NSR Query Results
Output year order : Descending NSR database version of May 21, 2024. Search: Author = M.Shimada Found 9 matches. 2018SH03 Phys.Rev. C 97, 024318 (2018) M.Shimada, Y.Fujioka, S.Tagami, Y.R.Shimizu Rotational motion of triaxially deformed nuclei studied by the microscopic angular-momentum-projection method. I. Nuclear wobbling motion NUCLEAR STRUCTURE ^{162}Yb; calculated levels, J, π, moment of inertia plots for the yrast and the first excited bands. ^{163}Lu; calculated wobbling spectra, levels, J, π, triaxial superdeformed (TSD) bands, multiple wobbling rotational bands, B(E2), B(M1) and B(E2) ratios for transitions in TSD bands for different triaxial deformations, expectation values of the angular-momentum vectors, neutron and proton average pairing gaps, nuclear radius and various deformation parameters as functions of rotational frequency. Microscopic framework of angular-momentum projection from cranked triaxially deformed mean-field states, mainly using Woods-Saxon potential and the schematic separable interaction, and some results with the Gogny D1S interaction for description of wobbling motion. Comparison with experimental data.
doi: 10.1103/PhysRevC.97.024318
2018SH04 Phys.Rev. C 97, 024319 (2018) M.Shimada, Y.Fujioka, S.Tagami, Y.R.Shimizu Rotational motion of triaxially deformed nuclei studied by the microscopic angular-momentum-projection method. II. Chiral doublet band NUCLEAR STRUCTURE ^{128}Cs, ^{104}Rh; calculated levels, J, π, B(E2), chiral doublet bands, B(M1), B(M1)/B(E2) and B(M1) ratios for transitions in yrast and yrare bands, expectation values of the angular-momentum vectors; discussed chiral rotation in triaxially deformed nuclei. Microscopic framework of angular-momentum projection from cranked triaxially deformed mean-field states, using Woods-Saxon potential and the schematic separable interaction. Comparison with experimental data.
doi: 10.1103/PhysRevC.97.024319
2016SH11 Phys.Rev. C 93, 044317 (2016) M.Shimada, S.Tagami, Y.R.Shimizu Realistic description of rotational bands in rare earth nuclei by the angular-momentum-projected multicranked configuration-mixing method NUCLEAR STRUCTURE ^{156,158,160}Gd, ^{158,162,164}Dy, ^{160,162,164}Er, ^{164,168,170}Yb; calculated nuclear radii, deformation parameters β_{2} and β_{4}, average pairing gaps for neutrons and protons for ground states in rare earth nuclei, levels, J, π, moment of inertia for ground-state rotational bands, detailed study of characteristics of the s-band in ^{164}Er. Angular-momentum-projected multicranked configuration-mixing method with Gogny D1S force as effective interaction. Comparison with experimental data.
doi: 10.1103/PhysRevC.93.044317
2016SH21 Phys.Rev. C 93, 064314 (2016) M.Shimada, S.Watanabe, S.Tagami, T.Matsumoto, Y.R.Shimizu, M.Yahiro Simultaneous analysis of matter radii, transition probabilities, and excitation energies of Mg isotopes by angular-momentum-projected configuration-mixing calculations NUCLEAR STRUCTURE ^{24,26,28,30,32,34,36,38,40}Mg; calculated potential-energy curves, level energies, rms matter radii, B(E2), β_{2}, and probability distributions for the first 2+ and 4+ states. Beyond-mean-field (BMF) calculations with angular-momentum-projected configuration mixing with respect to the axially symmetric β_{2} deformation. Comparison with experimental data.
doi: 10.1103/PhysRevC.93.064314
2015SH23 Prog.Theor.Exp.Phys. 2015, 063D02 (2015) M.Shimada, S.Tagami, Y.R.Shimizu Angular momentum projected multi-cranked configuration mixing for reliable calculation of high-spin rotational bands NUCLEAR STRUCTURE ^{164}Er, ^{40}Mg, ^{152}Dy; calculated excitation energy spectra of the ground-state rotational band, probability distribution over the five HFB configurations, angular momentum and rotational frequency, moments of inertia, B(E2). Comparison with available data.
doi: 10.1093/ptep/ptv073
2014TA32 Phys.Rev. C 90, 061305 (2014) M.Takechi, S.Suzuki, D.Nishimura, M.Fukuda, T.Ohtsubo, M.Nagashima, T.Suzuki, T.Yamaguchi, A.Ozawa, T.Moriguchi, H.Ohishi, T.Sumikama, H.Geissel, N.Aoi, R.-J.Chen, D.-Q.Fang, N.Fukuda, S.Fukuoka, H.Furuki, N.Inabe, Y.Ishibashi, T.Itoh, T.Izumikawa, D.Kameda, T.Kubo, M.Lantz, C.S.Lee, Y.-G.Ma, K.Matsuta, M.Mihara, S.Momota, D.Nagae, R.Nishikiori, T.Niwa, T.Ohnishi, K.Okumura, M.Ohtake, T.Ogura, H.Sakurai, K.Sato, Y.Shimbara, H.Suzuki, H.Takeda, S.Takeuchi, K.Tanaka, M.Tanaka, H.Uenishi, M.Winkler, Y.Yanagisawa, S.Watanabe, K.Minomo, S.Tagami, M.Shimada, M.Kimura, T.Matsumoto, Y.R.Shimizu, M.Yahiro Evidence of halo structure in ^{37}Mg observed via reaction cross sections and intruder orbitals beyond the island of inversion NUCLEAR REACTIONS ^{12}C(^{24}Mg, X), (^{25}Mg, X), (^{26}Mg, X), (^{27}Mg, X), (^{28}Mg, X), (^{29}Mg, X), (^{30}Mg, X), (^{31}Mg, X), (^{32}Mg, X), (^{33}Mg, X), (^{34}Mg, X), (^{35}Mg, X), (^{36}Mg, X), (^{37}Mg, X), (^{38}Mg, X), E=240 MeV/nucleon, [secondary Mg beams from ^{9}Be(^{48}Ca, X), E=345 MeV/nucleon primary reaction]; measured spectra and TOF of outgoing particles, precise reaction σ using BigRIPS spectrometer at RIBF-RIKEN facility. Comparison with theoretical deformation parameter β_{2} versus mass plot using double-folding model (DFM) calculation combined with antisymmetrized molecular dynamics (AMD) calculation. ^{37}Mg; deduced deformed halo effect from observed enhanced cross section, comparison with DFM calculation based on the deformed Woods-Saxon (DWS) model; collapse of N=28 magic shell for neutrons.
doi: 10.1103/PhysRevC.90.061305
2014TA36 Phys.Scr. 89, 054013 (2014) S.Tagami, M.Shimada, Y.Fujioka, Y.R.Shimizu, J.Dudek Nuclear tetrahedral states and high-spin states studied using the quantum number projection method NUCLEAR STRUCTURE ^{80,81,82}Zr, ^{104}Rh; calculated low-lying levels, J, π; deduced rotational spectra for tetrahedral deformation. ^{163}Lu; calculated low and high spin levels, J, π, B(E2), triaxial superdeformed states. ^{40}Mg; calculated moment of inertia. HFB mean field with allowance for triaxial superdeformed nuclei and tetrahedral deformation; preliminary. Compared with available data.
doi: 10.1088/0031-8949/89/5/054013
2014WA14 Phys.Rev. C 89, 044610 (2014) S.Watanabe, K.Minomo, M.Shimada, S.Tagami, M.Kimura, M.Takechi, M.Fukuda, D.Nishimura, T.Suzuki, T.Matsumoto, Y.R.Shimizu, M.Yahiro Ground-state properties of neutron-rich Mg isotopes NUCLEAR REACTIONS ^{12}C(^{24}Mg, X), (^{25}Mg, X), (^{26}Mg, X), (^{27}Mg, X), (^{28}Mg, X), (^{29}Mg, X), (^{30}Mg, X), (^{31}Mg, X), (^{32}Mg, X), (^{33}Mg, X), (^{34}Mg, X), (^{35}Mg, X), (^{36}Mg, X), (^{37}Mg, X), (^{38}Mg, X), E=240 MeV/nucleon; calculated reaction σ; deduced rms matter radii from reaction cross sections. Antisymmetrized molecular dynamics (AMD) with folding model and deformed Woods-Saxon model. Comparison with experimental data, and with other theoretical calculations. NUCLEAR STRUCTURE ^{24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40}Mg; calculated ground state binding J, π, S(n), S(2n) for ^{40}Mg, β and γ deformation parameters, proton, neutron and matter radii, neutron skin thickness. ^{37}Mg; calculated levels, J, π, neutron single-particle energies. Antisymmetrized molecular dynamics (AMD) with folding model and deformed Woods-Saxon model. Comparison with experimental data.
doi: 10.1103/PhysRevC.89.044610
1974TA13 J.Phys.Soc.Jap. 37, 276 (1974) Y.Takeda, M.Shimada, F.Kanamaru, M.Koizumi Structure and Properties of CsFeBr_{3} NUCLEAR REACTIONS ^{57}Fe(γ, γ); measured Mossbauer effect in CsFeBr.
doi: 10.1143/JPSJ.37.276
Back to query form |