of the N=130 isotones 218Ra and 220Th: Mitigation of α-particle energy summing with implanted nuclei

RADIOACTIVITY 218Ra(α)[from α-decay of 222Th formed in 208Pb(18O, 4n), E=95 MeV]; 214Rn(α)[from α-decay of 218Ra]; 220Th(α)[from α-decay of 224U formed in 208Pb(20Ne, 4n), E=109 MeV]; 216Ra(α)[from α-decay of 220Th]; measured recoiling evaporation residues using RITU gas-filled recoil separator, Eα, Iα, Eγ, Iγ, αγ-coin, half-lives of decays of 218Ra, 214Rn, 220Th and 216Ra, α-branching ratio for decay to the g.s. and the first 2+ level in 214Rn using the GREAT spectrometer at Jyvaskyla accelerator facility; data analyzed using a newly developed technique to mitigate energy summing due to sequential short-lived α decays from nuclei implanted into a silicon detector. 214Rn; deduced 2+ level, α-hindrance factor. Comparison with previous experimental data.

doi: 10.1103/PhysRevC.100.044323
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2018GA23      Acta Phys.Pol. B49, 555 (2018)

E.R.Gamba, A.M.Bruce, M.Rudigier, S.Lalkovski, S.Bottoni, M.P.Carpenter, S.Zhu, A.D.Ayangeakaa, J.T.Anderson, T.A.Berry, I.Burrows, R.J.Carrol, P.Copp, M.Carmona-Gallardo, D.M.Cullen, T.Daniel, G.Fernandez-Martinez, J.P.Greene, L.A.Gurgi, D.J.Hartley, R.Ilieva, S.Ilieva, R.V.F.Janssens, F.G.Kondev, T.Kroll, G.J.Lane, T.Lauritsen, I.Lazarus, G.Lotay, C.R.Nita, Zs.Podolyak, V.Pucknell, M.Reed, P.H.Regan, J.Rohrer, J.Sethi, D.Seweryniak, C.M.Shand, J.Simpson, M.Smolen, V.Vedia, E.A.Stefanova, O.Yordanov

Fast-timing Measurements in 100Zr Using LaBr3(Ce) Detectors Coupled with Gammasphere

RADIOACTIVITY 252Cf(SF); measured 100Zr fission fragment 4+ state Eγ, Iγ, T1/2, fission partners fragments using Digital Gammasphere (DGS) acquisition with hybrid detector made of 51 HPGe from Gammasphere and 25 LaBr3(Ce) scintillators (part of UK NuSTAR Collaboration); deduced first excited state T1/2, deformation, quadrupole moment, B(E2), LaBr3(Ce) γ-γ matrix, DGS γ-γ matrix, centroid difference between delayed and anti-delayed time distributions. Results preliminary, the main aim was the feasibility study.

doi: 10.5506/aphyspolb.49.555
Citations: PlumX Metrics


2018GI11      Phys.Rev. C 98, 044315 (2018)

M.M.Giles, D.M.Cullen, B.S.Nara Singh, D.Hodge, M.J.Taylor, M.J.Mallaburn, N.V.Sosnin, L.Barber, J.F.Smith, L.Capponi, M.Smolen, C.Scholey, P.Rahkila, T.Grahn, H.Badran, A.Girka, P.T.Greenlees, R.Julin, J.Konki, O.Nefodov, P.Ruotsalainen, M.Sandzelius, J.Saren, J.Sorri, S.Stolze, J.Uusitalo, J.Pakarinen, P.Papadakis, J.Partanen, T.Braunroth, G.G.O'Neill

Lifetime measurements of lowest states in the in the νg7/2 (X) νh11/2 rotational band in 112I

NUCLEAR REACTIONS 58Ni(58Ni, n3p), E=230 MeV; measured recoils, Eγ, Iγ, γγ-coin, level half-lives using a differential plunger device, and differential decay curve analysis using RITU for recoil separation, JUROGAM-II array for γ detection, and double-sided silicon strip detector for recoils at the K130 cyclotron facility of the University of Jyvaskyla. 112I; deduced high-spin levels, J, π, alignments, configurations. Comparison with previous experimental values.

doi: 10.1103/PhysRevC.98.044315
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2018KO05      Phys.Rev. C 97, 024306 (2018)

J.Konki, B.Sulignano, P.T.Greenlees, Ch.Theisen, K.Auranen, H.Badran, R.Briselet, D.M.Cox, F.Defranchi Bisso, J.Dobaczewski, T.Grahn, A.Herzan, R.-D.Herzberg, R.Julin, S.Juutinen, J.Khuyagbaatar, M.Leino, A.Lightfoot, J.Pakarinen, P.Papadakis, J.Partanen, P.Rahkila, M.Sandzelius, J.Saren, C.Scholey, Y.Shi, M.Smolen, J.Sorri, S.Stolze, J.Uusitalo

In-beam spectroscopic study of 244Cf

NUCLEAR REACTIONS 198Pt(48Ca, 2n), (48Ca, 3n), E=207, 208, 211, 213 MeV; measured evaporation residues and σ for 2n and 3n channels by TOF and ΔE, excitation functions, Eγ, Iγ, γγ-coin, Eα, Iα, recoil-α, and recoil-α-γ correlated events, using RITU separator, GREAT spectrometer, JUROGAM-II array of 24 clover-type and 15 either Phase-I- or GASP-type Compton-suppressed Ge detectors at the K=130 MeV cyclotron facility of University of Jyvaskyla. Recoil-decay tagging method. 244Cf; deduced high-spin levels, J, π, yrast rotational band up to (20+), moment of inertia plots, Harris expansion used to deduce energies of the first 2+ and 4+ states. Comparison with available calculations. Systematics of yrast levels and moment of inertia in 238U, 240Pu, 242Cm, 244Cf and 246Fm.

RADIOACTIVITY 243,244Cf(α)[from 198Pt(48Ca, 2n), (48Ca, 3n), E=207, 208, 211, 213 MeV]; measured Eα, Iα, (recoil)α-coin, half-lives of ground states of 243Cf and 244Cf; deduced branching ratio for α-decay mode of 244Cf. Comparison with earlier experimental values.

doi: 10.1103/PhysRevC.97.024306
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2018LE10      Phys.Rev. C 98, 024302 (2018)

M.C.Lewis, E.Parr, R.D.Page, C.McPeake, D.T.Joss, F.A.Ali, K.Auranen, A.D.Briscoe, L.Capponi, T.Grahn, P.T.Greenlees, J.Henderson, A.Herzan, U.Jakobsson, R.Julin, S.Juutinen, J.Konki, M.Labiche, M.Leino, P.J.R.Mason, M.Nyman, D.O'Donnell, J.Pakarinen, P.Papadakis, J.Partanen, P.Peura, P.Rahkila, J.P.Revill, P.Ruotsalainen, M.Sandzelius, J.Saren, B.Saygi, C.Scholey, J.Simpson, J.F.Smith, M.Smolen, J.Sorri, S.Stolze, A.Thornthwaite, J.Uusitalo

Decay of a 19- isomeric state in 156Lu

NUCLEAR REACTIONS 106Cd(58Ni, n3pα), E=318 MeV; measured Eγ, Iγ γγ-coin, delayed γ rays, and (implants)γα correlations, half-life of a 19- isomer by γγ(t) using RITU separator and GREAT spectrometer at Jyvaskyla. 156Lu; deduced levels, J, π, multipolarity, configurations, B(M2), and B(E3). Systematics of 9+, 10+, and 19- states in even-A N=85 isotones 150Tb, 152Ho, 154Tm, 156Lu, 158Ta, 160Re.

doi: 10.1103/PhysRevC.98.024302
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2018PA37      Phys.Rev. C 98, 024321 (2018)

E.Parr, R.D.Page, D.T.Joss, F.A.Ali, K.Auranen, L.Capponi, T.Grahn, P.T.Greenlees, J.Henderson, A.Herzan, U.Jakobsson, R.Julin, S.Juutinen, J.Konki, M.Labiche, M.Leino, P.J.R.Mason, C.McPeake, D.O'Donnell, J.Pakarinen, P.Papadakis, J.Partanen, P.Peura, P.Rahkila, J.P.Revill, P.Ruotsalainen, M.Sandzelius, J.Saren, C.Scholey, J.Simpson, J.F.Smith, M.Smolen, J.Sorri, S.Stolze, A.Thornthwaite, J.Uusitalo

Fine structure in the α decay of high-spin isomers in 155Lu and 156Hf

RADIOACTIVITY 155,155mLu, 156Hf(α)[from 106Cd(58Ni, X), E=318 MeV, followed by separation of fusion reaction products using RITU gas-filled recoil separator at JYFL-Jyvaskyla]; measured Eα, Iα, Eγ, Iγ, x-rays, αγ-coin using an array of HPGe detectors for γ and x-ray detection, double-sided silicon-strip detectors (DSSDs) for particle detection using GREAT spectrometer at Jyvaskyla. 151Tm, 152Yb; deduced levels, J, π, α branching ratios, reduced decay widths, hindrance factors and Q(α) values, configurations.

doi: 10.1103/PhysRevC.98.024321
Citations: PlumX Metrics


2017RU02      Acta Phys.Pol. B48, 351 (2017)

M.Rudigier, S.Lalkovski, E.R.Gamba, A.M.Bruce, Zs.Podolyak, P.H.Regan, M.Carpenter, S.Zhu, A.D.Ayangeakaa, J.T.Anderson, T.Berry, S.Bottoni, I.Burrows, R.Carroll, P.Copp, D.Cullen, T.Daniel, L.Fraile, M.Carmona-Gallardo, A.Grant, J.P.Greene, L.A.Guegi, D.Hartley, R.Ilieva, S.Ilieva, R.V.F.Janssens, F.G.Kondev, T.Kroll, G.J.Lane, T.Lauritsen, I.Lazarus, G.Lotay, G.Fernandez-Martinez, V.Pucknell, M.Reed, J.Rohrer, J.Sethi, D.Seweryniak, C.M.Shand, J.Simpson, M.Smolen, E.Stefanova, V.Vedia, O.Yordanov

Fast Timing Measurement Using an LaBr3(Ce) Scintillator Detector Array Coupled with Gammasphere

doi: 10.5506/APhysPolB.48.351
Citations: PlumX Metrics


2016HO16      Phys.Rev. C 94, 034321 (2016)

D.Hodge, D.M.Cullen, M.J.Taylor, B.S.Nara Singh, L.S.Ferreira, E.Maglione, J.F.Smith, C.Scholey, P.Rahkila, T.Grahn, T.Braunroth, H.Badran, L.Capponi, A.Girka, P.T.Greenlees, R.Julin, J.Konki, M.Mallaburn, O.Nefodov, G.G.O'Neill, J.Pakarinen, P.Papadakis, J.Partanen, P.Ruotsalainen, M.Sandzelius, J.Saren, M.Smolen, J.Sorri, S.Stolze, J.Uusitalo

Deformation of the proton emitter 113CS from electromagnetic transition and proton-emission rates

NUCLEAR REACTIONS 58Ni(58Ni, 2np), E=230 MeV; measured Eγ, Iγ, proton-tagged γ spectra, Ep, Ip, half-life of 113Cs proton decay, level half-lives by recoil-decay-tagged differential-plunger combined with differential decay curve method (DDCM) using RITU separator, JUROGAM-II array and GREAT spectrometer at Jyvaskyla K130 cyclotron facility. Recoil-decay tagging method. 113Cs; deduced levels, J, B(E2), deformation of the proton-emitting ground state. Nonadiabatic quasiparticle model calculations.

doi: 10.1103/PhysRevC.94.034321
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2016PA28      Phys.Rev. C 94, 014307 (2016)

E.Parr, J.F.Smith, P.T.Greenlees, M.Smolen, P.Papadakis, K.Auranen, R.Chapman, D.M.Cullen, T.Grahn, L.Grocutt, A.Herzan, R.-D.Herzberg, D.Hodge, U.Jakobsson, R.Julin, S.Juutinen, J.Konki, M.Leino, C.McPeake, D.Mengoni, A.K.Mistry, K.F.Mulholland, G.G.O'Neill, J.Pakarinen, J.Partanen, P.Peura, P.Rahkila, P.Ruotsalainen, M.Sandzelius, J.Saren, M.Scheck, C.Scholey, J.Sorri, S.Stolze, M.J.Taylor, J.Uusitalo

Identification of the Jπ = 1- state in 218Ra populated via α decay of 222Th

RADIOACTIVITY 222Th(α)[from 208Pb(18O, 4n), E=95 MeV using RITU separator at Jyvaskyla accelerator facility]; measured Eγ, Iγ, Eα, Iα, x rays, αγ-coin, (recoil)α and (recoil)αα correlations, half-life of 222Th decay using two double-sided silicon-strip detectors (DSSDs) for particles and HPGe clover detectors for γ rays. 218Ra; deduced levels, J, π, 1- state, α branching ratios, α hindrance factors. 213Rn, 219Ra, 221Th(α); observed αγ-coin. Systematics of level energies and α hindrance factors for 1- and 3- states in 218,220,222Rn, 218,220,222,224,226,228Ra, 224,226,228,230,232Th. Comparison with previous experimental results.

doi: 10.1103/PhysRevC.94.014307
Citations: PlumX Metrics


2016RO02      Phys.Rev. C 93, 014309 (2016)

O.J.Roberts, C.R.Nita, A.M.Bruce, N.Marginean, D.Bucurescu, D.Deleanu, D.Filipescu, N.M.Florea, I.Gheorghe, D.Ghita, T.Glodariu, R.Lica, R.Marginean, C.Mihai, A.Negret, T.Sava, L.Stroe, R.Suvaila, S.Toma, T.Alharbi, T.Alexander, S.Aydin, B.A.Brown, F.Browne, R.J.Carroll, K.Mulholland, Zs.Podolyak, P.H.Regan, J.F.Smith, M.Smolen, C.M.Townsley

E3 and M2 transition strengths in 20983Bi

NUCLEAR REACTIONS 208Pb(7Li, 2nα), E=32 MeV; measured Eγ, Iγ, γγ-coin, level half-lives by γγ(t) fast timing technique, γ(θ) using RoSPHERE array at NIPNE, Bucharest accelerator facility. 209Bi; deduced levels, J, π, multipolarity, E3/M2 mixing ratio, B(M2), B(E3). Comparison of transition rates with theoretical calculations using shell model and theory of finite Fermi systems (FFS).

doi: 10.1103/PhysRevC.93.014309
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


Back to query form