NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 11, 2024.

Search: Author = B.Irgaziev

Found 49 matches.

Back to query form



2024IR01      Chin.Phys.C 48, 045103 (2024)

B.F.Irgaziev, A.Kabir, J.-U.Nabi

Radiative capture of proton through the 14N(p, γ)15O reaction at low energy

NUCLEAR REACTIONS 14N(p, γ), E(cm)<1 MeV>; calculated partial components of the astrophysical S-factor for all possible electric and magnetic dipole transitions with a potential model to describe both non-resonant and resonant reactions in the channels where radiative capture occurs through electric transitions and R-matrix method. Comparison with available data.

doi: 10.1088/1674-1137/ad1b3c
Citations: PlumX Metrics


2022IR01      Nucl.Phys. A1021, 122422 (2022)

B.F.Irgaziev, A.Kabir, J.-U.Nabi

Application of ANCs for calculation of β+ decay of 17F nucleus

NUCLEAR STRUCTURE 17F, 17O; calculated values of the proton spectroscopic factor for 17F and the neutron one for 17O; deduced that these mirror nuclei have a pronounced single-particle structure.

doi: 10.1016/j.nuclphysa.2022.122422
Citations: PlumX Metrics


2022KA16      J.Phys.(London) G49, 075101 (2022)

A.Kabir, B.F.Irgaziev, J.-U.Nabi, S.Sagheer

Re-analysis of radiative capture 11C(p, γ)12N at low energy

NUCLEAR REACTIONS 11C(p, γ), E(cm)<0.8 MeV; analyzed available data; calculated S-factor within the framework of the modified potential model.

doi: 10.1088/1361-6471/ac6362
Citations: PlumX Metrics


2021IR01      Can.J.Phys. 99, 176 (2021)

B.F.Irgaziev, J.-U.Nabi, A.Kabir

Analysis of β+ decay of 13N nucleus using a modified one-particle approach

RADIOACTIVITY 13N(β+); analyzed available data on phase shifts, asymptotic normalization coefficients (ANCs) and spectroscopic factors; calculated wave functions, log ft, T1/2.

doi: 10.1139/cjp-2020-0155
Citations: PlumX Metrics


2018IR01      Phys.Rev. C 98, 015803 (2018)

B.F.Irgaziev, Yu.V.Orlov

Resonance properties including asymptotic normalization coefficients deduced from phase-shift data without the effective-range function

NUCLEAR REACTIONS 3He(α, α'), E(cm)=0-7 MeV; 4He, 12C(α, α'), E(cm)=0-6 MeV; analyzed experimental data for phase-shifts and resonance energies using a new algorithm (Δ method) for the bound states ANC calculation; deduced asymptotic nuclear coefficients (ANCs). 7,8Be, 16O; calculated resonances, widths of 5/2-, 7/2- states in 7Be, 0+ and 2+ states in 8Be, and 0+, 1-, 2+, and 3- states in 16O. Comparison with experimental values and other theoretical predictions. Possible application for (α, γ) reactions in nuclear astrophysics.

doi: 10.1103/PhysRevC.98.015803
Citations: PlumX Metrics


2017OR03      Phys.Rev. C 96, 025809 (2017)

Yu.V.Orlov, B.F.Irgaziev, J.-U.Nabi

Algorithm for calculations of asymptotic nuclear coefficients using phase-shift data for charged-particle scattering

NUCLEAR REACTIONS 12C(α, α)16O*, E<5 MeV; 4He(3He, 3He)7Be*, E<5 MeV; analyzed elastic phase-shift data with binding energies used as input; deduced asymptotic normalization coefficients (ANC), nuclear vertex constants, and scattering amplitude residues using effective-range expansion (ERE) theory (Delta-method), valid for large charges. Relevance to element creation in supernova explosions, and in the theory using Feynman diagrams to describe the amplitude of the direct nuclear reactions.

doi: 10.1103/PhysRevC.96.025809
Citations: PlumX Metrics


2016OR01      Phys.Rev. C 93, 014612 (2016), Erratum Phys.Rev. C 93, 059901 (2016)

Yu.V.Orlov, B.F.Irgaziev, L.I.Nikitina

Asymptotic normalization coefficients of resonant and bound states from the phase shifts for αα and α12C scattering

NUCLEAR REACTIONS 4He(α, α'), E(cm)<25 MeV; 12C(α, α'), E(cm)<6.0 MeV; analyzed fits of phase shifts of elastic scattering, analytical continuation of renormalized scattering amplitude. 8Be, 16O; calculated energies of levels and asymptotic normalization coefficients (ANC) for first 0+ and 2+ resonances in 8Be, 0+, 1-, and 2+ bound states and 1- and 3- resonances in 16O. S-matrix pole (SMP) and effective-range methods.

doi: 10.1103/PhysRevC.93.014612
Citations: PlumX Metrics


2016WE02      Phys.Rev. C 93, 035803 (2016); Pub Note Phys.Rev. C 93, 039902 (2016)

Q.-G.Wen, C.-B.Li, S.-H.Zhou, B.Irgaziev, Y.-Y.Fu, C.Spitaleri, M.La Cognata, J.Zhou, Q.-Y.Meng, L.Lamia, M.Lattuada

Experimental study to explore the 8Be-induced nuclear reaction via the Trojan horse method

NUCLEAR REACTIONS 9Be(d, nα)6Li, E=22.4 MeV; measured α and 6Li spectra, Eα versus θα plots at HI-13 accelerator of CIAE-Beijing; deduced experimental neutron momentum distribution inside 9Be. Deuterated polyethylene target CD2. Trojan horse method for a 3-body reaction with assumption of 9Be as 8Be+n cluster structure. Comparison with theoretical calculations treating 8Be-n interaction with a Woods-Saxon potential.

doi: 10.1103/PhysRevC.93.035803
Citations: PlumX Metrics


2015IR01      Phys.Rev. C 91, 024002 (2015)

B.F.Irgaziev, Yu.V.Orlov

Resonance-state properties from a phase shift analysis with the S-matrix pole method and the effective-range method

NUCLEAR REACTIONS 4He(n, n), (p, p), E(cm)=0-16 MeV; 12C(α, α), E=2-7 MeV; analyzed experimental phase-shift data and effective-range functions by the S-matrix pole method and effective-range method. 5He, 5Li, 16O; deduced asymptotic normalization coefficients (ANCs), levels, J, π, energies and widths of resonance states. Possible application to reaction rates at low energy collisions.

doi: 10.1103/PhysRevC.91.024002
Citations: PlumX Metrics


2015SE08      Phys.Rev. C 91, 065803 (2015)

M.L.Sergi, C.Spitaleri, M.La Cognata, L.Lamia, R.G.Pizzone, G.G.Rapisarda, X.D.Tang, B.Bucher, M.Couder, P.Davies, R.deBoer, X.Fang, L.Lamm, C.Ma, M.Notani, S.O'Brien, D.Roberson, W.Tan, M.Wiescher, B.Irgaziev, A.Mukhamedzhanov, J.Mrazek, V.Kroha

Improvement of the high-accuracy 17O(p, α)14N reaction-rate measurement via the Trojan Horse method for application to 17O nucleosynthesis

NUCLEAR REACTIONS 2H(17O, α14N)n, E=41, 43.5 MeV; measured particle spectra, (14N)α-coin at LNS-Catania and NSL-Notre Dame accelerator facilities; deduced Q-value spectra, yields as function of 14N and α emission angles, E(14N-α) versus E(α-n) plots, neutron momentum distributions, (14N)α-coincidence yields for different neutron momentum ranges, differential σ(E) of the Trojan-Horse reaction. 18F; deduced parameters for the two resonance levels, resonance strengths for the 65-keV resonance. 17O(p, α)14N; deduced reaction rates via Trojan Horse Method (THM). 18F; compiled resonance energies, J, π, Γp, Γα, Γγ for 24 resonances from -3.12 keV to 1684.5 keV. Relevance to destruction of 17O and the formation of 18F in stellar sites.

doi: 10.1103/PhysRevC.91.065803
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2014SP03      Phys.Rev. C 90, 035801 (2014)

C.Spitaleri, L.Lamia, S.M.R.Puglia, S.Romano, M.La Cognata, V.Crucilla, R.G.Pizzone, G.G.Rapisarda, M.L.Sergi, M.Gimenez Del Santo, N.Carlin, M.G.Munhoz, F.A.Souza, A.Szanto de Toledo, A.Tumino, B.Irgaziev, A.Mukhamedzhanov, G.Tabacaru, V.Burjan, V.Kroha, Z.Hons, J.Mrazek, S.-H.Zhou, C.Li, Q.Wen, Y.Wakabayashi, H.Yamaguchi, E.Somorjai

Measurement of the 10 keV resonance in the 10B(p, α0)7Be reaction via the Trojan Horse method

NUCLEAR REACTIONS 2H(10B, α7Be), E=24.5 MeV; measured particle spectra by ΔE-E method using ionization chambers and position-sensitive detectors at LNS-Catania accelerator facility; analyzed data by Trojan Horse method (THM); deduced Eα-Be and Eα-n two-dimensional plots, experimental momentum distribution and its comparison with DWBA and PWIA calculations, THM bare nucleus astrophysical S(E) factors using R-matrix formalism for 5-100 keV resonances in 11C, dominated by 10-keV resonance corresponding to 8699-keV, 5/2+ level in 11C. 11C; deduced widths of three resonances.

doi: 10.1103/PhysRevC.90.035801
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetO1765. Data from this article have been entered in the XUNDL database. For more information, click here.


2013IR01      Phys.Rev. C 87, 035804 (2013)

B.F.Irgaziev, V.B.Belyaev, J.-U.Nabi

Three-body calculation of the rate of the reaction p+p+e → d+νe in the Sun

NUCLEAR REACTIONS 1H(p, ν), E<20 keV; calculated reaction rate and astrophysical S factor for p+p+e- to d+νe reaction in sun using expansion of three-body wave function of p+e-+p system in the initial state on hyperharmonic functions. Comparison with experimental data, and previous calculations.

doi: 10.1103/PhysRevC.87.035804
Citations: PlumX Metrics


2012LA08      Phys.Rev. C 85, 025805 (2012)

L.Lamia, M.La Cognata, C.Spitaleri, B.Irgaziev, R.G.Pizzone

Influence of the d-state component of the deuteron wave function on the application of the Trojan horse method

NUCLEAR REACTIONS 2H(11B, α8Be), (18O, α15N), E not given; calculated neutron momentum distribution. 11Be, 18O(p, α), E not given; analyzed discrepancy ϵ. Trojan horse method. Contribution of s-wave and d-wave components in deuteron wave function. Comparison with experimental data.

doi: 10.1103/PhysRevC.85.025805
Citations: PlumX Metrics


2011BL06      Bull.Rus.Acad.Sci.Phys. 75, 505 (2011); Izv.Akad.Nauk RAS, Ser.Fiz 75, 541 (2011)

L.D.Blokhintsev, V.O.Eremenko, B.F.Irgaziev, Yu.V.Orlov

Calculating the characteristics of neutron-deuteron and proton-deuteron systems in a two-body potential model

NUCLEAR STRUCTURE 3H, 3He; calculated binding energy, asymptotic normalization coefficients. Two-body potential model.

doi: 10.3103/S1062873811040095
Citations: PlumX Metrics


2011IR01      Bull.Rus.Acad.Sci.Phys. 75, 511 (2011); Izv.Akad.Nauk RAS, Ser.Fiz 75, 547 (2011)

B.F.Irgaziev, A.M.Mukhamedzhanov, Yu.V.Orlov, L.D.Blokhintsev

Extracting the complex energy of broad resonances by the S-matrix pole method

NUCLEAR REACTIONS 12C(α, α), 26Mg(n, n), E not given; calculated energies and width for p-wave resonances, phase shifts. R-matrix and S-matrix pole fitting methods.

doi: 10.3103/S1062873811040204
Citations: PlumX Metrics


2011IR02      Phys.Rev. C 84, 065809 (2011)

B.F.Irgaziev, J.-U.Nabi, D.Khan

Coulomb breakup of 6Li into α + d in the field of a 208Pb ion

NUCLEAR REACTIONS 208Pb(6Li, dα), E=156 MeV; calculated astrophysical S factor, asymptotic normalization coefficient (ANC), triple differential σ(θ), nuclear distortion contribution using semiclassical and diffraction models with two-body approach and Woods-Saxon potential. Comparison with experimental data.

doi: 10.1103/PhysRevC.84.065809
Citations: PlumX Metrics


2011MU08      Phys.Rev. C 83, 055805 (2011)

A.M.Mukhamedzhanov, L.D.Blokhintsev, B.F.Irgaziev

Reexamination of the astrophysical S factor for the α+d → 6Li+γ reaction

NUCLEAR REACTIONS 2H(α, 6Li); analyzed α-d elastic scattering phase shift; deduced asymptotic normalization coefficient (ANC) for the decay of 6Li into α+d, reaction rates and astrophysical factor S24(E) for the radiative capture process of α+d to 6Li+γ using α-d potential model.

doi: 10.1103/PhysRevC.83.055805
Citations: PlumX Metrics


2010LA12      Nucl.Phys. A834, 658c (2010)

M.La Cognata, C.Spitaleri, A.Mukhamedzhanov, V.Goldberg, B.Irgaziev, L.Lamia, R.G.Pizzone, M.L.Sergi, R.E.Tribble

DWBA momentum distribution and its effect on THM

NUCLEAR REACTIONS 2H(18O, α15N), E(cm)≈5.4 MeV; calculated wave function momentum distribution using DWBA. Comparison with data.

doi: 10.1016/j.nuclphysa.2010.01.116
Citations: PlumX Metrics


2010LA19      J.Phys.:Conf.Ser. 202, 012019 (2010)

M.La Cognata, C.Spitaleri, A.Mukhamedzhanov, R.E.Tribble, T.Al-Abdullah, A.Banu, S.Cherubini, A.Coc, V.Crucilla, V.Goldberg, M.Gulino, B.Irgaziev, G.G.Kiss, L.Lamia, J.Mrazek, R.G.Pizzone, S.M.R.Puglia, G.G.Rapisarda, S.Romano, M.L.Sergi, G.Tabacaru, L.Trache, W.Trzaska, S.Tudisco, A.Tumino

First measurement of the 18O(p, α)15N cross section at astrophysical energies

NUCLEAR REACTIONS 2H(18O, α15N), E=54 MeV; measured Eα, Iα(θ), E(particle), I(particle, θ); deduced dσ, resonances. 18O(p, α), E=0-8 keV; calculated; deduced reaction rate, resonance strengths from 2H(18O, α15N) using Trojan Horse method.

doi: 10.1088/1742-6596/202/1/012019
Citations: PlumX Metrics


2010MU03      Phys.Rev. C 81, 054314 (2010)

A.M.Mukhamedzhanov, B.F.Irgaziev, V.Z.Goldberg, Yu.V.Orlov, I.Qazi

Bound, virtual, and resonance S-matrix poles from the Schrodinger equation

NUCLEAR STRUCTURE 11Be, 11N, 14N, 15F; calculated S-matrix pole parameters for lowest 1/2+, 1/2- and 5/2+ states in 11Be and 11N, 1/2+ resonance state in 11N, 1+ ground state of 14N, 1/2+ and 5/2+ resonance states in 15F using the potential S-matrix pole method based on numerical solution to Schrodinger equation. Comparison of S-matrix and R-matrix methods for resonances in 14O+p and 26Mg+n systems.

doi: 10.1103/PhysRevC.81.054314
Citations: PlumX Metrics


2010SE11      Nucl.Phys. A834, 676c (2010)

M.L.Sergi, C.Spitaleri, A.Coc, A.Mukhamedzhanov, S.V.Burjan, M.Gulino, F.Hammache, Z.Hons, B.Irgaziev, G.G.Kiss, V.Kroha, M.La Cognata, L.Lamia, R.G.Pizzone, N.de Sereville, E.Somorjai

The 65 keV resonance in the 17O(p, α)14N thermonuclear reaction

NUCLEAR REACTIONS 2H(17O, α14N), E=41 MeV; measured σ, σ(θ). 17O(p, α), E=0-0.7 MeV; deduced σ(θ). 18F; deduced levels using Trojan Horse Method.

doi: 10.1016/j.nuclphysa.2010.01.122
Citations: PlumX Metrics


2010SE13      Phys.Rev. C 82, 032801 (2010)

M.L.Sergi, C.Spitaleri, M.La Cognata, A.Coc, A.Mukhamedzhanov, S.V.Burjan, S.Cherubini, V.Crucilla, M.Gulino, F.Hammache, Z.Hons, B.Irgaziev, G.G.Kiss, V.Kroha, L.Lamia, R.G.Pizzone, S.M.R.Puglia, G.G.Rapisarda, S.Romano, N.de Sereville, E.Somorjai, S.Tudisco, A.Tumino

New high accuracy measurement of the 17O(p, α)14N reaction rate at astrophysical temperatures

NUCLEAR REACTIONS 2H(17O, α14N), E=41 MeV; measured 14N spectrum, σ(θ), momentum distribution and differential σ for resonances above the 18F proton threshold. 18F; deduced resonances and levels. Comparison of experimental momentum distribution with plane-wave impulse approximation (PWIA) and distorted-wave Born approximation (DWBA) calculations. 17O(p, α)14N; deduced reaction rates of astrophysical relevance.

doi: 10.1103/PhysRevC.82.032801
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetO1864. Data from this article have been entered in the XUNDL database. For more information, click here.


2010SE21      J.Phys.:Conf.Ser. 202, 012021 (2010)

M.L.Sergi, C.Spitaleri, A.Coc, A.Mukhamedzhanov, V.Burjan, S.Cherubini, V.Crucilla, M.Gulino, F.Hammache, V.Z.Hons, B.Irgaziev, G.Kiss, V.Kroha, M.La Cognata, L.Lamia, R.G.Pizzone, S.M.R.Puglia, G.G.Rapisarda, S.Romano, N.de Sereville, E.Somorjai, S.Tudisco, A.Tumino

Indirect measurement of 17O(p, α)14N cross section at ultra-low energies

NUCLEAR REACTIONS 2H(17O, α14N), E=41 MeV; measured E(particle), I(particle, θ) using position sensitive detectors and ionization chambers; deduced neutron momentum distribution. 17O(p, α), E(cm)=0-0.7 MeV; deduced σ(θ) from 2H(17O, α14N), E=41 MeV using Trojan Horse method in PWIA approach.

doi: 10.1088/1742-6596/202/1/012021
Citations: PlumX Metrics


2009PI12      Phys.Rev. C 80, 025807 (2009)

R.G.Pizzone, C.Spitaleri, A.M.Mukhamedzhanov, L.D.Blokhintsev, C.A.Bertulani, B.F.Irgaziev, M.La Cognata, L.Lamia, S.Romano

Effects of distortion of the intercluster motion in 2H, 3He, 3H, 6Li, and 9Be on Trojan horse applications

NUCLEAR REACTIONS 2H(p, 2p), E=5, 6 MeV; 2H(t, pt), E=35.5 MeV; 2H(3He, p3He), E=17 MeV; 2H(6Li, 3Heα), E=25 MeV; 2H(9Be, α6Li), E=22 MeV; 2H(10B, α7Be), (11B, α8Be), E=27 MeV; 2H(7Li, 2α), E=20 MeV; 2H(15N, α12C), E=60 MeV; 2H(18O, α15N), E=54 MeV; 3H(3He, d3He), (3He, p3He), E=65 MeV; 3H(3He, 2d), E=50, 65, 78 MeV; 3H(3He, pt), E=78 MeV; 3H(d, 2d), E=35 MeV; 3H(p, 2p), (p, pd), E=45.6 MeV; 3He(p, pd), E=65, 85, 100, 590 MeV; 3He(d, pt), E=17, 35, 52 MeV; 3He(d, p3He), E=18 MeV; 6Li(6Li, 2α)4He, E=2.1-44 MeV; 7Li(3He, 2α), E=11, 12, 33 MeV; 9Be(p, pα)5He, E=47, 55, 57, 160 MeV; 9Be(3He, 2α)4He, E=2.8, 3, 4 MeV; 9Be(p, dα), E=30 MeV; 9Be(7Li, α7Li), E=52 MeV; 9Be(α, 2α), E=140 MeV; calculated widths (FWHM) of momentum distributions of the spectator particles using the Trojan Horse method and compared with the experimental data.

doi: 10.1103/PhysRevC.80.025807
Citations: PlumX Metrics


2008BL07      Bull.Rus.Acad.Sci.Phys. 72, 295 (2008); Izv.Akad.Nauk RAS, Ser.Fiz. 72, 321 (2008)

L.D.Blokhintsev, B.F.Irgaziev, A.M.Mukhamedzhanov, A.N.Safronov, A.A.Safronov

Determination of the nuclear vertex constants for the 7Be <-> 3He4He vertex using the N/D equations and calculation of the astrophysical S factor for the 4He(3He, γ)7Be reaction

doi: 10.3103/S1062873808030064
Citations: PlumX Metrics


2008BL11      Bull.Rus.Acad.Sci.Phys. 72, 811 (2008)

L.D.Blokhintsev, V.O.Eremenko, B.F.Irgaziev, Yu.V.Orlov

Characteristics of scattering of Λ hyperons from nuclei within the potential model

NUCLEAR STRUCTURE 7He, 6,7,8,9Be, 6,7,8Li, 11C, 14N, 15O, 39Ca, 88Zr, 207Pb; calculated scattering lengths, phase shifts, and effective radii for low energy Λ scattering using Woods-Saxon, Hulthen, and Yukawa potentials.

doi: 10.3103/S106287380806021X
Citations: PlumX Metrics


2008LA13      Phys.Rev.Lett. 101, 152501 (2008)

M.La Cognata, C.Spitaleri, A.M.Mukhamedzhanov, B.Irgaziev, R.E.Tribble, A.Banu, S.Cherubini, A.Coc, V.Crucilla, V.Z.Goldberg, M.Gulino, G.G.Kiss, L.Lamia, J.Mrazek, R.G.Pizzone, S.M.R.Puglia, G.G.Rapisarda, S.Romano, M.L.Sergi, G.Tabacaru, L.Trache, W.Trzaska, A.Tumino

Measurement of the 20 and 90 keV Resonances in the 18O(p, α)15N Reaction via the Trojan Horse Method

NUCLEAR REACTIONS 2H(18O, nα), E=54 MeV; measured σ(θ, E). 18O(p, α), E=0-250 keV; deduced σ(θ). 19F; deduced low lying resonance strengths. Discussed astrophysical implications.

doi: 10.1103/PhysRevLett.101.152501
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetO1713. Data from this article have been entered in the XUNDL database. For more information, click here.


2008MU07      J.Phys.(London) G35, 014016 (2008)

A.M.Mukhamedzhanov, L.D.Blokhintsev, B.F.Irgaziev, A.S.Kadyrov, M.La Cognata, C.Spitaleri, R.E.Tribble

Trojan Horse as an indirect technique in nuclear astrophysics

NUCLEAR REACTIONS 15N(p, α), E=0-0.85 MeV; calculated astrophysical S-factor. Comparisons with experimental data. Trojan Horse Method.

doi: 10.1088/0954-3899/35/1/014016
Citations: PlumX Metrics


2007BL11      Bull.Rus.Acad.Sci.Phys. 71, 408 (2007); Izv.Akad.Nauk RAS, Ser.Fiz. 71, 423 (2007)

L.D.Blokhintsev, V.O.Eremenko, B.F.Irgaziev, Yu.V.Orlov

Vertex Constants (Asymptotic Normalization Coefficients) and Mean-Square Radii, of Hypernuclei in the Potential Model

NUCLEAR STRUCTURE A=7-208; calculated vertex constants, asymptotic normalization coefficients and mean-square radii for a number of hypernuclei using the potential approach.

doi: 10.3103/S1062873807030215
Citations: PlumX Metrics


2007LA37      Phys.Rev. C 76, 065804 (2007)

M.La Cognata, S.Romano, C.Spitaleri, S.Cherubini, V.Crucilla, M.Gulino, L.Lamia, R.G.Pizzone, A.Tumino, R.Tribble, C.Fu, V.Z.Goldberg, A.M.Mukhamedzhanov, D.Schmidt, G.Tabacaru, L.Trache, B.F.Irgaziev

Astrophysical S(E) factor of the 15N(p, α)12C reaction at sub-Coulomb energies via the Trojan horse method

NUCLEAR REACTIONS 2H(15N, nα), E=60 MeV; measured 12C energies, particle coincidences, momentum. 15N(p, α)12C, E(cm)=19.2-576.0 MeV; deduced angular distributions, excitation functions, astrophysical S-factors using Trojan horse method.

doi: 10.1103/PhysRevC.76.065804
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetC1788.


2007MU10      Nucl.Phys. A787, 321c (2007)

A.M.Mukhamedzhanov, L.D.Blokhintsev, S.Brown, V.Burjan, S.Cherubini, V.Z.Goldberg, M.Gulino, B.F.Irgaziev, E.Johnson, K.Kemper, V.Kroha, M.La Cognata, L.Lamia, A.Momotyuk, R.G.Pizzone, B.Roeder, G.Rogachev, S.Romano, C.Spitaleri, R.E.Tribble, A.Tumino

Indirect Techniques in Nuclear Astrophysics. Asymptotic Normalization Coefficient and Trojan Horse

NUCLEAR REACTIONS 13C(α, n), E=0-0.9 MeV; calculated astrophysical S-factor. Asymptotic normalization coefficient method. Comparison with data. 6Li(d, α), 7Li(p, α), E=0-800 keV; calculated astrophysical S-factor. Trojan horse method.

doi: 10.1016/j.nuclphysa.2006.12.051
Citations: PlumX Metrics


2006IR01      Bull.Rus.Acad.Sci.Phys. 70, 254 (2006)

B.F.Irgaziev, Yu.V.Orlov

Virtual state in configuration space

NUCLEAR STRUCTURE 3H; calculated virtual state energy.


2006IR02      Bull.Rus.Acad.Sci.Phys. 70, 257 (2006)

B.F.Irgaziev, L.I.Nikitina, Yu.V.Orlov

Nucleon-deuteron system at low energies within a two-body potential model

NUCLEAR STRUCTURE 3H, 3He; calculated binding energies, effective radius functions.


2006MU08      Phys.Rev. C 73, 035806 (2006)

A.M.Mukhamedzhanov, P.Bem, V.Burjan, C.A.Gagliardi, B.F.Irgaziev, V.Kroha, J.Novak, S.Piskor, E.Simeckova, R.E.Tribble, F.Vesely, J.Vincour

Asymptotic normalization coefficients from the 20Ne(3He, d)21Na reaction and astrophysical factor for 20Ne(p, γ)21Na

NUCLEAR REACTIONS 20Ne(3He, d), E=25.83 MeV; measured deuteron spectra, σ(E, θ); deduced asymptotic normalization coefficients. 20Ne(p, γ), E=0-1200 keV; deduced astrophysical S-factor.

doi: 10.1103/PhysRevC.73.035806
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetD0396. Data from this article have been entered in the XUNDL database. For more information, click here.


2006MU15      Eur.Phys.J. A 27, Supplement 1, 205 (2006)

A.M.Mukhamedzhanov, L.D.Blokhintsev, B.A.Brown, V.Burjan, S.Cherubini, C.A.Gagliardi, B.F.Irgaziev, V.Kroha, F.M.Nunes, F.Pirlepesov, R.G.Pizzone, S.Romano, C.Spitaleri, X.D.Tang, L.Trache, R.E.Tribble, A.Tumino

Indirect techniques in nuclear astrophysics: Asymptotic Normalization Coefficient and Trojan Horse

NUCLEAR REACTIONS 14N(3He, d), E=26.3 MeV; measured σ(θ). 14N(p, γ), E ≈ 100-600 keV; deduced astrophysical S-factor. 11C, 13N(p, γ), E not given; analyzed resonant and nonresonant amplitudes. Asymptotic normalization coefficient and Trojan horse techniques discussed.

doi: 10.1140/epja/i2006-08-032-7
Citations: PlumX Metrics


2005AL07      Phys.Rev. C 71, 024605 (2005)

E.O.Alt, B.F.Irgaziev, A.M.Mukhamedzhanov

Three-body Coulomb interaction effects in the final state of the 208Pb(8B, 7Be p)208Pb Coulomb breakup reaction

NUCLEAR REACTIONS 208Pb(8B, p7Be), E=46.5, 83 MeV/nucleon; calculated σ(E, θ), post-decay acceleration effect.

doi: 10.1103/PhysRevC.71.024605
Citations: PlumX Metrics


2005MU27      J.Phys.(London) G31, S1413 (2005)

A.M.Mukhamedzhanov, E.O.Alt, L.D.Blokhintsev, S.Cherubini, B.F.Irgaziev, A.S.Kadyrov, D.Miljanic, A.Musumarra, M.G.Pellegriti, F.Pirlepesov, C.Rolfs, S.Romano, C.Spitaleri, N.K.Timofeyuk, R.E.Tribble, A.Tumino

Few-body problems in nuclear astrophysics

doi: 10.1088/0954-3899/31/10/005
Citations: PlumX Metrics


2004NU01      Nucl.Phys. A736, 255 (2004)

F.M.Nunes, A.M.Mukhamedzhanov, C.C.Rosa, B.Irgaziev

Insight into continuum couplings

NUCLEAR REACTIONS 58Ni(8B, p7Be), E=low; calculated continuum coupling matrix elements. Continuum discretized coupled channels method.

doi: 10.1016/j.nuclphysa.2004.03.035
Citations: PlumX Metrics


2004TA15      Phys.Rev. C 69, 055807 (2004)

X.Tang, A.Azhari, C.Fu, C.A.Gagliardi, A.M.Mukhamedzhanov, F.Pirlepesov, L.Trache, R.E.Tribble, V.Burjan, V.Kroha, F.Carstoiu, B.F.Irgaziev

Determination of the direct capture contribution for 13N(p, γ)14O from the 14O → 13N + p asymptotic normalization coefficient

NUCLEAR REACTIONS 14N(13N, 14O), E=11.8 MeV/nucleon; measured σ(θ); deduced asymptotic normalization coefficient. 12C, 14N(13N, 13N), E=11.8 MeV/nucleon; measured elastic σ(θ). 13N(p, γ), E=low; deduced astrophysical S-factor, reaction rates.

doi: 10.1103/PhysRevC.69.055807
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetC1490.


2003AL07      Phys.Rev.Lett. 90, 122701 (2003)

E.O.Alt, B.F.Irgaziev, A.M.Mukhamedzhanov

Final State Three-Body Coulomb Effects in the 208Pb(8B, 7Bep)208Pb Coulomb Breakup Reaction

NUCLEAR REACTIONS 208Pb(8B, p7Be), E=46.5, 83 MeV/nucleon; calculated Coulomb breakup σ(E, θ), final state three-body effects.

doi: 10.1103/PhysRevLett.90.122701
Citations: PlumX Metrics


2003IR01      Yad.Fiz. 66, 713 (2003); Phys.Atomic Nuclei 66, 684 (2003)

B.F.Irgaziev, Sh.Kalandarov, A.M.Mukhamedzhanov

Coulomb Breakup of Light Nuclei in the Field of a Heavy Ion at Relativistic Collision Energies

NUCLEAR REACTIONS 208Pb(8B, p7Be), E=46.5, 254 MeV/nucleon; calculated Coulomb breakup σ vs relative energy. Time-dependent perturbation theory, comparison with data.

doi: 10.1134/1.1575567
Citations: PlumX Metrics


1997IG03      Yad.Fiz. 60, No 12, 2194 (1997); Phys.Atomic Nuclei 60, 2012 (1997)

S.B.Igamov, B.F.Irgaziev, R.Yarmukhamedov

Three-Body Coulomb Effects in the Coulomb Breakup of Light Nuclei Into Two Fragments in the Field of a Heavy Multiply Charged Ion

NUCLEAR REACTIONS 208Pb(6Li, dα), E=156 MeV; calculated σ(E(dα), θ); deduced E1 transition role. Coulomb breakup, three-body effects.


1996IR01      Yad.Fiz. 59, No 11, 1971 (1996); Phys.Atomic Nuclei 59, 1899 (1996)

B.F.Irgaziev, Kh.T.Ergashbaev

Coulomb Breakup of 6Li on a 208Pb Nucleus Through a Resonance

NUCLEAR REACTIONS 208Pb(6Li, dα), E=156 MeV; analyzed σ(θ(αd), E(αd), θ(f)). Projectile Coulomb dissociation through a resonance.


1995AL28      Yad.Fiz. 58, No 11, 1967 (1995); Phys.Atomic Nuclei 58, 1860 (1995)

E.O.Alt, B.F.Irgaziev, A.T.Muminov, A.M.Mukhamedzhanov

Effect of Three-Body Coulomb Interactions on the Breakup of Light Nuclei in the Field of a Heavy Ion: An asymptotic estimate

NUCLEAR REACTIONS 208Pb, 40Ca(6Li, dα), (7Li, tα), 208Pb(16O, α12C), E=100-500 MeV; calculated differential σ ratio; deduced three-body Coulomb interactions role. Quasielastic breakup.


1993IR02      Yad.Fiz. 56, No 7, 71 (1993); Phys.Atomic Nuclei 56, 896 (1993)

B.F.Irgaziev, A.M.Mukhamedzhanov, A.T.Muminov, E.O.Alt

Coulomb Breakup of Fast Ions with Three-Body Coulomb Effects

NUCLEAR REACTIONS 208Pb(6Li, dα), E=156 MeV; calculated σ(θα, Eα, θd). Breakup reaction, Coulomb effects.


1986AV06      Yad.Fiz. 44, 942 (1986)

G.V.Avakov, B.F.Irgaziev, R.Yarmukhamedov

On Direct Mechanism of Three-Particle Photodisintegration of the 6Li Nucleus

NUCLEAR REACTIONS 6Li(γ, pd), E=60 MeV; calculated three-particle breakup σ(Ep, θp). Direct mechanism.


1983IR01      Fizika(Zagreb) 15, 147 (1983)

B.F.Irgaziev, M.M.Musakhanov, A.L.Zubarev, Z.Maric

Influence of the Energy Continuum of the NN Subsystem on the πd Elastic Scattering Length

NUCLEAR REACTIONS 2H(π, π), E=low; calculated scattering amplitude; deduced pion-deuteron scattering length.


1980BA55      Yad.Fiz. 32, 369 (1980); Sov.J.Nucl.Phys. 32, 191 (1980)

A.G.Baryshnikov, V.B.Belyaev, L.D.Blokhintsev, B.F.Irgaziev, Yu.V.Orlov

Scattering and Reactions in a 4-Nucleon System within the Framework of the K-Matrix Formalism

NUCLEAR REACTIONS 3He(p, p), E=9.75, 19.48, 30.6 MeV; 3H(p, p), E=13.6, 19.48 MeV; calculated σ(θ); deduced nucleon-nucleon interaction dependence. Multi-channel K-matrix formalism.


1972BE47      JINR-P4-6505 (1972)

V.B.Belyaev, A.L.Zubarev, B.F.Irgaziev

Factorization of the Pair Potential by the Bateman Modified Method in the Two- and Three-Body Problem


Back to query form


Note: The following list of authors and aliases matches the search parameter B.Irgaziev: , B.F.IRGAZIEV