ADOPTED LEVELS, GAMMAS for 86Kr

Authors: A. Negret and B. Singh |  Citation: Nucl. Data Sheets 203, 283 (2025) |  Cutoff date: 20-Jan-2025 

 Full ENSDF file | Adopted Levels (PDF version) 


Q(β-)=-518.67 keV 20S(n)= 9856.7 keV 20S(p)= 11979 keV 3Q(α)= -8096.7 keV 5
Reference: 2021WA16

References:
  A  86Br β- decay (55.1 S)  B  86Rb ε decay (18.671 d)
  C  87Br β-n decay (55.65 S)  D  82Se(7Li,p2nγ)
  E  84Kr(t,p)  F  86Kr(γ,γ’)
  G  86Kr(n,n’γ)  H  86Kr(p,p’)
  I  86Kr(d,d’)  J  Coulomb Excitation
  K  87Rb(d,3He)  L  87Rb(t,α)
  M  208Pb(18O,Fγ) 

General Comments:

86Kr isotope identified in mass spectroscopic studies by 1920As01, 1920As03, 1921As01, 1921As05, 1923As04, 1925As02, 1930As04, and 1933Ba02.

Other reaction:

86Kr(n,n) E|<1 MeV: 1989Jo01: analyzed σ(E) to deduce optical model parameter.

Mean square charge radius and isotopic shift: 2000Ga58, 1995Ke04, 1992Sc19, 1990Sc30, 1990Ca26, 1989Tr04, 1981Ge06, 1977Ge05

Mass measurements: 1978Di09

Theoretical nuclear structure calculations:

2023Zh37: calculated g.s. proprieties (binding energy, deformation, charge radius) for Kr and Sr isotopes within the deformed relativistic Hartree-Bogoliubov theory.

2022Ka19: calculated triaxial quadrupole potential energy surfaces, energies and collective wave functions contours in (β,γ) planes for the low-lying positive-parity states, ratios of level energies, B(E2), properties of E0 transitions, fluctuations of β and γ deformations using triaxial quadrupole constrained self-consistent mean-field (SCMF) theory with DD-ME2 and DD-PC1 relativistic energy density functionals and pairing interaction.

2018No06, 2017No08: calculated deformation energy surfaces in (β,γ) plane, levels, Jπ, excited 0+ stated, B(E2) and spectroscopic quadrupole moments of the first 2+ states using interacting boson-fermion model (IBFM) with Gogny-D1M energy density functional.

2017Ab09: calculated potential energy surfaces (PES) in (β2,γ) planes using triaxial relativistic-Hartree-Bogoliubov (RHB) formalism with DD-PC1 and DD-ME2 parameter sets, binding energy, neutron and proton radii, rms charge radii, S(2n) using relativistic Hartree-Bogoliubov formalism with density-dependent zero and finite range NN interactions, and separable pairing force.

2016Ur04: calculated levels, Jπ, occupation of neutron and proton orbitals using large-scale shell-model with the coupled-scheme code NATHAN, in valence space outside the inert 78Ni core: π1f5/2, π2p3/2, π2p1/2, and π1g9/2 proton orbitals; and ν2d5/2, ν3s1/2, ν1g7/2, ν2d3/2, and ν1h11/2 neutron orbitals.

2014Ro21: calculated potential energy surfaces contours in (β2,γ) plane, neutron single-particle energies as function of β2 parameter, wave function contours for low-lying 0+ and 2+ levels in (β2,γ) plane, positive-parity levels up to 8+, quasi γ bands, B(E2), ρ2(E0), quadrupole moments, g factors, shape transitions and shape coexistence using self-consistent beyond-mean-field, symmetry-conserving configuration mixing (SCCM) methods with Gogny D1S interaction.

2014Za10: calculated orbital and spin g factors of the first 2+ and 4+ states by surface delta interaction (SDI) approach, and large-scale shell model wave functions for 2+ and 4+ states.

2013Fu06: calculated levels, Jπ, energy surface contours in β-γ plane, B(E2), ρ2(E0), quadrupole deformation, oblate-triaxial-prolate transition, shape coexistence, configuration mixing, angular momentum projection using beyond relativistic mean-field (RMF) theory with α(p)-PK1 force.

2012Si08: calculated levels, Jπ, monopole effects using shell-model in a large model space of pf for protons, and fpgd for neutrons.

2006Ka39: calculated levels, Jπ, B(E2), configurations, shell closure features using shell-model and mean-field method.

2003Me26: calculated 2+ energy, g factors, pair gaps, deformation, B(E2) using interacting boson model, pairing-corrected collective model, and shell model.

1995La07: calculated binding energy, rms charge, neutron radii, isotope shifts, neutron skin thickness, shape coexistence, quadrupole deformation using relativistic mean field theory.

1995Re19: calculated levels, Jπ, B(|l) using shell model.

1992Si14: calculated levels, Jπ, B(|l) using shell model.

1989Ji06, 1988Ji04, 1988Xi01: calculated levels, binding energy, single nucleon transfer spectroscopic factors using shell model.

1987Ha21: calculated levels, Jπ, quadrupole moments, B(|l), potential energy surfaces using interacting boson model.

1982Ah06: calculated yrast band B(E2), quadrupole moments using projected Hartree-Fock method with Kuo-Brown interaction.

1982Br01: calculated levels, Jπ, B(E2), two-nucleon transfer probabilities using nuclear field theory (NFT) version of the pair aligned model.

1981Bu06: calculated potential energy surfaces, shape phase transition, shell and pairing effect microscopic corrections using macroscopic approach.

There are other theory references for structure and for double-beta decay of 86Kr in the NSR database that are listed as ’document records’ in this dataset.

Q-value: S(2n)=16968.97 1, S(2p)=21895.9 20, Q(2β-)=1257.42 1 (2021Wa16)










E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
      0.0ABCDEFGHIJKLM 0+ STABLE      
   1564.722 31 A  DEFGHIJKLM 2+ 0.234 ps 14     1564.75 5 
   100
E2
      0.0
0+
   2250.37 5 A  DE GHIJKLM 4+ 3.1 ns 6      685.58 5 
   100
E2
   1564.722
2+
   2349.679 32 A   EFGHIJKL  2+ 182 fs 15      784.98 5 
   2349.59 5 
    53 8 
   100
M1+E2
[E2]
   1564.722
      0.0
2+
0+
   2726.6 4 A   E GH  KL  0+       376.8
   1162.0
    70 6 
   100


   2349.679
   1564.722
2+
2+
   2850.98 4 A     GHI KL  2+       501.40 6 
   1286.25 5 
    23.1 22 
   100 5 
(M1+E2)
M1+E2
   2349.679
   1564.722
2+
2+
   2917.32 5 A     G    L  (2+,3+)       666.84 6 
   1352.4 2 
   100
    25 4 


   2250.37
   1564.722
4+
2+
   2926.313 34 A     GH  K   1+       576.45 8 
   1361.62 5 
   2926.28 5 
     5.2 9 
   100 6 
    14.7 17 

M1+E2

   2349.679
   1564.722
      0.0
2+
2+
0+
   3009.65 6 A     GH   L  (2)+       659.97 6 
   3009.50 15 
    75 6 
   100


   2349.679
      0.0
2+
0+
   3099.06 4 A   E GHIJ L  3- 51 fs 23      749.3 1 
   1534.39 5 
     2.2 11 
   100 5 
[E1]
E1(+M2)
   2349.679
   1564.722
2+
2+
   3328.2 5       GH   L  (4+,3+)      1763.5
   100

   1564.722
2+
   3335.11 15 A             (2+)      1084.9 2 
   1770.2 2 
    80 20 
   100 41 


   2250.37
   1564.722
4+
2+
   3541.5 4 A   E GH   L  0+      1191.6
   1976.9
   100
    50 8 


   2349.679
   1564.722
2+
2+
   3583.6 5       GH      (0+:4+)      2018.8
   100

   1564.722
2+
   3783.30 17 A    F H   L  (1+,2+)      2218.8 3 
   3783.1 2 
    74 25 
   100 25 


   1564.722
      0.0
2+
0+
   3816.68 17    D  GH    M (5+)      1566.3 2 
   100

   2250.37
4+
   3832 10     E  H      0+        
   3935.51 24    D  GH    M (5-)      1685.1 3 
   100

   2250.37
4+
   3959 10     E      L  (3-,4+)        
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
   4038.5 3      F             4038.5 3 
   100

      0.0
0+
   4039.39 9 A      H   L  (3-)      1689.7 2 
   4039.3 2 
   100 41 
    40 20 

[E3]
   2349.679
      0.0
2+
0+
   4064.48 17    D  G     M (6+)       247.8 3 
   1814.1 2 
    38
   100

(Q)
   3816.68
   2250.37
(5+)
4+
   4072 10     E  H      (5-)        
   4111 10     E         2+        
   4175 20        H   L  (4+)        
   4194 10     E      L  2+        
   4277 10        H   L  (7+)        
   4316.183 34 A   E  H      2-       276.8 1 
   1217.17 5 
   1306.5 1 
   1389.84 5 
   1398.77 5 
   1465.25 5 
   1966.50 5 
   2751.38 5 
   4316.1 1 
     3.7 11 
    47.9 27 
     3.7 11 
    64.4 33 
     4.3 11 
    48.8 27 
    33.0 23 
   100.0 36 
     2.7 11 

(M1+E2)

(E1(+M2))

(E1(+M2))
E1(+M2)
E1(+M2)
[M2]
   4039.39
   3099.06
   3009.65
   2926.313
   2917.32
   2850.98
   2349.679
   1564.722
      0.0
(3-)
3-
(2)+
1+
(2+,3+)
2+
2+
2+
0+
   4359.7 4 A             (0+,1,2)      2010.0 4 
   100

   2349.679
2+
   4399 20        H      (4+)        
   4400.82 10      F        1      4400.7 1 
   100
D
      0.0
0+
   4430.88 23    D        M (6-)       495.3 4 
    614.2 3 
    42
   100
D+Q

   3935.51
   3816.68
(5-)
(5+)
   4559 20        H      (4+)        
   4668 10     E  H      (3-,4+)        
   4693.67 25    D        M (7-)       262.8 3 
    629.3 4 
    758.2 4 
   100
    76
   ≈32
D
D

   4430.88
   4064.48
   3935.51
(6-)
(6+)
(5-)
   4717.71 30 A   E  H      (0+,1,2)      2368.0 3 
   100

   2349.679
2+
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
   4756.13 23    D        M (7+)       325.3 4 
    691.6 2 
    20
   100
D+Q
D+Q
   4430.88
   4064.48
(6-)
(6+)
   4820 12     E  H      (2+)        
   4867.6 6      F        1(-)      4867.4 6 
   100
(E1)
      0.0
0+
   4928 20        H      (4+)        
   4932.55 20      F        (1,2+)      4932.4 2 
   100

      0.0
0+
   4948 10     E         (2+)        
   4991 10     E                
   5070       H             
   5127 20        H             
   5203 20        H             
   5269.47 9 A             (1-,2)      2170.1 2 
   2418.6 1 
   3704.4 2 
    45 23 
   100 11 
    22 11 



   3099.06
   2850.98
   1564.722
3-
2+
2+
   5323.40 10 A      H      (2-)      2973.2 2 
   3758.7 1 
    84 17 
   100 17 

D(+Q)
   2349.679
   1564.722
2+
2+
   5397.72 10 A      H      (1-,2)      2298.8 2 
   2388.0 2 
   2471.3 2 
   2480.3 2 
   3832.9 2 
    20 20 
   100 41 
    80 20 
    59 20 
    59 20 





   3099.06
   3009.65
   2926.313
   2917.32
   1564.722
3-
(2)+
1+
(2+,3+)
2+
   5405.98 25 A      H      (1,2)      5405.80 25 
   100

      0.0
0+
   5438 10     E                
   5496 10     E                
   5517.80 16 A    F        1-      3953.0 2 
   5517.58 25 
     5.5 28 
   100 5 

E1
   1564.722
      0.0
2+
0+
   5571.2 12      F H      1      5571.0 12 
   100
D
      0.0
0+
   5590.64 20 A             (0+,1,2)      3240.9 2 
   100

   2349.679
2+
   5637 10 ?    E                
   5653.45 11 A             (0+,1,2)      3303.7 1 
   100

   2349.679
2+
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
   5660.64 28    D        M (8+)       904.4 4 
    967.0 4 
   1596.2 4 
    63
   100
    88
D+Q
D

   4756.13
   4693.67
   4064.48
(7+)
(7-)
(6+)
   5669.6 4    D        M (8-)      1238.6 4 
   100
Q
   4430.88
(6-)
   5707 10     E                
   5788.41 30      F        (1)      5788.2 3 
   100
(D)
      0.0
0+
   5800 10     E  H             
   5814.83 31    D        M (9+)       154.2 3 
   1058.7 3 
   100
    63
D
Q
   5660.64
   4756.13
(8+)
(7+)
   5862 10     E  H             
   5923.46 20 A      H      (2-)      3573.7 2 
   100

   2349.679
2+
   5924.3 4      F H      1-      5924.1 4 
   100
E1
      0.0
0+
   5981 10     E                
   6047.47 20 A             (0,1,2)      3121.1 2 
   100

   2926.313
1+
   6085.4 5    D        M (9-)       415 1 
   1391.8 4 
 
   100


   5669.6
   4693.67
(8-)
(7-)
   6089.1 5 A             (1,2)      6088.9 5 
   100

      0.0
0+
   6094.08 20 A             (0,1,2)      3167.7 2 
   100

   2926.313
1+
   6118 10     E                
   6141.51 17 A             (1-,2)      3042.3 3 
   4576.7 2 
    67 33 
   100 33 


   3099.06
   1564.722
3-
2+
   6160.34 20 A    F        1-      6160.1 2 
   100
E1
      0.0
0+
   6211.84 30 A   EF        1      6211.6 3 
   100
D
      0.0
0+
   6248.4 4    D        M (10)       433.5 2 
   100
D
   5814.83
(9+)
   6328.85 30     EF        1-      6328.6 3 
   100
E1
      0.0
0+
   6397 10     E                
   6432.16 20      F        1-      6431.9 2 
   100
E1
      0.0
0+
   6450.01 12 A             (2)      3523.8 2 
   3598.8 2 
   4885.12 21 
    16 8 
    24 8 
   100 5 


D(+Q)
   2926.313
   2850.98
   1564.722
1+
2+
2+
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
   6463.16 30      F        1-      6462.9 3 
   100
E1
      0.0
0+
   6531.97 20      F        1-      6531.7 2 
   100
E1
      0.0
0+
   6678.9 5      F        1      6678.6 5 
   100
D
      0.0
0+
   6720.5 6 A             (1,2)      6720.2 6 
   100

      0.0
0+
   6768.29 30 A             (1,2)      6768.0 3 
   100

      0.0
0+
   6818.6 4      F        1-      6818.3 4 
   100
E1
      0.0
0+
   7028.4 4      F        1-      7028.1 4 
   100
E1
      0.0
0+
   7128.5 4    D          (10)       880.0 4 
   1313.7 4 
  ≈143
   100

D
   6248.4
   5814.83
(10)
(9+)
   7234.6 4      F        (1)      7234.3 4 
   100
(D)
      0.0
0+
   7304.5 5      F        1-      7304.2 5 
   100
E1
      0.0
0+
   7314.63 30      F        1-      7314.3 3 
   100
E1
      0.0
0+
   7459.9 5    D          (11)       331.4 3 
   1211.5 4 
   100
   ≈25
D

   7128.5
   6248.4
(10)
(10)
   7570.0 4      F        1-      7569.6 4 
   100
E1
      0.0
0+
   7675.7 4      F        1      7675.3 4 
   100
D
      0.0
0+
   7745.8 4      F        1      7745.4 4 
   100
D
      0.0
0+
   7797.9 4      F        1-      7797.5 4 
   100
E1
      0.0
0+
   7846.6 5      F        1-      7846.2 5 
   100
E1
      0.0
0+
   7874.2 7      F        1-      7873.8 7 
   100
E1
      0.0
0+
   7876.8 5    D          (12)       416.9 3 
   100

   7459.9
(11)
   7958.4 4      F        1-      7958.0 4 
   100
E1
      0.0
0+
   8428.6 4      F        1-      8428.2 4 
   100
E1
      0.0
0+
   8621.7 8      F        1-      8621.2 8 
   100
E1
      0.0
0+
   8651.27 30      F        1-      8650.8 3 
   100
E1
      0.0
0+
   8802.5 6      F        1      8802.0 6 
   100
D
      0.0
0+
   8841.6 8      F        1-      8841.1 8 
   100
E1
      0.0
0+
   9014.4 6      F        1-      9013.9 6 
   100
E1
      0.0
0+
   9068.1 10      F        1      9067.6 10 
   100
D
      0.0
0+
   9086.1 8      F        1-      9085.6 8 
   100
E1
      0.0
0+
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
   9452.9 5      F        1      9452.3 5 
   100
D
      0.0
0+
   9478.0 18      F             9477.4 18 
   100

      0.0
0+
  10116.2 8      F        1     10115.6 8 
   100
D
      0.0
0+

E(level): From least-squares fit to Eγ values for levels populated in γ-ray studies, assuming ΔEγ=0.5 keV, when not stated. For levels not observed in γ-ray studies, values are from weighted averages of available data with uncertainties.

Jπ(level): For low-spin (J|<6) states, supporting arguments are given for individual levels. For high-spin (J>6) levels, the assignments are based on γ(θ) data in (7Li,p2nγ), unless otherwise stated. In assigning Jπ values the evaluators assume that spins tend to increase with excitation energy.

Back to top

Back to top

Additional Gamma Data:













E(level)
(keV)
Jπ(level)T1/2(level)E(γ)
(keV)
MultipolarityMixing
Ratio
Additional Data
   1564.722 2+ 0.234 ps 14     1564.75 5 E2 B(E2)(W.u.)=11.5 7
   2250.37 4+ 3.1 ns 6      685.58 5 E2 B(E2)(W.u.)=0.054 +13-9
   2349.679 2+ 182 fs 15      784.98 5 M1+E2-0.10 7B(E2)(W.u.)=1.6 +30-14, B(M1)(W.u.)=0.086 11
2+ 182 fs 15     2349.59 5 [E2] B(E2)(W.u.)=1.26 +14-11
   2850.98 2+      1286.25 5 M1+E2+0.47 5 
   2926.313 1+      1361.62 5 M1+E2+0.06 2 
   3099.06 3- 51 fs 23      749.3 1 [E1] B(E1)(W.u.)=0.00035 +34-18
3- 51 fs 23     1534.39 5 E1(+M2)+0.01 2B(E1)(W.u.)=0.0018 +16-6
   4316.183 2-      1217.17 5 (M1+E2)+0.75 30 
2-      1389.84 5 (E1(+M2))+0.12 20 
2-      1465.25 5 (E1(+M2))-0.03 4 
2-      1966.50 5 E1(+M2)+0.04 4 
2-      2751.38 5 E1(+M2)+0.01 2 
   5323.40 (2-)      3758.7 1 D(+Q)-0.2 3 
   6450.01 (2)      4885.12 21 D(+Q)-0.12 13 

Back to top

Additional Level Data and Comments:

E(level)Jπ(level)T1/2(level)Comments
      0.00+ STABLE Double-beta (2β-) decay of 86Kr g.s. to 86Sr g.s. is possible, with Q value=1257.424 keV 7 (2021Wa16). 2018No01 estimated geochemical T1/2>2×108 y for this decay mode from known abundances of 86Kr and 86Sr in Earth’s crust. The measured abundances were taken by 2018No01 from ’CRC Handbook of Chemistry and Physics, 88th edition (2008)’.
E(level): Double-beta (2β-) decay of 86Kr g.s. to 86Sr g.s. is possible, with Q value=1257.424 keV 7 (2021Wa16). 2018No01 estimated geochemical T1/2>2×108 y for this decay mode from known abundances of 86Kr and 86Sr in Earth’s crust. The measured abundances were taken by 2018No01 from ’CRC Handbook of Chemistry and Physics, 88th edition (2008)’.
   2250.374+ 3.1 ns 6  μ=+4.1 6 (2014Ku10,2020StZV)
Configuration=πf5/2-1~#πp3/2-1.
   2726.60+   XREF: E(2733)H(2715).
   2917.32(2+,3+)   XREF: L(2917).
   3099.063- 51 fs 23  XREF: E(3109)L(?).
   3328.2(4+,3+)   XREF: H(3330).
   3935.51(5-)   XREF: H(3938).
   3959(3-,4+)   XREF: L(3930).
   4064.48(6+)   Configuration=πf5/2-3~#πp3/2-1~#πp1/2+20+~# νg9/2-1~#νd5/2+1.
   4072(5-)   XREF: H(4090).
   4277(7+)   XREF: H(4275).
   4316.1832-   XREF: E(4298)H(4308).
   4400.821   Jπ(level): From (γγ’) data, transition to 0+ g.s. is E1 or dipole from γγ(θ) and γ(pol) data.
   4668(3-,4+)   XREF: H(4660).
   4717.71(0+,1,2)   XREF: E(4708)H(4700).
   4867.61(-)   Jπ(level): From (γγ’) data, transition to 0+ g.s. is E1 or dipole from γγ(θ) and γ(pol) data.
   5323.40(2-)   XREF: H(5315).
   5517.801-   Jπ(level): From (γγ’) data, transition to 0+ g.s. is E1 or dipole from γγ(θ) and γ(pol) data.
   5571.21   XREF: H(5576).
Jπ(level): From (γγ’) data, transition to 0+ g.s. is E1 or dipole from γγ(θ) and γ(pol) data.
   5788.41(1)   Jπ(level): From (γγ’) data, transition to 0+ g.s. is E1 or dipole from γγ(θ) and γ(pol) data.
   5924.31-   Jπ(level): From (γγ’) data, transition to 0+ g.s. is E1 or dipole from γγ(θ) and γ(pol) data.
   6160.341-   Jπ(level): From (γγ’) data, transition to 0+ g.s. is E1 or dipole from γγ(θ) and γ(pol) data.
   6211.841   XREF: E(6222).
Jπ(level): From (γγ’) data, transition to 0+ g.s. is E1 or dipole from γγ(θ) and γ(pol) data.
   6328.851-   XREF: E(6318).
Jπ(level): From (γγ’) data, transition to 0+ g.s. is E1 or dipole from γγ(θ) and γ(pol) data.
   6432.161-   Jπ(level): From (γγ’) data, transition to 0+ g.s. is E1 or dipole from γγ(θ) and γ(pol) data.
E(level)Jπ(level)T1/2(level)Comments
   6463.161-   Jπ(level): From (γγ’) data, transition to 0+ g.s. is E1 or dipole from γγ(θ) and γ(pol) data.
   6531.971-   Jπ(level): From (γγ’) data, transition to 0+ g.s. is E1 or dipole from γγ(θ) and γ(pol) data.
   6678.91   Jπ(level): From (γγ’) data, transition to 0+ g.s. is E1 or dipole from γγ(θ) and γ(pol) data.
   6818.61-   Jπ(level): From (γγ’) data, transition to 0+ g.s. is E1 or dipole from γγ(θ) and γ(pol) data.
   7028.41-   Jπ(level): From (γγ’) data, transition to 0+ g.s. is E1 or dipole from γγ(θ) and γ(pol) data.
   7234.6(1)   Jπ(level): From (γγ’) data, transition to 0+ g.s. is E1 or dipole from γγ(θ) and γ(pol) data.
   7304.51-   Jπ(level): From (γγ’) data, transition to 0+ g.s. is E1 or dipole from γγ(θ) and γ(pol) data.
   7314.631-   Jπ(level): From (γγ’) data, transition to 0+ g.s. is E1 or dipole from γγ(θ) and γ(pol) data.
   7570.01-   Jπ(level): From (γγ’) data, transition to 0+ g.s. is E1 or dipole from γγ(θ) and γ(pol) data.
   7675.71   Jπ(level): From (γγ’) data, transition to 0+ g.s. is E1 or dipole from γγ(θ) and γ(pol) data.
   7745.81   Jπ(level): From (γγ’) data, transition to 0+ g.s. is E1 or dipole from γγ(θ) and γ(pol) data.
   7797.91-   Jπ(level): From (γγ’) data, transition to 0+ g.s. is E1 or dipole from γγ(θ) and γ(pol) data.
   7846.61-   Jπ(level): From (γγ’) data, transition to 0+ g.s. is E1 or dipole from γγ(θ) and γ(pol) data.
   7874.21-   Jπ(level): From (γγ’) data, transition to 0+ g.s. is E1 or dipole from γγ(θ) and γ(pol) data.
   7958.41-   Jπ(level): From (γγ’) data, transition to 0+ g.s. is E1 or dipole from γγ(θ) and γ(pol) data.
   8428.61-   Jπ(level): From (γγ’) data, transition to 0+ g.s. is E1 or dipole from γγ(θ) and γ(pol) data.
   8621.71-   Jπ(level): From (γγ’) data, transition to 0+ g.s. is E1 or dipole from γγ(θ) and γ(pol) data.
   8651.271-   Jπ(level): From (γγ’) data, transition to 0+ g.s. is E1 or dipole from γγ(θ) and γ(pol) data.
   8802.51   Jπ(level): From (γγ’) data, transition to 0+ g.s. is E1 or dipole from γγ(θ) and γ(pol) data.
   8841.61-   Jπ(level): From (γγ’) data, transition to 0+ g.s. is E1 or dipole from γγ(θ) and γ(pol) data.
   9014.41-   Jπ(level): From (γγ’) data, transition to 0+ g.s. is E1 or dipole from γγ(θ) and γ(pol) data.
   9068.11   Jπ(level): From (γγ’) data, transition to 0+ g.s. is E1 or dipole from γγ(θ) and γ(pol) data.
   9086.11-   Jπ(level): From (γγ’) data, transition to 0+ g.s. is E1 or dipole from γγ(θ) and γ(pol) data.
   9452.91   Jπ(level): From (γγ’) data, transition to 0+ g.s. is E1 or dipole from γγ(θ) and γ(pol) data.
  10116.21   Jπ(level): From (γγ’) data, transition to 0+ g.s. is E1 or dipole from γγ(θ) and γ(pol) data.

Back to top

Additional Gamma Comments:

E(level)E(gamma)Comments
   2349.679    784.98I(γ): unweighted average from β- and (n,n’γ)
   2349.59I(γ): from (n,n’γ). Other: 100 5 in β- decay
   2726.6    376.8E(γ): From 86Kr(n,n’γ)
I(γ): From 86Kr(n,n’γ)
   1162.0E(γ): From 86Kr(n,n’γ)
I(γ): From 86Kr(n,n’γ)
   2917.32    666.84I(γ): from (n,n’γ). Other: 100 25 in β- decay
   1352.4I(γ): from (n,n’γ). Other: 37 13 in β- decay
   3009.65    659.97I(γ): from (n,n’γ). Others: 182 33 (2016Ur04), 85 5 (1978LeZA) in β- decay; the value from 1978LeZA agrees with that from (n,n’γ).
   3009.50I(γ): from (n,n’γ). Other: 100 33 (2016Ur04), 100 8 (1978LeZA) in β- decay.
   3328.2   1763.5E(γ): From 86Kr(n,n’γ)
   3541.5   1191.6E(γ): From 86Kr(n,n’γ)
I(γ): From 86Kr(n,n’γ)
   1976.9E(γ): From 86Kr(n,n’γ)
I(γ): From 86Kr(n,n’γ)
   3583.6   2018.8E(γ): From 86Kr(n,n’γ)
   3816.68   1566.3E(γ): from 82Se(7Li,p2nγ)
   3935.51   1685.1E(γ): from 82Se(7Li,p2nγ)
   4064.48    247.8I(γ): From 82Se(7Li,p2nγ), multipolarity from γ(θ)
   1814.1E(γ): From 82Se(7Li,p2nγ), multipolarity from γ(θ)
M(γ): From 82Se(7Li,p2nγ), multipolarity from γ(θ)
   4400.82   4400.7E(γ): From 86Kr(γ,γ’), multipolarity from γγ(θ)
M(γ): From 86Kr(γ,γ’), multipolarity from γγ(θ)
   4430.88    495.3E(γ): From 82Se(7Li,p2nγ), multipolarity from γ(θ)
I(γ): From 82Se(7Li,p2nγ), multipolarity from γ(θ)
M(γ): From 82Se(7Li,p2nγ), multipolarity from γ(θ)
   4693.67    262.8E(γ): From 82Se(7Li,p2nγ), multipolarity from γ(θ)
I(γ): From 82Se(7Li,p2nγ), multipolarity from γ(θ)
M(γ): From 82Se(7Li,p2nγ), multipolarity from γ(θ)
    629.3E(γ): From 82Se(7Li,p2nγ), multipolarity from γ(θ)
I(γ): From 82Se(7Li,p2nγ), multipolarity from γ(θ)
M(γ): From 82Se(7Li,p2nγ), multipolarity from γ(θ)
    758.2E(γ): from 82Se(7Li,p2nγ)
I(γ): From 82Se(7Li,p2nγ), multipolarity from γ(θ)
   4756.13    325.3E(γ): From 82Se(7Li,p2nγ), multipolarity from γ(θ)
I(γ): From 82Se(7Li,p2nγ), multipolarity from γ(θ)
M(γ): From 82Se(7Li,p2nγ), multipolarity from γ(θ)
    691.6E(γ): From 82Se(7Li,p2nγ), multipolarity from γ(θ)
I(γ): From 82Se(7Li,p2nγ), multipolarity from γ(θ)
M(γ): From 82Se(7Li,p2nγ), multipolarity from γ(θ)
   4867.6   4867.4E(γ): From 86Kr(γ,γ’), multipolarity from γγ(θ)
M(γ): From 86Kr(γ,γ’), multipolarity from γγ(θ)
   4932.55   4932.4E(γ): from (γ,γ’)
E(level)E(gamma)Comments
   5517.80   3953.0E(γ): γ from 86Br decay only
   5571.2   5571.0E(γ): From 86Kr(γ,γ’), multipolarity from γγ(θ)
M(γ): From 86Kr(γ,γ’), multipolarity from γγ(θ)
   5660.64    904.4E(γ): From 82Se(7Li,p2nγ), multipolarity from γ(θ)
I(γ): From 82Se(7Li,p2nγ), multipolarity from γ(θ)
M(γ): From 82Se(7Li,p2nγ), multipolarity from γ(θ)
    967.0E(γ): From 82Se(7Li,p2nγ), multipolarity from γ(θ)
I(γ): From 82Se(7Li,p2nγ), multipolarity from γ(θ)
M(γ): From 82Se(7Li,p2nγ), multipolarity from γ(θ)
   1596.2I(γ): From 82Se(7Li,p2nγ), multipolarity from γ(θ)
   5788.41   5788.2E(γ): From 86Kr(γ,γ’), multipolarity from γγ(θ)
M(γ): From 86Kr(γ,γ’), multipolarity from γγ(θ)
   5814.83    154.2E(γ): From 82Se(7Li,p2nγ), multipolarity from γ(θ)
I(γ): From 82Se(7Li,p2nγ), multipolarity from γ(θ)
M(γ): From 82Se(7Li,p2nγ), multipolarity from γ(θ)
   1058.7E(γ): From 82Se(7Li,p2nγ), multipolarity from γ(θ)
I(γ): From 82Se(7Li,p2nγ), multipolarity from γ(θ)
M(γ): From 82Se(7Li,p2nγ), multipolarity from γ(θ)
   5924.3   5924.1E(γ): From 86Kr(γ,γ’), multipolarity from γγ(θ)
M(γ): From 86Kr(γ,γ’), multipolarity from γγ(θ)
   6085.4    415E(γ): from 208Pb(18O,Fγ); γ not reported in 82Se(7Li,p2nγ)
   1391.8E(γ): from 82Se(7Li,p2nγ)
   6160.34   6160.1E(γ): weighted average of other: 6160.3 4 in 86Br β- decay, and 6160.0 2 in (γ,γ’)
M(γ): from γγ(θ) in (γ,γ’)
   6248.4    433.5E(γ): From 82Se(7Li,p2nγ), multipolarity from γ(θ)
M(γ): From 82Se(7Li,p2nγ), multipolarity from γ(θ)
   6328.85   6328.6E(γ): From 86Kr(γ,γ’), multipolarity from γγ(θ)
M(γ): From 86Kr(γ,γ’), multipolarity from γγ(θ)
   6432.16   6431.9E(γ): From 86Kr(γ,γ’), multipolarity from γγ(θ)
M(γ): From 86Kr(γ,γ’), multipolarity from γγ(θ)
   6463.16   6462.9E(γ): From 86Kr(γ,γ’), multipolarity from γγ(θ)
M(γ): From 86Kr(γ,γ’), multipolarity from γγ(θ)
   6531.97   6531.7E(γ): From 86Kr(γ,γ’), multipolarity from γγ(θ)
M(γ): From 86Kr(γ,γ’), multipolarity from γγ(θ)
   6678.9   6678.6E(γ): From 86Kr(γ,γ’), multipolarity from γγ(θ)
M(γ): From 86Kr(γ,γ’), multipolarity from γγ(θ)
   6818.6   6818.3E(γ): From 86Kr(γ,γ’), multipolarity from γγ(θ)
M(γ): From 86Kr(γ,γ’), multipolarity from γγ(θ)
   7028.4   7028.1E(γ): From 86Kr(γ,γ’), multipolarity from γγ(θ)
M(γ): From 86Kr(γ,γ’), multipolarity from γγ(θ)
   7128.5   1313.7E(γ): From 82Se(7Li,p2nγ), multipolarity from γ(θ)
I(γ): From 82Se(7Li,p2nγ), multipolarity from γ(θ)
M(γ): From 82Se(7Li,p2nγ), multipolarity from γ(θ)
   7234.6   7234.3E(γ): From 86Kr(γ,γ’), multipolarity from γγ(θ)
M(γ): From 86Kr(γ,γ’), multipolarity from γγ(θ)
   7304.5   7304.2E(γ): From 86Kr(γ,γ’), multipolarity from γγ(θ)
M(γ): From 86Kr(γ,γ’), multipolarity from γγ(θ)
   7314.63   7314.3E(γ): From 86Kr(γ,γ’), multipolarity from γγ(θ)
M(γ): From 86Kr(γ,γ’), multipolarity from γγ(θ)
   7459.9    331.4E(γ): From 82Se(7Li,p2nγ), multipolarity from γ(θ)
I(γ): From 82Se(7Li,p2nγ), multipolarity from γ(θ)
M(γ): From 82Se(7Li,p2nγ), multipolarity from γ(θ)
E(level)E(gamma)Comments
   7570.0   7569.6E(γ): From 86Kr(γ,γ’), multipolarity from γγ(θ)
M(γ): From 86Kr(γ,γ’), multipolarity from γγ(θ)
   7675.7   7675.3E(γ): From 86Kr(γ,γ’), multipolarity from γγ(θ)
M(γ): From 86Kr(γ,γ’), multipolarity from γγ(θ)
   7745.8   7745.4E(γ): From 86Kr(γ,γ’), multipolarity from γγ(θ)
M(γ): From 86Kr(γ,γ’), multipolarity from γγ(θ)
   7797.9   7797.5E(γ): From 86Kr(γ,γ’), multipolarity from γγ(θ)
M(γ): From 86Kr(γ,γ’), multipolarity from γγ(θ)
   7846.6   7846.2E(γ): From 86Kr(γ,γ’), multipolarity from γγ(θ)
M(γ): From 86Kr(γ,γ’), multipolarity from γγ(θ)
   7874.2   7873.8E(γ): From 86Kr(γ,γ’), multipolarity from γγ(θ)
M(γ): From 86Kr(γ,γ’), multipolarity from γγ(θ)
   7876.8    416.9E(γ): from 82Se(7Li,p2nγ)
   7958.4   7958.0E(γ): From 86Kr(γ,γ’), multipolarity from γγ(θ)
M(γ): From 86Kr(γ,γ’), multipolarity from γγ(θ)
   8428.6   8428.2E(γ): From 86Kr(γ,γ’), multipolarity from γγ(θ)
M(γ): From 86Kr(γ,γ’), multipolarity from γγ(θ)
   8621.7   8621.2E(γ): From 86Kr(γ,γ’), multipolarity from γγ(θ)
M(γ): From 86Kr(γ,γ’), multipolarity from γγ(θ)
   8651.27   8650.8E(γ): From 86Kr(γ,γ’), multipolarity from γγ(θ)
M(γ): From 86Kr(γ,γ’), multipolarity from γγ(θ)
   8802.5   8802.0E(γ): From 86Kr(γ,γ’), multipolarity from γγ(θ)
M(γ): From 86Kr(γ,γ’), multipolarity from γγ(θ)
   8841.6   8841.1E(γ): From 86Kr(γ,γ’), multipolarity from γγ(θ)
M(γ): From 86Kr(γ,γ’), multipolarity from γγ(θ)
   9014.4   9013.9E(γ): From 86Kr(γ,γ’), multipolarity from γγ(θ)
M(γ): From 86Kr(γ,γ’), multipolarity from γγ(θ)
   9068.1   9067.6E(γ): From 86Kr(γ,γ’), multipolarity from γγ(θ)
M(γ): From 86Kr(γ,γ’), multipolarity from γγ(θ)
   9086.1   9085.6E(γ): From 86Kr(γ,γ’), multipolarity from γγ(θ)
M(γ): From 86Kr(γ,γ’), multipolarity from γγ(θ)
   9452.9   9452.3E(γ): From 86Kr(γ,γ’), multipolarity from γγ(θ)
M(γ): From 86Kr(γ,γ’), multipolarity from γγ(θ)
   9478.0   9477.4E(γ): from (γ,γ’)
  10116.2  10115.6E(γ): From 86Kr(γ,γ’), multipolarity from γγ(θ)
M(γ): From 86Kr(γ,γ’), multipolarity from γγ(θ)

Back to top