References quoted in the ENSDF dataset: 100SN ADOPTED LEVELS
228 references found.
Clicking on a keynumber will list datasets that reference the given article.
Z.Phys. A335, 265 (1990)
D.Alber, H.H.Bertschat, H.Grawe, H.Haas, B.Spellmeyer, X.Sun
First In-Beam Observation of 97Ag - The Three-Proton-Hole Spectrum in 100Sn
NUCLEAR REACTIONS 46Ti(58Ni, 2npα), (58Ni, n2pα), (58Ni, 2n3pα), E=230 MeV; 64Zn(36Ar, 2np), E=130 MeV; measured γ(particle), γγ(particle)-coin, γ(t). 97Ag deduced levels, J, π, T1/2. 97Pd deduced isomer J, π, T1/2. 95Rh deduced levels, J, π. Shell model comparison.
NUCLEAR STRUCTURE 97Ag, 95Rh, 100Sn; calculated levels. Shell model.
Yad.Fiz. 52, 985 (1990); Sov.J.Nucl.Phys. 52, 627 (1990)
I.N.Borzov, E.L.Trykov, S.A.Fayans
Strength Functions of Gamow-Teller Excitations of Stable and Neutron-Deficient Nuclei
NUCLEAR STRUCTURE 54Fe, 60Ni, 94Ru, 96Pd, 110,108,106,104,102,100Sn, 148Dy, 150Er; calculated Gamow-Teller transition strength functions.
Z.Phys. A341, 261 (1992)
O.Civitarese, A.Faessler, M.C.Licciardo
Pair Density Fluctuations in a Number Projected BCS Approximation
NUCLEAR STRUCTURE 100,124Sn; calculated microscopic, macroscopic one-body density, pair density fluctuations; deduced number projection role. BCS treatment.
Bull.Rus.Acad.Sci.Phys. 57, 1783 (1993)
I.N.Borzov, S.A.Fayans, K.Rykaczewski
Gamow-Teller β-Decay of Nuclei in the Vicinity of 100Sn
RADIOACTIVITY 100,101,102,103,104,105,106,107,108,109Sn(β+); calculated β+-decay energy, Q(EC), Gamow-Teller transition strength; deduced renormalization features. Finite Fermi systems theory.
Phys.Rev. C48, R960 (1993)
I.Hamamoto, H.Sagawa
Gamow-Teller Beta Decay and Isospin Impurity in Nuclei Near the Proton Drip Line
NUCLEAR STRUCTURE 56Ni, 64Ge, 76Sr, 78Zr, 100,106Sn; calculated Gamow-Teller transition strength nonenergy weighted sum rule percentage. 12C, 16O, 40Ca, 56Ni, 64Ge, 76Sr, 80Zr, 100Sn; calculated isospin mixing probabilities. Hartree-Fock plus TDA approximation.
Z.Phys. A346, 253 (1993)
S.Kamerdzhiev, J.Speth, G.Tertychnyi, J.Wambach
M1 Resonances in Unstable Magic Nuclei
NUCLEAR STRUCTURE 48Ca, 208Pb, 56,78Ni, 100,132Sn; calculated M1 transition strength distributions, B(M1). Microscopic approach, RPA configurations, single particle continuum.
Phys.Rev. C50, R2270 (1994)
B.A.Brown, K.Rykaczewski
Gamow-Teller Strength in the Region of 100Sn
NUCLEAR STRUCTURE 100Sn, 98Cd, 96Pd, 94Ru; calculated β+ decay associated Gamow-Teller transition strength distribution. Shell model approach.
doi: 10.1103/PhysRevC.50.R2270
Nucl.Phys. A577, 13c (1994)
B.A.Brown
Gamow-Teller Strength in Nuclei with N = Z from 12C to 100Sn
NUCLEAR STRUCTURE 4He, 12C, 16O, 28Si, 20Ne, 24Mg, 32S, 40Ca, 56Ni, 100Sn; calculated Gamow-Teller strength. Shell model.
doi: 10.1016/0375-9474(94)90827-3
Phys.Rev.Lett. 72, 981 (1994)
J.Dobaczewski, I.Hamamoto, W.Nazarewicz, J.A.Sheikh
Nuclear Shell Structure at Particle Drip Lines
NUCLEAR STRUCTURE 100Sn, 100Zn; calculated nucleon densities, central potentials radial dependences. A=120; calculated single particles levels for isobars. Self-consistent mean-field theory.
doi: 10.1103/PhysRevLett.72.981
Acta Phys.Pol. B25, 541 (1994)
J.Dobaczewski, I.Hamamoto, W.Nazarewicz, J.A.Sheikh
Nuclear Structure at Particle Drip Lines
NUCLEAR STRUCTURE 100,118,132,150Sn; calculated single particle nucleonic densities. A=100, 120, 150; calculated single particle levels. A=94-110; calculated Q(EC) for Ru, PD, Cd, Sn isotopes. 76,78,80,82Sr; calculated levels. Mean field approach.
Phys.Rev. C50, 501 (1994)
M.Hjorth-Jensen, H.Muther, A.Polls
Width of the Δ Resonance in Nuclei
NUCLEAR STRUCTURE 40Ca, 16O, 100Sn; calculated two-body absorption component of Δ self-energy vs distance from center of nucleus, imaginary part vs deposited energy.
Nucl.Phys. A569, 313c (1994)
S.Kamerdzhiev, G.Tertychnyi, J.Speth
Theoretical Description of Giant Resonances in Stable and Unstable Magic Nuclei
NUCLEAR REACTIONS 208Pb(γ, X), E ≤ 35 MeV; calculated photoabsorption σ(E). Microscopic approach, Green function method, RPA with complex configuration.
NUCLEAR STRUCTURE 40Ca, 56,78Ni, 100,132Sn, 208Pb; calculated diverse giant resonance excitation functions, B(λ). Microscopic approach, Green function method, RPA with complex configuration.
doi: 10.1016/0375-9474(94)90122-8
Phys.Lett. 332B, 20 (1994)
M.Lewitowicz, R.Anne, G.Auger, D.Bazin, C.Borcea, V.Borrel, J.M.Corre, T.Dorfler, A.Fomichov, R.Grzywacz, D.Guillemaud-Mueller, R.Hue, M.Huyse, Z.Janas, H.Keller, S.Lukyanov, A.C.Mueller, Yu.Penionzhkevich, M.Pfutzner, F.Pougheon, K.Rykaczewski, M.G.Saint-Laurent, K.Schmidt, W.D.Schmidt-Ott, O.Sorlin, J.Szerypo, O.Tarasov, J.Wauters, J.Zylicz
Identification of the Doubly-Magic Nucleus 100Sn in the Reaction 112Sn + (nat)Ni at 63 MeV/Nucleon
NUCLEAR REACTIONS Ni(112Sn, X)100Sn, E=63 MeV/nucleon; measured fragment Z vs mass to charge ratio; deduced evidence for 100Sn. Production σ lower limit given.
doi: 10.1016/0370-2693(94)90852-4
Z.Phys. A348, 241 (1994)
R.Schneider, J.Friese, J.Reinhold, K.Zeitelhack, T.Faestermann, R.Gernhauser, H.Gilg, F.Heine, J.Homolka, P.Kienle, H.J.Korner, H.Geissel, G.Munzenberg, K.Summerer
Production and Identification of 100Sn
NUCLEAR REACTIONS 9Be(124Xe, X)100Sn, E=1095 MeV/nucleon; measured residual production σ following projectile fragmentation. Fragment identification by event by event magnetic rigidity, tof, energy deposition.
Z.Phys. A350, 91 (1994)
J.Schaffner, J.A.Maruhn, H.Stocker, W.Greiner
Proton Halos in 100Sn using a Relativistic Shell Model
NUCLEAR STRUCTURE 100Sn; calculated binding energy, proton, neutron separation energies.
Phys.Scr. T56, 231 (1995)
E.Chabanat, P.Bonche, P.Haensel, J.Meyer, R.Schaeffer
New Skyrme Effective Forces for Supernovae and Neutron Rich Nuclei
NUCLEAR STRUCTURE 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140Sn; calculated two neutron separation energies. Z=32-78; calculated two proton separation energies. Hartree-Fock plus BCS formalism, new Skyrme-like effective interactions.
Phys.Rev. C52, R1175 (1995)
G.Colo, M.A.Nagarajan, P.Van Isacker, A.Vitturi
Isospin Mixing in Proton-Rich N ≈ Z Nuclei
NUCLEAR STRUCTURE 90Zr, 99,100Sn, 99In, 40Ca, 88Sr, 208Pb; calculated isospin admixtures. 100Sn; calculated isovector giant monopole resonance strength distribution. Hartree-Fock approach, Skyrme forces.
doi: 10.1103/PhysRevC.52.R1175
Phys.Rev. C51, R1070 (1995)
J.Dobaczewski, W.Nazarewicz
Limits of Proton Stability Near 100Sn
NUCLEAR STRUCTURE 94,96,98,100Cd, 96,98,100,102Sn, 98,100,102,104Te; calculated total energy. 106,108,110Te, 94,96,98,100,102Sn; calculated two proton separation energies; deduced proton stability features. 92,94,96,98,100,102Sn; calculated single particle proton energies. Skyrme HFB theory.
doi: 10.1103/PhysRevC.51.R1070
Phys.Lett. 345B, 181 (1995)
J.Dobaczewski, I.Hamamoto
Isospin Impurities in Ground States of N = Z Nuclei Near the Proton-Drip Line
NUCLEAR STRUCTURE 56Ni, 64Ge, 76Sr, 80Zr, 100Sn; calculated isospin mixing probabilities. Deformed Hartree-Fock solutions, Skyrme interaction.
doi: 10.1016/0370-2693(94)01634-O
Acta Phys.Pol. B26, 341 (1995)
H.Grawe, R.Schubart, M.Gorska, K.H.Maier, J.B.Fitzgerald, J.Heese, M.Rejmund, K.Spohr, and the OSIRIS and NORDBALL Collaborations
The Experimental and Shell Model Approach to 100Sn
NUCLEAR REACTIONS 46,48Ti(58Ni, 2n2p), E=230 MeV; measured nγγ-, pγγ-coin. 100,102Cd deduced levels, J, π. Model comparison.
NUCLEAR STRUCTURE 98Ag, 100,104,106Sn; analyzed levels, B(λ) data in some cases. 105Sb; calculated proton-, γ-decay schemes.
Phys.Scr. T56, 71 (1995)
H.Grawe, R.Schubart, K.H.Maier, D.Seweryniak, and the OSIRIS/NORDBALL Collaborations
The Shell Model at 100Sn-An Experimental Status Report
NUCLEAR STRUCTURE 91Zr, 93Mo, 95Ru, 95,97Pd, 99Cd, 104,105,106,107,101Sn; calculated levels. 16O, 40Ca, 56Ni; analyzed Coulomb energy shifts. 100Sn; deduced single particle energies, Coulomb energy shifts between protons, neutrons. Shell model.
Phys.Rev. C51, 2817 (1995)
I.P.Johnstone, L.D.Skouras
Binding Energies of Proton-Rich Nuclei in the Vicinity of 100Sn
NUCLEAR STRUCTURE 90,91,92Zr, 91,92,93Nb, 92,93,94Mo, 93,94,95Tc, 94,95,96Ru, 95,96,97Rh, 96,97,98Pd, 97,98,99Ag, 98,99,100Cd, 99,100,101In, 100,101,102Sn; calculated binding energies; deduced relevance to β-decay, β-delayed proton emission.
J.Phys.(London) G21, L63 (1995)
I.P.Johnstone, L.D.Skouras
The Spectrum and Decay of 100Sn
NUCLEAR STRUCTURE 100Sn, 100In; calculated levels; deduced β+-decay characteristics.
doi: 10.1088/0954-3899/21/8/001
Nucl.Phys. A588, 197c (1995)
M.Lewitowicz, R.Anne, G.Auger, D.Bazin, C.Borcea, V.Borrel, J.M.Corre, T.Dorfler, A.Fomichov, R.Grzywacz, D.Guillemaud-Mueller, R.Hue, M.Huyse, Z.Janas, H.Keller, S.Lukyanov, A.C.Mueller, Yu.Penionzhkevich, M.Pfutzner, F.Pougheon, K.Rykaczewski, M.G.Saint-Laurent, K.Schmidt, W.D.Schmidt-Ott, O.Sorlin, J.Szerypo, O.Tarasov, J.Wauters, J.Zylicz
Identification of 100Sn and Other Proton Drip-Line Nuclei in the Reaction 112Sn(63 MeV/nucl.)+(Nat)Ni
NUCLEAR REACTIONS Ni(112Sn, X), E=63 MeV/nucleon; measured (fragment)γ(t), fragment mass distribution; deduced evidence for 103,104Sb, 98In, 91Pd, 89Rh, 87Ru, 66mAs.
doi: 10.1016/0375-9474(95)00139-R
J.Phys.(London) G21, 691 (1995)
Z.Ren, G.-O.Xu, B.Chen, Z.Ma
Ground-State Properties of the Nucleus 100Sn in Relativistic and Non-Relativistic Mean-Field Approaches
NUCLEAR STRUCTURE 100,114,132Sn; calculated binding energy per nucleon, n-, p- radii, differences. Mean field approach, Skyrme interactions.
doi: 10.1088/0954-3899/21/5/013
Phys.Rev. C52, R2310 (1995)
K.Rykaczewski, R.Anne, G.Auger, D.Bazin, C.Borcea, V.Borrel, J.M.Corre, T.Dorfler, A.Fomichov, R.Grzywacz, D.Guillemaud-Mueller, R.Hue, M.Huyse, Z.Janas, H.Keller, M.Lewitowicz, S.Lukyanov, A.C.Mueller, Yu.Penionzhkevich, M.Pfutzner, F.Pougheon, M.G.Saint-Laurent, K.Schmidt, W.D.Schmidt-Ott, O.Sorlin, J.Szerypo, O.Tarasov, J.Wauters, J.Zylicz
Identification of New Nuclei at and Beyond the Proton Drip Line Near the Doubly Magic Nucleus 100Sn
NUCLEAR REACTIONS Ni(112Sn, X), E=58, 62 MeV/nucleon; measured heavy fragments energy loss, total kinetic energy, Eγ, Iγ; deduced evidence for 103,104Sb, 98In, 91Pd, 89Rh, 87Ru. Other fragments atomic, mass numbers, charge state deduced. Tof.
doi: 10.1103/PhysRevC.52.R2310
Nucl.Phys. A583, 755c (1995)
H.Sagawa
Perspectives on Study of Unstable Nuclei Near Drip Lines
NUCLEAR STRUCTURE 11Be; calculated dipole transition strength. 56Ni, 64Ge, 78Zr, 100Sn; calculated Gamow-Teller giant resonance energy. 6He; calculated monopole, dipole, quadrupole RPA responses. Microscopic Hartree-Fock + RPA.
doi: 10.1016/0375-9474(94)00754-B
Nucl.Phys. A588, 209c (1995)
H.Sagawa
Structure of Unstable Nuclei Near Proton Drip Line
NUCLEAR STRUCTURE 56Co, 64Ga, 78Zn, 100In; calculated Gamow-Teller giant resonance energy relative to mother nucleus ground state. 12C, 16O, 40Ca, 56Ni, 64Ge, 78Sr, 80Zr, 100Sn; calculated isospin mixing probabilities. 76Sr, 64Ge, 56Ni, 100,106Sn; calculated potential energy vs deformation. Hartree-Fock+TDA (or RPA), finite-range droplet model.
doi: 10.1016/0375-9474(95)00141-M
Phys.Scr. T56, 84 (1995)
N.Sandulescu, J.Blomqvist, R.J.Liotta
Microscopic Description of Light Sn Isotopes
NUCLEAR STRUCTURE A=100-114; compiled, reviewed level calculation, Sn isotopes. Shell model.
Nucl.Phys. A588, 191c (1995)
R.Schneider, T.Faestermann, J.Friese, R.Gernhauser, H.Geissel, H.Gilg, F.Heine, J.Homolka, P.Kienle, H.-J.Korner, G.Munzenberg, J.Reinhold, K.Summerer, K.Zeitelhack
Production, Identification, and Halflife Measurement of 100Sn
NUCLEAR REACTIONS 9Be(124Xe, X), E=1.095 GeV/nucleon; measured fragment energy deposition vs mass to charge ratio for 100,101Sn, 100,98,99In.
RADIOACTIVITY 102,100Sn(β+); 104Sb(β+p); 105Sb(β+); 108Te(β+), (α) [from 9Be(124Xe, X), E=1.095 GeV/nucleon]; measured T1/2.
doi: 10.1016/0375-9474(95)00138-Q
Phys.Scr. T56, 67 (1995)
R.Schneider, T.Faestermann, J.Friese, R.Gernhauser, H.Gilg, F.Heine, J.Homolka, P.Kienle, H.J.Korner, J.Reinhold, K.Zeitelhack, H.Geissel, G.Munzenberg, K.Summerer
Identification and Halflife Measurement of 100Sn and Neighbouring Nuclei
NUCLEAR REACTIONS 9Be(124Xe, X), E=1095 MeV/nucleon; measured energy deposition vs (M/Q), fragment decay event energy spectra; deduced evidence for 100Sn.
RADIOACTIVITY 105,104,100Sn(β+) [from 9Be(124Xe, X), E=1095 MeV/nucleon]; measured T1/2.
Z.Phys. A352, 373 (1995)
R.Schubart, H.Grawe, J.Heese, H.Kluge, K.H.Maier, M.Schramm
Shell Model Structure at 100Sn - The Nuclides 98Ag, 103In, and 104,105Sn
NUCLEAR REACTIONS, ICPND 50Cr(58Ni, xnypzα), E=250 MeV; measured γγ-, nγγ-, pγγ-, αγγ-coin, Eγ, Iγ; deduced production σ for 102-105Sn, 102-105In, 98-104Cd, 98-103Ag, 95-100Pd, 94-97Rh. 106,104,105Sn, 98Ag, 103In deduced levels, J, π, B(λ), Iγ. Shell model comparison.
GSI-94-1, p.26 (1995)
R.Schneider, T.Faestermann, J.Friese, R.Gernhauser, H.Geissel, H.Gilg, F.Heine, J.Homolka, P.Kienle, H.-J.Korner, G.Munzenberg, J.Reinhold, K.Summerer, K.Zeitelhack
Production and Decay Measurements of 100Sn
NUCLEAR REACTIONS 9Be(124Xe, X), E=1.095 GeV/nucleon; measured fragment mass to charge ratio, α-decay characteristics of 108Te, 105,104Sb, 100,102Sn.
RADIOACTIVITY 102,100Sn(β+), 104Sb(β+); 108Te(β+), (α) [from 9Be(124Xe, X), E=1.095 GeV/nucleon]; measured decay characteristics.
Z.Phys. A355, 117 (1996)
I.N.Borzov, S.A.Fayans, E.Kromer, D.Zawischa
Ground State Properties and β-Decay Half-Lives Near 132Sn in a Self-Consistent Theory
NUCLEAR STRUCTURE 100,132Sn; calculated nucleon, matter density distributions. 40Ca, 208Pb; calculated density distributions. 127,129,128,130Cd, 133,134Sn, 138Te, 123,125,127,129Ag, 131,133,135In, 135Sb; calculated levels, J, π, Qβ, T1/2, Gamow-Teller strength distributions. 124,125,126,131,132,133Cd; calculated T1/2.
Phys.Rev.Lett. 77, 2400 (1996)
M.Chartier, G.Auger, W.Mittig, A.Lepine-Szily, L.K.Fifield, J.M.Casandjian, M.Chabert, J.Ferme, A.Gillibert, M.Lewitowicz, M.Mac Cormick, M.H.Moscatello, O.H.Odland, N.A.Orr, G.Politi, C.Spitaels, A.C.C.Villari
Mass Measurement of 100Sn
ATOMIC MASSES 100Cd, 100In, 100Sn; measured masses with respect to 100Ag. Secondary mass=100 ions from 58Ni(50Cr, X) reactions.
doi: 10.1103/PhysRevLett.77.2400
Phys.Lett. 367B, 17 (1996)
D.J.Dean, S.E.Koonin, T.T.S.Kuo, K.Langanke, P.B.Radha
Complete 0(h-bar x Omega) Shell Model Carlo Calculations of 94Ru, 96Pd, 96,98Cd and 100Sn
NUCLEAR STRUCTURE 94Ru, 96Pd, 96,98Cd, 100Sn; calculated Gamow-Teller transition, masses, strengths. Shell model Monte Carlo technique.
doi: 10.1016/0370-2693(95)01446-2
Phys.Rev. C53, 2809 (1996)
J.Dobaczewski, W.Nazarewicz, T.R.Werner, J.F.Berger, C.R.Chinn, J.Decharge
Mean-Field Description of Ground-State Properties of Drip-Line Nuclei: Pairing and continuum effects
NUCLEAR STRUCTURE 132,120,150,172,100Sn; calculated neutron, pairing densities, other aspects. Mean-field approach.
Phys.Rev. C53, 765 (1996)
I.Hamamoto, H.Sagawa, X.Z.Zhang
Single-Particle and Collective Properties of Drip-Line Nuclei
NUCLEAR STRUCTURE 110Ni, 100,120Sn, 120Sr; calculated Hartree-Fock density, Hartree-Fock potential vs r. 110Ni, 100Sn; calculated isoscalar, isovector monopole, isovector dipole, isoscalar quadrupole modes strength functions. Hartree-Fock with Skyrme interactions, RPA.
J.Phys.(London) G22, 321 (1996)
M.Hjorth-Jensen, H.Muther, E.Osnes, A.Polls
Comparison of the Effective Interaction to Various Orders in Different Mass Regions
NUCLEAR STRUCTURE 4He, 16O, 40Ca, 100Sn, 208Pb; calculated diagonal, nondiagonal matrix elements, mean value ratios; deduced higher-order terms contributions stability mass dependence. Effective interaction to various orders, shell model.
doi: 10.1088/0954-3899/22/3/006
Nucl.Phys. A599, 373c (1996)
S.Kamerdzhiev, J.Speth
Distribution of Giant Resonance Strength in Stable and Unstable Nuclei
NUCLEAR REACTIONS 208Pb(γ, X), E ≤ 40 MeV; compiled, reviewed calculations of giant resonance photoabsorption σ(E). 208Pb(γ, n), E ≤ 22 MeV; calculated σ(E). Microscopic theory.
NUCLEAR STRUCTURE 48,40Ca, 56,78Ni, 100,132Sn, 208Pb; compiled, reviewed calculations of B(M1).
doi: 10.1016/0375-9474(96)00080-2
Hyperfine Interactions 103, 49 (1996)
P.Kienle
On the Limit of Nuclear Stability - The Region of Double Magic 100Sn and Bound-State β-Decay of 187Re75
RADIOACTIVITY 100Sn(β+) [from 9Be(124Xe, X), E=1.1 GeV/nucleon]; measured β+ endpoint energy, T1/2. 187Re(β-); measured bound state β-decay associated T1/2.
NUCLEAR REACTIONS 27Al(129Xe, X)104Sn/105Sn/106Sn/107Sn, E=790 MeV/nucleon; 9Be(129Xe, X)100Sn/101Sn/102Sn/103Sn/104Sn/105Sn/106Sn, E=1.1 GeV/nucleon; measured residuals production σ.
Z.Phys. A355, 247 (1996)
Y.-S.Shen, Z.Ren
Skyrme-Hartree-Fock Approach to Cd, Sn and Te Isotopes
NUCLEAR STRUCTURE 98,100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130Cd, 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134Sn, 108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138Te; calculated binding energies, nucleon, charge radii. Skyrme Hartree-Fock approach.
Z.Phys. A356, 133 (1996)
Y.-S.Shen, Z.Ren
Skyrme-Hartree-Fock Approach to Spherical Nuclei with Density-Dependent Pairing Correlations
NUCLEAR STRUCTURE 16O, 40,48Ca, 90Zr, 178,180,182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214Pb, 50,52,54,56,58,60,62,64,66,68,70,72,74,76,78Ni, 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132Sn; calculated binding energy, nucleon, charge, matter radii, isotope shifts. 28O, 30Ne, 32Mg, 34Si, 36S, 38Ar, 42Ti, 44Cr, 46Fe, 32,34,36,38,42,44,50,52Ca; calculated binding energy, nucleon, matter radii. Skyrme-Hartree-Fock model plus density-dependent correlation.
Nucl.Phys. A627, 710 (1997)
E.Chabanat, P.Bonche, P.Haensel, J.Meyer, R.Schaeffer
A Skyrme Parametrization from Subnuclear to Neutron Star Densities
NUCLEAR STRUCTURE 16O, 40,48Ca, 56,78Ni, 100,132Sn, 208Pb; calculated binding energies, radii; deduced parameters. Skyrme parametrization.
doi: 10.1016/S0375-9474(97)00596-4
Phys.Rev. C56, 804 (1997); Comment Phys.Rev. C59, 2952 (1999)
G.G.Dussel, H.M.Sofia, A.Tonina
Pairing Interaction and Galilei Invariance
NUCLEAR STRUCTURE 60Ni, 70,72Ge, 88Sr, 90,96Zr, 100,114,116,120,132Sn, 138Ba, 154Gd, 156Dy, 170Yb, 206,208Pb; calculated effective nucleon mass, energy-weighted sum rule; deduced mass dipole operator effect.
Z.Phys. A358, 185 (1997)
H.Grawe, M.Gorska, M.Lipoglavsek, R.Schubart, A.Atac, A.Axelsson, J.Blomqvist, J.Cederkall, G.de Angelis, M.de Poli, C.Fahlander, A.Johnson, K.H.Maier, L.-O.Norlin, J.Nyberg, D.Foltescu, M.Palacz, J.Persson, M.Rejmund, H.A.Roth, T.Shizuma, O.Skeppstedt, G.Sletten, M.Weiszflog, and the OSIRIS/NORDBALL-PEX/EUROBALL Collaboration
Present Status and Future Aspects of Nuclear Structure Close to 100Sn
NUCLEAR STRUCTURE 94Pd, 98,96Cd, 92Ru; compiled, reviewed level data, analyses. 99,101,100Cd, 104,106Sn, 90Zr, 48Ca, 56,68Ni; compiled, reviewed B(λ) data. 16O, 40Ca, 56Ni, 100Sn; compiled, reviewed Coulomb shift corrected single particle energies.
Phys.Lett. 394B, 1 (1997)
I.Hamamoto, H.Sagawa
Electric Quadrupole Polarization Charges in Proton Drip Line Nuclei
NUCLEAR STRUCTURE 48Ni, 100Sn; calculated isoscalar, isovector quadrupole strength function, nucleon polarization charges, B(E2). Hartree-Fock with Skyrme interactions, RPA solved in coordinate space with the Green's function method.
doi: 10.1016/S0370-2693(96)01657-7
Nucl.Phys. A627, 35 (1997)
H.Herndl, B.A.Brown
Shell-Model Calculations for the Properties of Nuclei with A = 86-100 Near the Proton Drip Line
NUCLEAR STRUCTURE 92,94Pd, 90,91,92Rh, 89Tc; calculated levels, J, π. 86,87,88Sr, 86,87,88,89Y, 86,87,88,89,90Zr, 86,87,88,89,90,91Nb, 86,87,88,89,90,91,92Mo, 86,87,88,89,90,91,92,93Tc, 86,87,88,89,90,91,92,93,94Ru, 86,87,88,89,90,91,92,93,94,95Rh, 86,87,88,89,90,91,92,93,94,95,96Pd, 87,88,89,90,91,92,93,94,95,96,97Ag, 88,89,90,91,92,93,94,95,96,97,98Cd, 89,90,91,92,93,94,95,96,97,98,99In, 90,91,92,93,94,95,96,97,98,99,100Sn; calculated binding energies; deduced proton drip line. 86,87,88Sr, 86,87,88,89Y, 86,87,88,89,90Zr, 86,87,88,89,90,91Nb, 86,87,88,89,90,91,92Mo, 86,87,88,89,90,91,92,93Tc, 86,87,88,89,90,91,92,93,94Ru, 90,91,92,93,94,95Rh, 88,89,90,91,92,93,94,95,96Pd, 94,95,96,97Ag, 92,93,94,95,96,97,98Cd, 98,99In, 98,99,100Sn; calculated ground-state spin, T1/2. Shell model.
doi: 10.1016/S0375-9474(97)00407-7
Bull.Rus.Acad.Sci.Phys. 61, 122 (1997)
S.P.Kamerdzhiev
Microscopic Theory of Giant Resonances (A Review)
NUCLEAR STRUCTURE 40,48Ca, 208Pb, 100,132Sn, 56,78Ni, 16O; compiled, reviewed giant multipole resonance calculations; deduced models improvement related features.
Acta Phys.Hung.N.S. 6, 157 (1997)
A.Lepine-Szily, M.Chartier, G.Auger, W.Mittig, J.M.Casandjian, M.Chabert, L.K.Fifield, J.Ferme, A.Gillibert, M.Lewitowicz, M.MacCormick, MM.H.Moscatello, O.H.Odland, N.A.Orr, G.Politi, C.Spitaels, A.C.C.Villari
Mass Measurements Far from Stability Around the N = Z Line (100Sn, 100In, 100Cd)
ATOMIC MASSES 100Sn, 100In, 100Cd; measured masses with respect to 100Ag. Secondary A=100 ions from 58Ni(50Cr, X) reaction.
NUCLEAR REACTIONS, ICPND 58Ni(50Cr, X)100Ag/100Cd/100In/100Sn, E=5.3 MeV/nucleon; measured production σ. Comparison with statistical models.
Nucl.Phys. A616, 329c (1997)
W.Mittig, M.Chartier, J.C.Angelique, G.Audi, J.M.Casandjian, A.Cunsolo, C.Donzaud, M.Chabert, J.Ferme, L.K.Fifield, A.Foti, A.Gillibert, A.Lepine-Szily, M.Lewitowicz, S.Lukyanov, M.Mac Cormick, D.J.Morrissey, M.H.Moscatello, O.H.Odland, N.A.Orr, A.Ostrowski, G.Politi, C.Spitaels, B.M.Sherrill, C.Stephan, T.Suomijarvi, L.Tassan-Got, D.J.Vieira, A.C.C.Villari, J.M.Wouters
Mass Measurements Near N = Z
NUCLEAR REACTIONS Ni(78Kr, X), E=73 MeV/nucleon; measured fragment tof; deduced secondary beams (with mass ≈ 60-80) production related features. 58Ni(50Cr, X), E=5.1 MeV/nucleon; measured fragment tof; deduced 100Sn production σ. 100Cd, 100Sn, 100In deduced masses relative to 100Ag. Pure secondary beams from ions stripping technique, α-, SPEG spectrometers.
doi: 10.1016/S0375-9474(97)00104-8
Nucl.Phys. A616, 341c (1997)
K.Summerer, R.Schneider, T.Faestermann, J.Friese, H.Geissel, R.Gernhauser, H.Gilg, F.Heine, J.Homolka, P.Kienle, H.J.Korner, G.Munzenberg, J.Reinhold, K.Zeitelhack
Identification and Decay Spectroscopy of 100Sn at the GSI Projectile Fragment Separator FRS
RADIOACTIVITY 100Sn(β+) [from 124Xe projectile fragmentation]; measured β-decay energy, T1/2, β-delayed proton emission associated probability; deduced Qβ, Gamow-Teller strength, hindrance factor. Decay times for 100In, 100Cd also reported.
doi: 10.1016/S0375-9474(97)00106-1
Bull.Rus.Acad.Sci.Phys. 62, 23 (1998)
A.V.Avdeenkov
M1 Resonances in 100Sn and 132Sn Nuclei
NUCLEAR STRUCTURE 100,132Sn; calculated isovector M1 resonances energy, B(M1); deduced resonance splitting contributions. Microscopic model.
Phys.Rev. C58, 220 (1998)
B.A.Brown
New Skyrme Interaction for Normal and Exotic Nuclei
NUCLEAR STRUCTURE 16,24O, 34Si, 40,48Ca, 48,68Ni, 88Sr, 100,132Sn, 208Pb; analyzed binding energies, radii, single-particle energies; deduced Skyrme parameters.
J.Phys.(London) G24, 1417 (1998)
I.Hamamoto, H.Sagawa, X.Z.Zhang
Collective Modes of Nuclei Far from β-Stability Line
NUCLEAR STRUCTURE 28O, 34Ca, 100Sn, 208Pb; calculated isoscalar, isovector dipole strength distributions.
doi: 10.1088/0954-3899/24/8/016
Phys.Rev. C58, 172 (1998)
S.Kamerdzhiev, R.J.Liotta, E.Litvinova, V.Tselyaev
Continuum Quasiparticle Random-Phase Approximation Description of Isovector E1 Giant Resonances
NUCLEAR STRUCTURE 100,104,120,132Sn; calculated E1 photoabsorption σ; deduced continuum effect on giant resonances. Continuum RPA, forced consistency procedure.
Nucl.Phys. A634, 67 (1998)
K.Rutz, M.Bender, P.-G.Reinhard, J.A.Maruhn, W.Greiner
Odd Nuclei and Single-Particle Spectra in the Relativistic Mean-Field Model
NUCLEAR STRUCTURE 16,17O, 17F, 40,41,48,49Ca, 41,49Sc, 56,57Ni, 57Cu, 100,101,132,133Sn, 101,133Sb, 208,209Pb, 209Bi, 218,219U, 219Np; calculated levels, J, π, neutron, proton separation energies; deduced core polarization effects. Relativistic mean-field approach.
doi: 10.1016/S0375-9474(98)00153-5
Phys.Rev. C57, 3089 (1998)
T.Vertse, A.T.Kruppa, R.J.Liotta, W.Nazarewicz, N.Sandulescu, T.R.Werner
Shell Corrections for Finite Depth Potentials: Particle continuum effects
NUCLEAR STRUCTURE 78Ni, 90,96,104,106,108,110,122Zr, 124Zr, 132Sn, 146Gd, 208Pb, 298Fl; calculated neutron shell correction energies. 48Ni, 90Zr, 100,132Sn, 146Gd, 180,208Pb; calculated proton shell correction energies. 146Gd, 208Pb calculated smoothed level densities. Smoothing procedure with particle continuum contribution.
Phys.Rev. C58, 2796 (1998)
S.Yoshida, H.Sagawa, N.Takigawa
Incompressibility and Density Distributions in Asymmetric Nuclear Systems
NUCLEAR STRUCTURE 100,104,108,112,116,120,124,128,132,136,140,150,160Sn; calculated neutron, charge, matter radii, density distributions; deduced correlation between surface diffuseness, incompressibility.
Phys.Rev. C59, R2347 (1999)
J.Duflo, A.P.Zuker
The Nuclear Monopole Hamiltonian
NUCLEAR STRUCTURE 39,41,47,49Ca, 47K, 49Sc, 15,17,21,23O, 21N, 23F, 27,29,33,35,41,43Si, 33,41Al, 35,43P, 55,57,67,69,77,79Ni, 67,77Co, 69,79Cu, 79,81,89,91Zr, 89Y, 91Nb, 99,101,131,133Sn, 131In, 133Sb, 207Tl, 207,209Pb, 209Bi; calculated single-particle orbits. 12,14C, 16,22,28O, 18,34,42Si, 40,48Ca, 56,68,78Ni, 80,90Zr, 100,132Sn, 208Pb; calculated shell gaps. Monopole Hamiltonian.
doi: 10.1103/PhysRevC.59.R2347
Nucl.Phys. A649, 305c (1999)
P.-G.Reinhard
Skyrme Forces and Giant Resonances in Exotic Nuclei
NUCLEAR STRUCTURE 14,16,24O, 34Si, 36S, 36,40,48,60Ca, 56,66Ni, 90Zr, 100,132Sn, 146Gd, 208Pb; calculated dipole strength distributions. 16O, 208Pb calculated average resonance frequencies. 132Sn calculated neutron skin thickness. Skyrme-Hartree-Fock model, several Skyrme forces compared.
doi: 10.1016/S0375-9474(99)00076-7
Nucl.Phys. A649, 319c (1999)
H.Sagawa, I.Hamamoto, X.Z.Zhang
A Microscopic Study of Giant Resonances in Nuclei Near Drip Lines
NUCLEAR STRUCTURE 208Pb, 34,40,48,60Ca; calculated giant monopole resonance strength distributions. 100Sn; calculated core polarization charges, B(E2). 90Zr, 100Sn; calculated neutron, proton effective charges. Self-consistent Hartree-Fock plus RPA model.
doi: 10.1016/S0375-9474(99)00094-9
Acta Phys.Pol. B31, 953 (2000)
A.Bobyk, W.Kaminski, I.N.Borzov
Gamow-Teller Beta-Decay Strengths of Neutron-Deficient Tin Isotopes: Comparison of FFST and pnBCS + QRPS Results
RADIOACTIVITY 100,102,104,106,108Sn(β+); calculated Gamow-Teller strength distributions. Comparisons with data. Self-consistent finite Fermi-system theory and BCS plus quasiparticle RPA compared.
NUCLEAR STRUCTURE 100,102,104,106,108Sn; calculated Gamow-Teller β-decay strength distributions. Comparisons with data. Self-consistent finite Fermi-system theory and BCS plus quasiparticle RPA compared.
Int.J.Mod.Phys. E9, 507 (2000)
S.V.S.Sastry, A.K.Jain, Y.K.Gambhir
Two-Oscillator Basis Expansion for the Solution of Relativistic Mean Field Equations
NUCLEAR STRUCTURE 16O, 56Ni, 100Sn, 208Pb; calculated binding energies, radii, density distributions. Relativistic mean field, two-oscillator basis.
doi: 10.1142/S0218301300000374
Bull.Rus.Acad.Sci.Phys. 64, 434 (2000)
V.I.Tselyaev
Integral Characteristics of Giant Resonances and Lorentz Distribution Parameters
NUCLEAR STRUCTURE 40Ca, 100Sn, 208Pb; calculated GDR widths, energies, strength distributions. Lorentz distribution.
Phys.Rev. C63, 024314 (2001)
M.Del Estal, M.Centelles, X.Vinas, S.K.Patra
Effects of New Nonlinear Couplings in Relativistic Effective Field Theory
NUCLEAR STRUCTURE 16O, 40,48Ca, 56,58,78Ni, 90Zr, 100,116,124,132Sn, 196,208,214Pb; calculated ground-state energies, radii, surface thickness. Z=30-82; calculated isotopic shifts, two-neutron separation energies. 208Pb; calculated single-particle energies. Extended relativistic mean field.
doi: 10.1103/PhysRevC.63.024314
Phys.Rev. C64, 024306 (2001)
M.A.Hasan, J.P.Vary, T.-S.H.Lee
Medium-Mass Nuclei with Δ Excitations under Compression
NUCLEAR STRUCTURE 90Zr, 100,132Sn; calculated constrained spherical Hartree-Fock energy vs radius, sensitivity to size of nucleon and Δ isobar model spaces.
doi: 10.1103/PhysRevC.64.024306
Phys.Rev. C64, 034314 (2001)
F.Hofmann, C.M.Keil, H.Lenske
Density Dependence Hadron Field Theory for Asymmetric Nuclear Matter and Exotic Nuclei
NUCLEAR STRUCTURE 16O, 40,48Ca, 48,56,68Ni, 90Zr, 100,132Sn, 208Pb; calculated charge radii, binding energies. Ni, Sn; calculated binding energies, two-neutron separation energies. Density-dependent hadron field theory.
doi: 10.1103/PhysRevC.64.034314
Phys.Rev. C63, 044303 (2001); Comment Phys.Rev. C67, 019801 (2003)
M.Rashdan
Structure of Exotic Nuclei and Superheavy Elements in a Relativistic Shell Model
NUCLEAR STRUCTURE 16O, 40,48Ca, 56Ni, 100,132Sn, 208Pb; calculated binding energies, charge radii. 16O, 40Ca, 298Fl; calculated single-particle energies. Sn, Pb, Cf, Fm, No, 256Rf, 258Db, 260Sg, 262Bh, 264Hs, 266Mt, 269Ds, 271Rg; calculated binding energies. Relativistic mean field theory, new relativistic force.
doi: 10.1103/PhysRevC.63.044303
Prog.Theor.Phys.(Kyoto), Suppl. 142, 1 (2001)
H.Sagawa
Giant Multipole States in Stable and Unstable Nuclei
NUCLEAR STRUCTURE 208Pb, 34,40,48,60Ca, 28O, 100Sn; calculated giant resonance strength distributions, transition densities, related features. Self-consistent RPA response functions.
Phys.Rev. C63, 055501 (2001)
T.Siiskonen, M.Hjorth-Jensen, J.Suhonen
Renormalization of the Weak Hadronic Current in the Nuclear Medium
NUCLEAR STRUCTURE 16O, 40Ca, 56Ni, 100Sn; calculated weak charge-changing hadronic current renormalization.
doi: 10.1103/PhysRevC.63.055501
Phys.Rev. C63, 024312 (2001)
J.Skalski
Self-Consistent Calculations of the Exact Coulomb Exchange Effects in Spherical Nuclei
NUCLEAR STRUCTURE 16O, 40Ca, 48Ni, 90Zr, 100,132Sn, 208Pb, 298Fl, 310126; calculated single-proton level shifts due to Coulomb exchange, related features; deduced force independence. Comparison of exact results, Slater approximation.
doi: 10.1103/PhysRevC.63.024312
Phys.Rev. C63, 054309 (2001)
P.Stevenson, M.R.Strayer, J.Rikovska-Stone
Many-Body Perturbation Calculation of Spherical Nuclei with a Separable Monopole Interaction
NUCLEAR STRUCTURE 16O, 34Si, 40,48Ca, 48,56,68,78Ni, 90Zr, 100,114,132Sn, 146Gd, 208Pb; calculated binding energies, charge radii. 40Ca, 208Pb; calculated charge form factors, single-particle energies. Many-body perturbation, separable monopole interaction, comparisons with data.
doi: 10.1103/PhysRevC.63.054309
Nucl.Phys. A692, 496 (2001)
D.Vretenar, N.Paar, P.Ring, G.A.Lalazissis
Collectivity of the Low-Lying Dipole Strength in Relativistic Random Phase Approximation
NUCLEAR STRUCTURE 16,22,24,28O, 40,48,54,60Ca, 48,56,68,78Ni, 100,114,120,132Sn, 122Zr, 208Pb; calculated isovector dipole strength distributions, transition densities. Relativistic RPA.
doi: 10.1016/S0375-9474(01)00653-4
Phys.Rev. C65, 044308 (2002)
T.Burvenich, D.G.Madland, J.A.Maruhn, P.-G.Reinhard
Nuclear Ground State Observables and QCD Scaling in a Refined Relativistic Point Coupling Model
NUCLEAR STRUCTURE Ca, Ni, Sn, Pb, Cf, Fm, No, Rf, Sg, Hs; calculated binding energies. 240Pu; calculated fission barrier. Sn, Pb; calculated radii, surface thickness. 48Ca, 100Sn; calculated total baryon densities. 48Ca; calculated charge form factor. Relativistic point-coupling model, comparison with other models.
doi: 10.1103/PhysRevC.65.044308
Prog.Theor.Phys.(Kyoto), Suppl. 146, 130 (2002)
T.Burvenich, D.G.Madland, A.Sulaksono, J.Maruhn, P.-G.Reinhard
A Relativistic Point Coupling Model for Nuclear Structure Calculations
NUCLEAR STRUCTURE 16O, 40,48Ca, 56,58Ni, 88Sr, 90Zr, 100,112,120,124,132Sn, 136Xe, 144Sm, 202,204,208Pb; calculated binding energies, radii. Relativistic point coupling model.
Phys.Rev.Lett. 88, 122701 (2002)
M.Colonna, Ph.Chomaz, S.Ayik
Mechanical and Chemical Spinodal Instabilities in Finite Quantum Systems
NUCLEAR STRUCTURE 36,40,48Ca, 100,120,132Sn; calculated instability regions in phase diagram.
doi: 10.1103/PhysRevLett.88.122701
Yad.Fiz. 65, 847 (2002); Phys.Atomic Nuclei 65, 814 (2002)
V.Yu.Denisov, V.A.Nesterov
Binding Energies of Nuclei and Their Density Distributions in a Nonlocal Extended Thomas-Fermi Approximation
NUCLEAR STRUCTURE 32,40,48,56Ca, 48,50,58,60,62,64,78Ni, 90Zr, 100,114,124,132Sn, 140Ce, 208Pb, 296Fl, 300Og, 302120, 308126; calculated binding energies, radii, chemical potentials, particle density distributions. Nonlocal extended Thomas-Fermi approximation, Skyrme forces.
doi: 10.1134/1.1481472
Eur.Phys.J. A 15, 185 (2002)
T.Faestermann, R.Schneider, A.Stolz, K.Summerer, E.Wefers, J.Friese, H.Geissel, M.Hellstrom, P.Kienle, J.J.Korner, M.Mineva, M.Munch, G.Munzenberg, C.Schlegel, K.Schmidt, P.Thirolf, H.Weick, K.Zeitelhack
Decay studies of N ≈ Z nuclei from 75Sr to 102Sn
NUCLEAR REACTIONS Be(112Sn, X), E=1 GeV/nucleon; measured fragments isotopic yields; deduced evidence for 76Y, 78Zr, 100Sn. Mass separator.
RADIOACTIVITY 75Sr, 77,78Y, 80Zr, 82Nb, 84Mo, 86Tc, 88,89Ru, 90Rh, 92,93Pd, 94Ag, 98In, 102Sn(β+), (EC) [from 112Sn fragmentation]; measured Eβ, Eγ, T1/2. 78Y, 82Nb, 86Tc, 90Rh, 94Ag, 98In deduced Q(EC). Comparisons with model predictions.
doi: 10.1140/epja/i2001-10251-7
Phys.Rev. C66, 024318 (2002); Erratum Phys.Rev. C67, 019901 (2003)
M.A.Huertas
Effective Lagrangian approach to structure of selected nuclei far from stability
NUCLEAR STRUCTURE 77Co, 48,77,78,79Ni, 79Cu, 99,131In, 99,100,101,131,132,133Sn, 133Sb; calculated binding energies, single-particle level energies. 100,132Sn; calculated nucleon density distributions. Effective Lagrangian approach.
doi: 10.1103/PhysRevC.66.024318
Eur.Phys.J. A 14, 29 (2002)
V.I.Isakov, K.I.Erokhina, H.Mach, M.Sanchez-Vega, B.Fogelberg
On the Difference between Proton and Neutron Spin-Orbit Splittings in Nuclei
NUCLEAR STRUCTURE 16O, 40Ca, 100,132Sn, 208Pb; calculated single-particle level energies, isotopic dependence of spin-orbit splitting. Several models compared.
doi: 10.1007/s10050-002-8786-1
Yad.Fiz. 65, 1466 (2002); Phys.Atomic Nuclei 65, 1431 (2002)
V.I.Isakov, K.I.Erokhina
Nuclear Masses and Properties of Nuclei in the Vicinity of the Remote Magic Nucleus 100Sn
NUCLEAR STRUCTURE 96,97,98,99,100Cd, 97,98,99,100,101In, 98,99,100,101,102Sn, 99,100,101,102,103Sb, 100,101,102,103,104Te; calculated mass differences. 100,132Sn; calculated nucleon density distributions. 92Mo, 94Ru, 96Pd, 98Cd, 100Sn; calculated levels, J, π, B(E2).
doi: 10.1134/1.1501655
Phys.Rev. C66, 024321 (2002)
Z.Y.Ma, L.Liu
Effective Dirac Brueckner-Hartree-Fock method for asymmetric nuclear matter and finite nuclei
NUCLEAR STRUCTURE 16O, 40,48Ca, 48,56,68Ni, 90Zr, 100,132Sn, 208Pb; calculated binding energies, radii. 16O, 40,48Ca, 48Ni; calculated spin-orbit splitting. Dirac-Brueckner-Hartree-Fock approach.
doi: 10.1103/PhysRevC.66.024321
Nucl.Phys. A704, 223c (2002)
F.Nowacki
Shell Model Description of Correlations in 56Ni and 100Sn
NUCLEAR STRUCTURE 56,58,60Ni, 100,102,104Sn; calculated level energies, B(E2), core polarization effects.
doi: 10.1016/S0375-9474(02)00782-0
Prog.Theor.Phys.(Kyoto), Suppl. 146, 120 (2002)
P.Ring
Relativistic Random Phase Approximation and Applications for Nuclei with Large Neutron Excess
NUCLEAR STRUCTURE 116Sn; calculated giant monopole resonance strength distribution. 100,114,120,132Sn; calculated dipole strength distributions. Relativistic RPA.
Prog.Theor.Phys.(Kyoto), Suppl. 146, 437 (2002)
S.Sugimoto, K.Ikeda, H.Toki
Relativistic Mean Field Theory with Pion Field for Finite Nuclei
NUCLEAR STRUCTURE 12C, 16O, 40Ca, 56Ni, 80Zr, 100Sn, 164Pb; calculated pion energies. Relativistic mean field theory.
Prog.Theor.Phys.(Kyoto) 108, 903 (2002)
H.Toki, S.Sugimoto, K.Ikeda
Relativistic mean-field theory with the pion in finite nuclei
NUCLEAR STRUCTURE 12C, 16O, 40Ca, 56Ni, 80Zr, 100Sn, 164Pb; calculated binding energy, effect of pion mean field.
Nucl.Phys. A726, 3 (2003)
G.Giambrone, S.Scheit, F.Barranco, P.F.Bortignon, G.Colo, D.Sarchi, E.Vigezzi
Collective excitations in superfluid nuclei with finite-range interactions
NUCLEAR STRUCTURE 16,17,18,19,20,21,22,23,24,26O, 56,58,60,62,64,66,68Ni, 100,102,112,116,120,124,130,132Sn; calculated binding energies, radii, density, pairing energy, transitions B(E2). 56,58,60,62,64,66,68Ni, 112,116,120,124Sn; calculated GQR energy, strength distributions. Quasiparticle RPA, Gogny force, comparison with data.
doi: 10.1016/S0375-9474(03)01602-6
Phys.Rev. C 67, 014322 (2003)
R.Id Betan, R.J.Liotta, N.Sandulescu, T.Vertse
Shell model in the complex energy plane and two-particle resonances
NUCLEAR STRUCTURE 78Ni, 100Sn; calculated single-particle states, two-particle resonance features. Shell model in the complex energy plane.
doi: 10.1103/PhysRevC.67.014322
Nucl.Phys. A721, 669c (2003)
S.Sugimoto, H.Toki, K.Ikeda
Surface pion condensation in finite nuclei
NUCLEAR STRUCTURE 12C, 16O, 40Ca, 56Ni, 80Zr, 100Sn, 164Pb; calculated pion mean field, pion energy per nucleon. Relativistic mean field approach.
doi: 10.1016/S0375-9474(03)01149-7
Nucl.Phys. A722, 360c (2003)
S.Sugimoto, H.Toki, K.Ikeda, N.Minkov
Relativistic mean field theory with the pion of finite nuclei
NUCLEAR STRUCTURE 12C, 16O, 40Ca, 56Ni, 80Zr, 100Sn, 164Pb; calculated pion mean field, pion energy per nucleon. Relativistic mean field approach.
doi: 10.1016/S0375-9474(03)01390-3
J.Korean Phys.Soc. 43, S6 (2003)
H.Toki, K.Ikeda, S.Sugimoto
Surface Pion Condensation of Finite Nuclei in Relativistic Mean Field Theory
NUCLEAR STRUCTURE 12C, 16O, 40Ca, 56Ni, 80Zr, 100Sn, 164Pb; calculated pion mean-field potential energy. Relativistic mean field theory.
Eur.Phys.J. A 18, 363 (2003)
H.Toki, K.Ikeda, S.Sugimoto
Surface pion condensation in finite nuclei
NUCLEAR STRUCTURE 12C, 16O, 40Ca, 56Ni, 80Zr, 100Sn, 164Pb; calculated pion mean-field potential energy. Relativistic mean field theory.
doi: 10.1140/epja/i2002-10238-x
Phys.Rev. C 70, 014308 (2004)
B.K.Agrawal, S.Shlomo
Consequences of self-consistency violations in Hartree-Fock random-phase approximation calculations of the nuclear breathing mode energy
NUCLEAR STRUCTURE 40,60Ca, 56Ni, 80,90,110Zr, 100Sn, 208Pb; calculated giant monopole resonance energies, effect of self-consistency violations. Hartree-Fock RPA.
doi: 10.1103/PhysRevC.70.014308
Phys.Rev. C 70, 024607 (2004)
K.Amos, S.Karataglidis, J.Dobaczewski
Probing the densities of Sn isotopes
NUCLEAR STRUCTURE 100,110,120,130,140,150,160,170Sn; calculated particle density distributions, radii, wave functions. HFB model, Skyrme interaction.
NUCLEAR REACTIONS 100,102,104,106,108,110,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140,142,144,146,148,150,152,154,156,158,160,162,164,166,168,170,172,174,176Sn(p, p), E=200 MeV; calculated σ, σ(θ). 116,118,120,122,124Sn(p, p), E=39.8, 65 MeV; calculated σ(θ), polarization observables. HFB model, Skyrme interaction.
doi: 10.1103/PhysRevC.70.024607
J.Phys.(London) G30, 759 (2004)
T.Babacan, D.Salamov, A.Kucukbursa, H.Babacan, I.Maras, H.A.Aygor, A.Unal
The effect of the pairing interaction on the energies of isobar analogue resonances in 112-124Sb and isospin admixture in 100-124Sn isotopes
NUCLEAR STRUCTURE 112,114,116,118,120,122,124Sb; calculated IAR energies, pairing interaction effect. 100,102,104,106,108,110,112,114,116,118,120,122,124Sn; calculated ground state isospin admixtures, pairing interaction effect. Comparisons with data.
NUCLEAR REACTIONS 112,114,116,118,120,122,124Sn(3He, t), E=200 MeV; calculated σ(θ), volume integral. Comparison with data.
doi: 10.1088/0954-3899/30/6/006
Nucl.Phys. A738, 108 (2004)
M.Colonna, S.Ayik, V.Baran, Ph.Chomaz, M.Di Toro
Dynamics of cluster formation in liquid-gas phase transitions
NUCLEAR STRUCTURE 36,40,48Ca, 100,120,132Sn; calculated cluster formation arising from unstable collective modes.
doi: 10.1016/j.nuclphysa.2004.04.018
Phys.Rev. C 70, 024307 (2004)
G.Colo, N.Van Giai, J.Meyer, K.Bennaceur, P.Bonche
Microscopic determination of the nuclear incompressibility within the nonrelativistic framework
NUCLEAR STRUCTURE 16O, 40,48Ca, 56,78Ni, 100,132Sn, 208Pb; analyzed binding energies, radii; deduced parameters. 208Pb; calculated giant monopole resonance energy; deduced nuclear incompressibility.
doi: 10.1103/PhysRevC.70.024307
Nucl.Phys. A738, 73 (2004)
K.Ikeda, S.Sugimoto, H.Toki
New mean field theory with the parity and charge mixing for the pion in nuclei
NUCLEAR STRUCTURE 12C, 16O, 40Ca, 56Ni, 80Zr, 100Sn, 164Pb; calculated pion energy per nucleon as a function of pion-nucleon coupling constant.
doi: 10.1016/j.nuclphysa.2004.04.014
Pramana 62, 841 (2004)
M.S.Mehta, T.K.Jha, S.K.Patra, R.K.Gupta
Potential energy surfaces for N = Z, 20Ne-112Ba nuclei
NUCLEAR STRUCTURE 20Ne, 24Mg, 28Si, 32S, 36Ar, 40Ca, 44Ti, 48Cr, 52Fe, 56Ni, 60Zn, 64Ge, 68Se, 72Kr, 76Sr, 80Zr, 84Mo, 88Ru, 92Pd, 96Cd, 100Sn, 104Te, 108Xe, 112Ba; calculated energy vs deformation. Deformed relativistic mean field approach.
Int.J.Mod.Phys. E13, 175 (2004)
S.Peru, J.F.Berger
Giant resonances in exotic spherical nuclei within the HF + RPA approach
NUCLEAR STRUCTURE 78Ni, 100,132Sn; calculated giant resonance strength distributions, related features.
doi: 10.1142/S0218301304001916
Phys.Rev. C 69, 024318 (2004)
S.Yoshida, H.Sagawa
Neutron skin thickness and equation of state in asymmetric nuclear matter
NUCLEAR STRUCTURE 100,132Sn, 182,208Pb; calculated relative binding energies, neutron skin thicknesses, dependence on equation of state. Skyrme Hartree-Fock and relativistic mean-field models.
doi: 10.1103/PhysRevC.69.024318
Phys.Rev. C 72, 014310 (2005)
B.K.Agrawal, S.Shlomo, V.K.Au
Determination of the parameters of a Skyrme type effective interaction using the simulated annealing approach
NUCLEAR STRUCTURE 16,24O, 34Si, 40,48Ca, 48,56,68,78Ni, 88Sr, 90Zr, 100,132Sn, 208Pb; analyzed binding energies, radii, breathing-mode energies, related data; deduced Skyrme parameters. 40Ca, 208Pb; calculated single-particle energies. Simulated annealing approach.
doi: 10.1103/PhysRevC.72.014310
J.Phys.(London) G31, S1819 (2005)
D.Almehed, P.D.Stevenson
Isovector giant monopole resonances in spherical nuclei
NUCLEAR STRUCTURE 90Zr, 100,120,132Sn, 140Ce, 208Pb; calculated isovector giant monopole resonance energies, energy-dependent mixing with isoscalar resonance. Time-dependent Hartree-Fock method, Skyrme forces.
doi: 10.1088/0954-3899/31/10/079
Phys.Lett. B 623, 37 (2005)
A.Ansari
Study of the lowest 2+ excitations and B(E2) transition strengths in relativistic QRPA for Sn-, and Pb-isotopes
NUCLEAR STRUCTURE 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136Sn, 204,206,208,210Pb; ; calculated levels energies, B(E2), B(E3). Relativistic quasiparticle RPA, comparison with data.
doi: 10.1016/j.physletb.2005.07.031
Int.J.Mod.Phys. E14, 493 (2005)
N.Dubray, J.Dudek, N.Schunck
The problem of universality of nuclear mean-field parametrizations
NUCLEAR STRUCTURE 40,48Ca, 56Ni, 90Zr, 100,132Sn, 146Gd, 208Pb; analyzed neutron and proton single-particle level energies; deduced mean-field parameters.
doi: 10.1142/S0218301305003326
Eur.Phys.J. A 25, Supplement 1, 135 (2005)
M.Karny, L.Batist, A.Banu, F.Becker, A.Blazhev, K.Burkard, W.Bruchle, J.Doring, T.Faestermann, M.Gorska, H.Grawe, Z.Janas, A.Jungclaus, M.Kavatsyuk, O.Kavatsyuk, R.Kirchner, M.La Commara, S.Mandal, C.Mazzocchi, K.Miernik, I.Mukha, S.Muralithar, C.Plettner, A.Plochocki, E.Roeckl, M.Romoli, K.Rykaczewski, M.Schadel, K.Schmidt, R.Schwengner, J.Zylicz
Beta-decay studies near 100Sn
RADIOACTIVITY 102Sn(β+) [from 58Ni(50Cr, X)]; measured Eγ, Iγ, γγ-coin, Eβ, B(GT). 102In levels deduced β-feeding intensities, log ft, hindrance factor. 100Sn(β+); analyzed data; deduced B(GT), hindrance factor.
NUCLEAR REACTIONS 58Ni(50Cr, X)101Sn/102Sn/103Sn/104Sn/105Sn, E ≈ 5 MeV/nucleon; measured production σ. 58Ni(50Cr, X)100Sn, E=5.8 MeV/nucleon; deduced approximate production σ.
doi: 10.1140/epjad/i2005-06-037-9
J.Phys.(London) G31, 185 (2005)
P.Papakonstantinou, E.Mavrommatis, J.Wambach, V.Yu.Ponomarev
A microscopic investigation of the transition form factor in the region of collective multipole excitations of stable and unstable nuclei
NUCLEAR STRUCTURE 56,78,110Ni, 100,120,132Sn; calculated isoscalar and isovector response functions, transition form factor. Self-consistent Skyrme-Hartree-Fock plus continuum RPA model.
doi: 10.1088/0954-3899/31/3/003
Eur.Phys.J. A 26, 25 (2005)
S.Peru, J.F.Berger, P.F.Bortignon
Giant resonances in exotic spherical nuclei within the RPA approach with the Gogny force
NUCLEAR STRUCTURE 78Ni, 100,132Sn, 208Pb; calculated giant resonance energies, strength distributions, related features. Gogny force, RPA approach.
doi: 10.1140/epja/i2005-10149-4
Phys.Rev. C 71, 034310 (2005)
J.Terasaki, J.Engel, M.Bender, J.Dobaczewski, W.Nazarewicz, M.Stoitsov
Self-consistent description of multipole strength in exotic nuclei: Method
NUCLEAR STRUCTURE 100,120,174,176Sn; calculated isoscalar and isovector monopole, dipole, and quadrupole strength functions. Self-consistent quasiparticle RPA.
doi: 10.1103/PhysRevC.71.034310
Phys.Rev. C 71, 064301 (2005)
S.Typel
Relativistic model for nuclear matter and atomic nuclei with momentum-dependent self-energies
NUCLEAR STRUCTURE 16,24O, 40,48Ca, 56Ni, 100,132Sn, 208Pb; calculated binding energies, surface thickness, diffraction and charge radii. 16O, 48Ca, 56Ni, 132Sn, 208Pb; calculated spin-orbit splitting. 100,132Sn, 208Pb; calculated single particle energies. Relativistic mean field calculations, density-dependent meson-nucleon coupling, isoscalar meson field and nucleon field derivatives coupling, comparison with data.
doi: 10.1103/PhysRevC.71.064301
Phys.Rev. C 73, 034319 (2006)
B.K.Agrawal, S.K.Dhiman, R.Kumar
Exploring the extended density-dependent Skyrme effective forces for normal and isospin-rich nuclei to neutron stars
NUCLEAR STRUCTURE 16,24O, 40,48Ca, 48,56,68,78Ni, 88Sr, 90Zr, 100,132Sn, 208Pb; binding energies, analyzed radii, single-particle energies; deduced parameters. Generalized Skyrme effective force.
doi: 10.1103/PhysRevC.73.034319
Phys.Rev. C 74, 054313 (2006)
A.Ansari, P.Ring
Lowest lying 2+ and 3- vibrational states in Pb, Sn, and Ni isotopes in relativistic quasiparticle random-phase approximation
NUCLEAR STRUCTURE 56,58,60,62,64,66,68,70,72,74,76,78,80Ni, 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134Sn, 194,196,198,200,202,204,206,208,210,212,214Pb; calculated vibrational states level energies, B(E2), B(E3). Relativistic quasiparticle RPA.
doi: 10.1103/PhysRevC.74.054313
Phys.Rev. C 73, 014313 (2006)
L.G.Cao, U.Lombardo, C.W.Shen, N.Van Giai
From Brueckner approach to Skyrme-type energy density functional
NUCLEAR STRUCTURE 16O, 40,48Ca, 56,78Ni, 90Zr, 100,132Sn, 208Pb; calculated radii, binding energies, spin-orbit potentials, particle densities. Skyrme-type energy density functional.
doi: 10.1103/PhysRevC.73.014313
Phys.Rev.C 74, 064310 (2006)
S.Krewald, V.B.Soubbotin, V.I.Tselyaev, X.Vinas
Density matrix functional theory that includes pairing correlations
NUCLEAR STRUCTURE 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132Sn; calculated ground-state energies, two-neutron separation energies, related features. Quasilocal density matrix functional theory with pairing correlations.
doi: 10.1103/PhysRevC.74.064310
Chin.Phys.Lett. 23, 804 (2006)
M.Liu, N.Wang, Z.-X.Li, X.-Z.Wu
Neutron Skin Thickness of Nuclei and Effective Nucleon-Nucleon Interactions
NUCLEAR STRUCTURE 18O, 48Ca, 114,116,118,120,122,124,132Sn, 208Pb; calculated radii, neutron skin thickness. 38,40,48,56Ca, 82,90,96,116Zr, 92,100,112,130Sn, 180,208,220,240Pb; calculated neutron and proton density distributions. Skyrme energy density functional, comparisons with data.
doi: 10.1088/0256-307X/23/4/012
Phys.Atomic Nuclei 69, 1345 (2006)
N.Paar, P.Papakonstantinou, H.Hergert, R.Roth
Collective Excitations in the Unitary Correlation Operator Method and Relativistic QRPA Studies of Exotic Nuclei
NUCLEAR STRUCTURE 40Ca; calculated single-particle level energies. 4He, 16,24O, 34Si, 40,48Ca, 48,56,68,78Ni, 88Sr, 90Zr, 100,114,132Sn, 146Gd, 208Pb; calculated binding energies. 16O, 40,48Ca, 42Ti, 44Cr, 46Fe, 90Zr, 132Sn, 208Pb; calculated transition strength distributions. Self-consistent RPA approach, unitary correlation operator method.
doi: 10.1134/S1063778806080114
Phys.Rev. C 73, 044325 (2006)
J.Piekarewicz
Pygmy dipole resonance as a constraint on the neutron skin of heavy nuclei
NUCLEAR STRUCTURE 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132Sn; calculated binding energies, radii, isovector dipole strength distributions, pygmy and giant dipole resonance features. Relativistic RPA approach.
doi: 10.1103/PhysRevC.73.044325
Phys.Rev. C 73, 044312 (2006)
R.Roth, P.Papakonstantinou, N.Paar, H.Hergert, T.Neff, H.Feldmeier
Hartree-Fock and many body perturbation theory with correlated realistic NN interactions
NUCLEAR STRUCTURE 4He, 16,24O, 34Si, 40,48Ca, 48,56,78Ni, 88Sr, 90Zr, 100,114,132Sn, 146Gd, 208Pb; calculated ground-state energies, radii. 16O, 40Ca, 100,132Sn, 208Pb; calculated single-particle energies. O, Ca, Ni, Sn; calculated ground-state energies for even-A isotopes. Correlated realistic nucleon-nucleon interactions.
doi: 10.1103/PhysRevC.73.044312
Phys.Atomic Nuclei 69, 1132 (2006)
S.Shlomo, T.Sil, V.K.Au, O.G.Pochivalov
Current Status of Equation of State of Nuclear Matter
NUCLEAR STRUCTURE 80Zr, 100,116Sn; calculated isoscalar strength distributions. 90Zr, 116Sn, 144Sm, 208Pb; calculated isoscalar giant monopole resonance energies. Fully self-consistent approach.
doi: 10.1134/S1063778806070064
Phys.Rev. C 73, 034316 (2006)
T.Sil, S.Shlomo, B.K.Agrawal, P.-G.Reinhard
Effects of self-consistency violation in Hartree-Fock RPA calculations for nuclear giant resonances revisited
NUCLEAR STRUCTURE 16O, 40,60Ca, 56Ni, 80,90,110Zr, 100,116Sn, 144Sm, 208Pb; calculated isoscalar and isovector giant resonance energies, consequences of self-consistency violation. 208Pb; calculated giant resonance strength functions.
doi: 10.1103/PhysRevC.73.034316
Phys.Rev. C 74, 044301 (2006)
J.Terasaki, J.Engel
Self-consistent description of multipole strength: Systematic calculations
NUCLEAR STRUCTURE 36,38,40,42,44,46,48,50,52,54,56,58,60,62,64,66,68,70,72,74,76Ca, 50,52,54,56,58,60,62,64,66,68,70,72,74,76,78,80,82,84,86,88,90,92,94,96,98Ni, 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140,142,144,146,148,150,152,154,156,158,160,162,164,166,168,170,172,174,176Sn; calculated isoscalar and isovector 0+, 1-, 2+ strength functions, transition densities, partial energy-weighted sums. Quasiparticle RPA, Skyrme density functionals.
doi: 10.1103/PhysRevC.74.044301
Eur.Phys.J. A 29, 133 (2006)
W.von Oertzen
Dynamics of α-clusters in N = Z nuclei
NUCLEAR STRUCTURE 4He, 12C, 16O, 20Ne, 24Mg, 28Si, 32S, 36Ar, 40Ca, 52Fe, 56Ni, 72Kr, 80Zr, 100Sn, 164Pb; calculated binding energies, α-cluster features.
doi: 10.1140/epja/i2006-10076-x
Phys.Lett. B 649, 128 (2007)
A.Ansari, P.Ring
Magnetic dipole moment of the first excited 2+ state of Z = 50 isotopes and N = 82 isotones in relativistic QRPA
NUCLEAR STRUCTURE 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134Sn; calculated magnetic dipole moments. 132Sn, 134Te, 136Xe, 138Ba, 140Ce, 142Nd, 144Sm, 146Gd, 148Dy, 150Er, 152Yb; calculated excited state level energies, magnetic dipole moments, proton pairing energy, binding energy. Relativistic quasiparticle RPA and relativistic Hartree-Bogoliubov models, comparison with data.
doi: 10.1016/j.physletb.2007.04.009
Bull.Rus.Acad.Sci.Phys. 71, 434 (2007); Izv.Akad.Nauk RAS, Ser.Fiz. 71, 448 (2007)
O.V.Bespalova, I.N.Boboshin, V.V.Varlamov, T.A.Ermakova, B.S.Ishkhanov, E.A.Romanovskii, T.I.Spasskaya, T.P.Timokhina
Analysis of Single-Particle Energies of Doubly Magic 100, 132Sn Nuclei within the Dispersive Optical Model
NUCLEAR STRUCTURE 112,116,118,120,124Sn; analyzed single-particle energies. 100,132Sn; deduced estimate for single-particle energies of doubly-magic isotopes. Compared with dispersive optical model results.
doi: 10.3103/S1062873807030264
Eur.Phys.J. A 31, 23 (2007)
P.Mohr
Super-allowed α decay above doubly-magic 100Sn and properties of 104Te = 100Sn (X) α
RADIOACTIVITY 104,105,106Te, 108,109,110Xe, 212,213,214Po, 216,217,218Rn(α); calculated α-decay T1/2, Qα, preformation factors. Double-folding potentials.
doi: 10.1140/epja/i2006-10168-7
Phys.Rev. C 75, 014310 (2007)
P.Papakonstantinou, R.Roth, N.Paar
Nuclear collective excitations using correlated realistic interactions: The role of explicit random-phase approximation correlations
NUCLEAR STRUCTURE 16O, 40Ca, 90Zr, 100Sn, 208Pb; calculated giant resonance energies, strength distributions.
doi: 10.1103/PhysRevC.75.014310
Eur.Phys.J. A 32, 19 (2007)
P.-G.Reinhard, L.Guo, J.A.Maruhn
Nuclear giant resonances and linear response
NUCLEAR STRUCTURE 16O, 40Ca, 100,120,132Sn, 208Pb; calculated isovector dipole and isoscalar quadrupole GR strength distributions using time dependent HF dynamics using Skyrme forces.
doi: 10.1140/epja/i2007-10366-9
Nucl.Phys. A788, 12c (2007)
R.Roth, H.Hergert, N.Paar, P.Papakonstantinou
Nuclear Structure in the UCOM Framework: From Realistic Interactions to Collective Excitations
NUCLEAR STRUCTURE 4He, 16,24O, 34Si, 40,48Ca, 48,56,78Ni, 88Sr, 90Zr, 100,114,132Sn, 146Gd, 208Pb; calculated ground-state energies. 40Ca, 90Zr, 208Pb; calculated giant resonance strength distributions. Unitary correlation operator method, no-core shell model, Hartree-Fock, RPA, many-body perturbation theory. Comparison with data.
doi: 10.1016/j.nuclphysa.2007.01.008
Phys.Rev. C 76, 044322 (2007)
P.Sarriguren, M.K.Gaidarov, E.Moya de Guerra, A.N.Antonov
Nuclear skin emergence in Skyrme deformed Hartree-Fock calculations
NUCLEAR STRUCTURE 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136Sn, 48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78Ni, 70,72,74,76,78,80,82,84,86,88,90,92,94,96,98,100Kr; calculated charge density, matter density, rms radii for even isotopes. Used Skyrme-deformed Hartree-Fock+BCS calculations.
doi: 10.1103/PhysRevC.76.044322
Int.J.Mod.Phys. E16, 249 (2007)
X.Vinas, V.I.Tselyaev, V.B.Soubbotin, S.Krewald
Quasilocal density functional theory for nuclei including pairing correlations
NUCLEAR STRUCTURE 16O, 40,48Ca, 90Zr, 132Sn, 208Pb; calculated binding energies, radii. 198,200,202,204,206,210,212Pb; calculated binding energies. 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132Sn; calculated pair gap energies. Density functional theory.
doi: 10.1142/S0218301307005697
Phys.Rev.Lett. 101, 252501 (2008)
D.Bazin, F.Montes, A.Becerril, G.Lorusso, A.Amthor, T.Baumann, H.Crawford, A.Estrade, A.Gade, T.Ginter, C.J.Guess, M.Hausmann, G.W.Hitt, P.Mantica, M.Matos, R.Meharchand, K.Minamisono, G.Perdikakis, J.Pereira, J.Pinter, M.Portillo, H.Schatz, K.Smith, J.Stoker, A.Stolz, R.G.T.Zegers
Production and β Decay of rp-Process Nuclei 96Cd, 98In, and 100Sn
NUCLEAR REACTIONS 9Be(112Sn, X)96Cd/98In/100Sn, E=120 MeV/nucleon; measured cross sections.
RADIOACTIVITY 96Cd, 98In, 100Sn; measured decay spectra, half-lives.
doi: 10.1103/PhysRevLett.101.252501
Eur.Phys.J. A 37, 81 (2008)
J.Erler, P.Klupfel, P.-G.Reinhard
A stabilized pairing functional
NUCLEAR STRUCTURE 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140,142Sn; calculated average neutron-, proton-pairing gaps, binding energy, charge radius and low-lying 2+ state energy. Comparison with data.
doi: 10.1140/epja/i2008-10615-5
Nucl.Phys. A803, 159 (2008)
M.M.Haidari, M.M.Sharma
Sigma-omega meson coupling and properties of nuclei and nuclear matter
NUCLEAR STRUCTURE 16O, 40,48Ca, 76Ni, 90Zr, 100,116,124,132Sn, 202,208,214Pb; calculated binding energies and charge radii of spherical nuclei. 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134Sn; calculated binding energies. 202,208,214Pb; calculated charge radii and isotopic shifts. 36,38,40,42Si, 80,86,88Sr, 108,110Mo, 120Xe, 174Yb; calculated binding energies and quadrupole deformation. 90Zr, 120Sn, 208Pb; calculated GMR energies. Lagrangian model using relativistic mean field theory meson coupling.
doi: 10.1016/j.nuclphysa.2008.02.296
Phys.Rev. C 77, 064307 (2008)
M.Kortelainen, J.Dobaczewski, K.Mizuyama, J.Toivanen
Dependence of single-particle energies on coupling constants of the nuclear energy density functional
NUCLEAR STRUCTURE 16O, 40,48Ca, 48,56Ni, 100,132Sn, 208Pb; calculated single particle levels, regression coefficients, neutron densities, coupling constants. Energy density functional methods, Skyrme functionals.
doi: 10.1103/PhysRevC.77.064307
Phys.Rev. C 78, 014312 (2008); Erratum Phys.Rev. C 78, 049902 (2008)
E.Litvinova, P.Ring, V.Tselyaev
Relativistic quasiparticle time blocking approximation: Dipole response of open-shell nuclei
NUCLEAR STRUCTURE 88Sr, 90Zr, 92Mo, 100,106,114,116,120,130Sn; calculated dipole spectra, photoproduction σ, B(E1). Relativistic quasiparticle random phase approximation.
doi: 10.1103/PhysRevC.78.014312
Phys.Rev. C 77, 054309 (2008)
J.Margueron, H.Sagawa, K.Hagino
Effective pairing interactions with isospin density dependence
NUCLEAR STRUCTURE 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62Ca, 52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90Ni, 100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170Sn, 182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267Pb; calculated odd-even mass staggering, binding energies, two-neutron separation energies, pairing gaps. Comparison with experimental data. 110,150Sn; calculated particle densities, neutron Fermi momentum. Hartree-Fock-Bogoliubov model.
doi: 10.1103/PhysRevC.77.054309
Phys.Rev. C 78, 054301 (2008)
H.Nakada
Mean-field approach to nuclear structure with semi-realistic nucleon-nucleon interactions
NUCLEAR STRUCTURE 16,24O, 40,48Ca, 90Zr, 132Sn, 208Pb; calculated binding energies, rms matter radii. 14,16,18,20,22,24,26,28O, 40Ca, 208Pb; calculated single-particle energies. 18,20,22,24,26O; calculated two-neutron separation energy. Comparison with experimental data. Mean-field Hartree-Fock, Hartree-Fock-Bogoliubov calculations.
NUCLEAR STRUCTURE 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140Sn; calculated mass differences. Comparison with experimental data.
doi: 10.1103/PhysRevC.78.054301
Phys.Rev. C 78, 024305 (2008)
N.Pillet, J.-F.Berger, E.Caurier
Variational multiparticle-multihole configuration mixing method applied to pairing correlations in nuclei
NUCLEAR STRUCTURE 100,106,116Sn; calculated correlation energies, wave functions, levels, configurations. 100,106,112,114,116,118,120,122,124,132Sn; calculated charge radii, energies of first excited 0+ state. Variational multiparticle-multihole configuration mixing method. Comparison with experimental data. DIS parameterization of Gogny force.
doi: 10.1103/PhysRevC.78.024305
Phys.Rev. C 77, 024321 (2008)
N.Tsoneva, H.Lenske
Pygmy dipole resonances in the tin region
NUCLEAR STRUCTURE 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132Sn; calculated nucleon densities, B(E1), energy of first 1- state, configurations, pygmy-dipole resonance strengths, dipole transition densities, dipole energies, cross sections.
doi: 10.1103/PhysRevC.77.024321
J.Phys.(London) G35, 014047 (2008)
N.Tsoneva, H.Lenske
Low-energy dipole excitations in nuclei at the N = 50, 82 and Z = 50 shell closures as signatures for a neutron skin
NUCLEAR STRUCTURE 88Sr, 90Zr, 100,102,106,108,110,112,122,132Sn, 136Xe, 138Ba, 140Ce, 142Nd, 144Sm; Z=50; N=50, 82; calculated one-phonon dipole transition densities, total PDR strength. Hartree-Fock-Bogoljubov (HFB) and quasiparticle-phonon model (QPM).
doi: 10.1088/0954-3899/35/1/014047
Phys.Rev. C 77, 024316 (2008)
M.Zalewski, J.Dobaczewski, W.Satula, T.R.Werner
Spin-orbit and tensor mean-field effects on spin-orbit splitting including self-consistent core polarizations
NUCLEAR STRUCTURE 16O, 40,48Ca, 56Ni, 90Zr, 132Sn, 208Pb; calculated single particle energies, spin-orbit splittings, grounds state energies. 16O, 40,48Ca, 56Ni, 90Zr, 100,132Sn, 208Pb; analyzed single particle levels.
doi: 10.1103/PhysRevC.77.024316
Phys.Rev. C 80, 064302 (2009)
M.Bender, K.Bennaceur, T.Duguet, P.-H.Heenen, T.Lesinski, J.Meyer
Tensor part of the Skyrme energy density functional. II. Deformation properties of magic and semi-magic nuclei
NUCLEAR STRUCTURE 40,48Ca, 56,68,78Ni, 80,90,96,100,110Zr, 100,120,132Sn, 186,208Pb; calculated proton and neutron Nilsson diagrams, single-particle energy spectra, deformation energy curves, isoscalar tensor energies using nuclear energy density functionals (EDF) and T22, T26, T44, T62, SLy5, SLy5+T, SLy4, SLy4T, SLy4T(min), SLy4T(self) and TZA parametrizations. Investigated impact of tensor terms in the Skyrme energy density functional on deformation properties of magic and semi-magic nuclei.
doi: 10.1103/PhysRevC.80.064302
Int.J.Mod.Phys. E18, 951 (2009)
L.Bonneau, J.Le Bloas, P.Quentin, J.Bartel, D.Strottman
Isospin mixing in the higher Tamm-Dancoff approximation
NUCLEAR STRUCTURE 16O, 40Ca, 56Ni, 100Sn; calculated mass excess; 100Sn; calculated isospin mixing.
doi: 10.1142/S0218301309013099
Phys.Rev. C 80, 054305 (2009)
M.K.Gaidarov, G.Z.Krumova, P.Sarriguren, A.N.Antonov, M.V.Ivanov, E.Moya de Guerra
Momentum distributions in medium and heavy exotic nuclei
NUCLEAR STRUCTURE 50,64,78Ni, 84,86,98Kr, 100,120,136Sn; calculated proton, neutron, and total momentum distributions using self-consistent mean-field Skyrme Hartree-Fock + BCS method.
doi: 10.1103/PhysRevC.80.054305
Phys.Rev. C 79, 057602 (2009)
M.Hemalatha, Y.K.Gambhir, W.Haider, S.Kailas
Predicted weakening of the spin-orbit interaction with the addition of neutrons
NUCLEAR REACTIONS 76,78,80,82,84,86,88,90,92,94,96,98,100,102,104,106,108,110Zr(polarized p, p), E=39.6, 50 MeV; 96,98,100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136Sn(polarized p, p), E=22.5, 50 MeV; calculated volume integral per nucleon, σ, analyzing powers using microscopic proton-nucleus optical potential in the framework of first-order Brueckner theory with Urbana V14 soft core interaction. Comparison with experimental data.
doi: 10.1103/PhysRevC.79.057602
Phys.Rev. C 80, 024312 (2009)
H.Hergert, R.Roth
Pairing in the framework of the unitary correlation operator method (UCOM): Hartree-Fock-Bogoliubov calculations
NUCLEAR STRUCTURE 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132Sn; calculated ground state energies, charge radii, canonical single-particle spectra, canonical and average gaps using self-consistent Hartree-Fock-Bogoliubov framework and effective interactions from the unitary correlation operator method (UCOM). Comparison with experimental data.
doi: 10.1103/PhysRevC.80.024312
Phys.Rev. C 79, 054615 (2009)
E.G.Lanza, F.Catara, D.Gambacurta, M.V.Andres, Ph.Chomaz
Multiphonon excitations and pygmy resonances in tin isotopes
NUCLEAR REACTIONS 100,120,132Sn(γ, γ'), E not given; calculated proton and neutron densities, isoscalar strength distributions for monopole, quadrupole and octupole states, isovector strength distributions for dipole states, transition probabilities, transition densities for low-lying dipole state for pygmy dipole resonance and giant dipole resonance. Microscopic RPA and boson expansion calculations. 120,132Sn(208Pb, X), E=500 MeV/nucleon; calculated relativistic Coulomb inelastic cross sections using coupled-channel method.
doi: 10.1103/PhysRevC.79.054615
Phys.Rev. C 80, 041301 (2009)
G.A.Lalazissis, S.Karatzikos, M.Serra, T.Otsuka, P.Ring
Covariant density functional theory: The role of the pion
NUCLEAR STRUCTURE 40,48Ca, 48,56Ni, 100,132Sn, 208Pb, Sn A=116-152; calculated binding energies, single particle energies and spin orbit splitting of the doublets using relativistic mean field (RMF) theory and relativistic Hartree-Fock approximation. Discussed the role of the pion in covariant density functional theory. Comparison with experimental data.
doi: 10.1103/PhysRevC.80.041301
Eur.Phys.J. A 42, 565 (2009)
H.Nakada
Mean-field and RPA approaches to stable and unstable nuclei with semi-realistic interactions
NUCLEAR STRUCTURE 16O, 40,48Ca, 208Pb; calculated binding energies, rms radii. 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140,142,144Sn; calculated proton single-particle levels. 16,24O; calculated levels, J, π. 208Pb; calculated B(M1). Comparison with data.
doi: 10.1140/epja/i2008-10750-y
Phys.Rev. C 79, 054308 (2009)
V.Rotival, T.Duguet
New analysis method of the halo phenomenon in finite many-fermion systems: First applications to medium-mass atomic nuclei
NUCLEAR STRUCTURE 54,56,58,60,62,64,66,68,70,72,74,76,78,80Cr, 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140,142,144,146,148,150,152,154,156,158,160,162,164,166,168,170Sn; calculated neutron densities, neutron canonical and two-neutron separation energies, charge and Helm rms radii for protons and neutrons, halo parameters using Hartree-Fock-Bogoliubov calculations with Skyrme plus pairing functionals.
doi: 10.1103/PhysRevC.79.054308
Phys.Rev.Lett. 103, 012502 (2009)
W.Satula, J.Dobaczewski, W.Nazarewicz, M.Rafalski
Isospin Mixing in Nuclei within the Nuclear Density Functional Theory
NUCLEAR STRUCTURE 40,42,44,46,48,50,52,54,56,58,60Ca, 100Sn; calculated isospin-mixing parameters. Extended mean-field approach.
doi: 10.1103/PhysRevLett.103.012502
Phys.Rev. C 79, 064301 (2009)
Y.Tian, Z.-y.Ma, P.Ring
Separable pairing force for relativistic quasiparticle random-phase approximation
NUCLEAR STRUCTURE 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136Sn, 122Zr, 124Mo, 126Ru, 128Pd, 130Cd, 132Sn, 134Te, 136Xe, 138Ba, 140Ce, 142Nd, 144Sm, 146Gd, 148Dy, 150Er, 152Yb; calculated energies of first 2+, first and second 3-, B(E2), proton average gap, and isoscalar giant monopole resonance (ISGMR) using Relativistic Hartree-Bogoliubov (RHB) and relativistic quasiparticle random phase approximation (RQRPA). Comparison with experimental data.
doi: 10.1103/PhysRevC.79.064301
Phys.Rev. C 80, 064307 (2009)
M.Zalewski, P.Olbratowski, M.Rafalski, W.Satula, T.R.Werner, R.A.Wyss
Global nuclear structure effects of the tensor interaction
NUCLEAR STRUCTURE 16O, 40,48Ca, 56Ni, 80,90Zr, 100,132Sn, 208Pb; calculated binding energies, mechanism for superdeformed structures, and potential energy curves using energy-density-functional (EDF) methods with spherical and deformed HFB approaches and SLy4T interaction. Z=1-84, N=1-130; calculated tensor contribution to nuclear binding energy. Comparison with experimental data.
doi: 10.1103/PhysRevC.80.064307
Phys.Rev. C 82, 034329 (2010)
A.V.Afanasjev, H.Abusara
Time-odd mean fields in covariant density functional theory: Rotating systems
NUCLEAR STRUCTURE 47V, 60Zn, 92Mo, 100Sn, 108Cd, 118Te, 118Ba, 136Nd, 142Sm, 146Gd, 152Dy, 158,160Eu, 194Pb; calculated proton-single particle energies, kinematic and dynamic moments of inertia, transition quadrupole moments and hexadecapole moments, and neutron current distributions for normal-deformed (ND), superdeformed (SD), hyperdeformed (HD) structures and terminating states in a rotating frame. Z=50-74, N=50-110; Z=42-58, N=44-78; calculated contribution of nuclear magnetism (NM) to kinematic moments of inertia for ND, SD and HD structures. Z=63, N=131-209; calculated contribution of nuclear magnetism to binding energies of odd-odd Eu nuclei. Time-odd mean field (nuclear magnetism) calculations in the framework of covariant density functional theory (CDFT).
doi: 10.1103/PhysRevC.82.034329
Phys.Atomic Nuclei 73, 922 (2010)
H.Aytekin, R.Baldik, E.Tel
Calculation of the ground state properties of even-even Sn isotopes
NUCLEAR STRUCTURE 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140,142,144,146,148,150,152,154,156Sn; calculated binding energies, neutron and proton density radii, rms nuclear charge radii. Skyrme-Hartree-Fock-Bogolyubov (SHFB) methods.
doi: 10.1134/S1063778810060025
Eur.Phys.J. A 46, 45 (2010)
L.Batist, M.Gorska, H.Grawe, Z.Janas, M.Kavatsyuk, M.Karny, R.Kirchner, M.La Commara, I.Mukha, A.Plochocki, E.Roeckl
Systematics of Gamow-Teller beta decay "Southeast" of 100Sn
RADIOACTIVITY Z=44-50(β+), (EC); A=94-108(β+), (EC); analyzed BT transitions strengths, energy, centroid. 100,101Sn(β+), (EC); deduced T1/2, decay properties, β-quenching factor, Q-value. 100Cd(β+), (EC); calculated 100Ag T1/2, isomer transition T1/2.
doi: 10.1140/epja/i2010-11025-x
Phys.Rev. C 81, 044321 (2010)
A.Bhagwat, X.Vinas, M.Centelles, P.Schuck, R.Wyss
Microscopic-macroscopic approach for binding energies with the Wigner-Kirkwood method
NUCLEAR STRUCTURE 40Ca, 132Sn, 208Pb; calculated coulomb potential, Wigner-Kirkwood energies and ground state energies as function of quadrupole deformation. 136,138,140,142,144,146,148,150,152,154,156Gd, 138,140,142,144,146,148,150,152,154,156,158Dy, 178,180,182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214Pb; calculated Strutinsky shell corrections. 38,40,42,44,46,48,50,52Ca, 40,42,44,46,48,50,52Sc, 40,42,44,46,48,50,52,54Ti, 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134Sn, 178,180,182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214Pb; calculated binding energies, one-neutron and two-neutron separation energies. A=40-152, A=18-220; calculated binding energies for a set of 367 spherical nuclei. Classical Wigner-Kirkwood expansion method for spherical and deformed nuclei. Comparison with experimental data.
doi: 10.1103/PhysRevC.81.044321
Phys.Rev.Lett. 105, 122501 (2010)
B.G.Carlsson, J.Dobaczewski
Convergence of Density-Matrix Expansions for Nuclear Interactions
NUCLEAR STRUCTURE 4He, 16O, 40,48Ca, 56,78Ni, 100,132Sn, 208Pb; calculated direct and exchange energies, rms deviations between the exact and approximate exchange energies, density matrix expansion.
doi: 10.1103/PhysRevLett.105.122501
Phys.Rev. C 82, 024321 (2010)
L.-W.Chen, Che Ming Ko, B.-A.Li, J.Xu
Density slope of the nuclear symmetry energy from the neutron skin thickness of heavy nuclei
NUCLEAR STRUCTURE 16O, 40,48Ca, 56,78Ni, 90Zr, 100,120,132Sn, 208Pb; calculated binding energies, charge rms radii, and neutron skin thickness using Skyrme-Hartree-Fock approach. Comparison with experimental data.
doi: 10.1103/PhysRevC.82.024321
Phys.Rev. C 81, 054316 (2010)
T.Gaitanos, A.B.Larionov, H.Lenske, U.Mosel
Breathing mode in an improved transport approach
NUCLEAR STRUCTURE 12C, 100Sn; calculated rms radii, binding energies, neutron and proton density profiles, proton mean-field potentials. 12C, 56Ni, 96Ru, 124,136Sn, 208Pb; calculated rms radii. A=10-210; calculated excitation energies and widths of giant-monopole resonances (GMR).Improved relativistic Boltzmann-Uehling-Uhlenbeck (BUU) transport approach.
doi: 10.1103/PhysRevC.81.054316
Phys.Rev. C 82, 024319 (2010)
A.Gunther, R.Roth, H.Hergert, S.Reinhardt
Systematics of binding energies and radii based on realistic two-nucleon plus phenomenological three-nucleon interactions
NUCLEAR STRUCTURE 4He, 16,24O, 34Si, 40,48Ca, 48,56,60,78Ni, 88Sr, 90Zr, 100,114,132Sn, 146Gd, 208Pb; calculated ground-state energies and binding energies per nucleon and charge radii of closed-shell nuclei. 40Ca, 90Zr; calculated single-particle spectra. Hartree-Fock calculations using MBPT, S-UCOM(SRG) and S-SRG interactions. Comparison with experimental data.
doi: 10.1103/PhysRevC.82.024319
Phys.Rev. C 82, 024318 (2010)
M.Matsuo, Y.Serizawa
Surface-enhanced pair transfer amplitude in quadrupole states of neutron-rich Sn isotopes
NUCLEAR STRUCTURE 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140,142Sn; calculated average neutron gap, energies, B(E2) and transition densities, transition strength functions, pairing residual interactions associated with the first 2+ states. Investigated neutron pair transfer modes using QRPA based on the Skyrme-Hartree-Fock-Bogoliubov mean-fields. Comparisons with experimental data.
doi: 10.1103/PhysRevC.82.024318
Phys.Rev. C 81, 065803 (2010)
Ch.C.Moustakidis, T.Niksic, G.A.Lalazissis, D.Vretenar, P.Ring
Constraints on the inner edge of neutron star crusts from relativistic nuclear energy density functionals
NUCLEAR STRUCTURE 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134Sn, 196,198,200,202,204,206,208,210,212,214Pb; calculated rms radii using Hartree-Bogoliubov (RHB) model. Comparison with experimental data.
doi: 10.1103/PhysRevC.81.065803
Nucl.Phys. A834, 370c (2010)
D.Ni, Z.Ren
α-decay calculations of light mass nuclei above doubly magic 100Sn
RADIOACTIVITY 104,105,106,107,108,109,110Te, 106,107,108,109,110,111,112,113I, 108,109,110,111,112,113Xe, 111,112,113,114Cs, 112,113,114Ba(α); analyzed Q-value; calculated T1/2 using a generalized density-dependent cluster model. Comparison with data.
doi: 10.1016/j.nuclphysa.2010.01.042
Phys.Rev.Lett. 104, 012501 (2010)
T.Otsuka, T.Suzuki, M.Honma, Y.Utsuno, N.Tsunoda, K.Tsukiyama, M.Hjorth-Jensen
Novel Features of Nuclear Forces and Shell Evolution in Exotic Nuclei
NUCLEAR STRUCTURE Z=8-20, 28, 40, N=20, 40-50; 40Ca, 68Ni, 78Ni, 90Zr, 100Sn; calculated monopole matrix elements, single-particle energies for pf and sd-shells; deduced monopole-based universal interaction, shell evolution. Comparison with USD, KB3, GXPF1A interactions.
doi: 10.1103/PhysRevLett.104.012501
Phys.Rev. C 81, 064322 (2010)
P.Salamon, A.T.Kruppa, T.Vertse
New method for calculating shell correction
NUCLEAR STRUCTURE 16,18,20,22,24O, 20Ne, 40,48Ca, 68,78Ni, 90,122,124Zr, 100,132Sn, 146Gd, 180,208Pb; calculated neutron shell corrections using the smoothed finite-range weight function and the generalized Strutinski procedure. Comparison with the semiclassical shell correction.
doi: 10.1103/PhysRevC.81.064322
Eur.Phys.J. A 46, 241 (2010)
Z.-q.Sheng, Z.-z.Ren
Deformed relativistic mean-field calculations on nuclei near Z = 50 with FSUGold
NUCLEAR STRUCTURE 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136Sn, 108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138Te, 110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,138,140,142Xe, 112,114,116,118,120,122,124,126,128,130,132,134,136,138,140,142,144,146,148Ba; calculated binding energies, quadrupole deformation parameters, hexadecupole moments, charge radii, two-neutron separation energies. Deformed relativistic mean-field theory, comparison with experimental data.
doi: 10.1140/epja/i2010-11038-5
Phys.Rev. C 81, 054309 (2010)
M.Warda, X.Vinas, X.Roca-Maza, M.Centelles
Analysis of bulk and surface contributions in the neutron skin of nuclei
NUCLEAR STRUCTURE 100,132Sn, 208Pb; Z=50, A=100-176; Z=82, A=168-268; calculated halo factor, neutron and proton densities, neutron skin thicknesses using Gogny, Skyrme, and covariant nuclear mean-field interactions. 40,48Ca, 54,56,57Fe, 58,60,64Ni, 59Co, 90,96Zr, 106,116Cd, 112,116,120,124Sn, 122,124,126,128,130Te, 208Pb, 209Bi, 232Th, 238U; analyzed experimental neutron skin thicknesses with results of the covariant NL3 and FSUGold parameter sets of the nonrelativistic Skyrme SLy4 and Gogny D1S forces.
doi: 10.1103/PhysRevC.81.054309
Phys.Rev. C 81, 044314 (2010)
M.Zalewski, P.Olbratowski, W.Satula
Surface-peaked effective mass in the nuclear energy density functional and its influence on single-particle spectra
NUCLEAR STRUCTURE 40Ca, 56Ni, 100Sn; calculated spin-orbit splittings, isoscalar particle densities, saturation density, binding energy, incompressibility modulus, effective mass for infinite nuclear matter with realistic nucleon-nucleon interactions using SkXc Skyrme functionals.
doi: 10.1103/PhysRevC.81.044314
Int.J.Mod.Phys. E19, 794 (2010)
M.Zalewski, P.Olbratowski, W.Satula
The nuclear energy density functionals with modified radial dependence of the isoscalar effective mass
NUCLEAR STRUCTURE 40Ca, 56Ni, 100Sn; calculated spin-orbit splitting, radial dependence. Standard Skyrme energy-density functionals (EDF).
doi: 10.1142/S0218301310015242
Phys.Rev. C 82, 054319 (2010)
P.W.Zhao, Z.P.Li, J.M.Yao, J.Meng
New parametrization for the nuclear covariant energy density functional with a point-coupling interaction
NUCLEAR STRUCTURE 16,18,20,22O, 18Ne, 20Mg, 34Si, 36S, 38Ar, 36,38,40,42,44,46,48,50Ca, 42,50Ti, 56,58,72Ni, 84Se, 86Kr, 88Sr, 90Zr, 92Mo, 94Ru, 98Cd, 100,106,108,112,116,120,122,124,126,128,130,132,134Sn, 134Te, 136Xe, 138Ba, 140Ce, 142Nd, 144Sm, 146Gd, 148Dy, 150Er, 206Hg, 200,202,204,206,208,210,212,214Pb, 210Po, 212Rn, 214Ra, 216Th, 218U; calculated binding energies and charge radii for spherical nuclei by PC-PK1 parametrization of energy density functional. Z=20, N=16-32; Z=28, N=26-44; Z=50, N=52-84; Z=82, N=100-132; Z=12-22, N=20; Z=30-46, N=50; Z=50-66, N=82; Z=80-92, N=126; Z=70, N=88-108; Z=92, N=138-148; deduced deviations of calculated binding energies from those in AME-2003. Z=8, N=6-22; Z=20, N=18-40; Z=28, N=28-50; Z=50, N=52-90; calculated S(2n) values. 16O, 40Ca, 132Sn, 208Pb; calculated single-particle energies. Z=50, N=56-82; Z=82, N=114-132; calculated charge radii and neutron skin thickness. 240Pu; calculated potential energy curve. 150Nd; calculated yrast states and B(E2) values. 144,146,148,150,152,154Nd; calculated E(4+)/E(2+) and B(E2) for first 2+ states. Comparison with experimental data and AME-2003.
doi: 10.1103/PhysRevC.82.054319
J.Phys.Soc.Jpn. 80, 104201 (2011)
M.H.E.Abu-Seileek
Doubly-Magic 100Sn Nucleus with Delta Excitation under Compression
NUCLEAR STRUCTURE 100Sn; calculated proton-, neutron-density distributions, single-particle energies of the lowest states, Δ orbitals. Hartree-Fock method.
Phys.Rev. C 83, 064306 (2011)
M.Anguiano, G.Co, V.De Donno, A.M.Lallena
Tensor effective interaction in self-consistent random-phase approximation calculations
NUCLEAR STRUCTURE 12C, 14,16,22,24,28O, 40,48,52,60Ca, 48,56,68,78Ni, 90Zr, 100,114,116,132Sn, 208Pb; calculated energies of lowest 0- states, binding energies, neutron and proton rms radii, neutron and proton single-particle energies, neutron and proton energy gaps, single particle levels near the Fermi surface, level energies, J, π for N=Z nuclei with isoscalar and isovector characters. Hartree-Fock and random-phase approximation calculations with finite-range Gogny forces, with and without a tensor-isospin term.
NUCLEAR REACTIONS 12C, 40Ca, 208Pb(e, e'), E not given; calculated transverse response as a function of the effective momentum transfer using RPA wave functions obtained in fully self-consistent approach. Comparison with experimental data.
doi: 10.1103/PhysRevC.83.064306
Phys.Rev. C 83, 064316 (2011)
A.Avdeenkov, S.Goriely, S.Kamerdzhiev, S.Krewald
Self-consistent calculations of the strength function and radiative neutron capture cross section for stable and unstable tin isotopes
NUCLEAR STRUCTURE 100,110,112,114,120,124,132,136,142,150,156,166,176Sn; calculated E1 strength functions, integral characteristics of GDR versus A, giant-dipole and pygmy-dipole resonances (GDR, PDR), neutron and proton transitional densities using self-consistent microscopic theory as well as standard quasiparticle random phase approximation (QRPA, QTBA). Comparison with experimental data. Discussed properties of GDR and PDR.
NUCLEAR REACTIONS 123,131,149Sn(n, γ), E=0.001-10 MeV; calculated neutron capture cross sections obtained with E1 strength functions calculated within the QRPA, QTBA, and Kopecky-Uhl approaches.
doi: 10.1103/PhysRevC.83.064316
Bull.Rus.Acad.Sci.Phys. 75, 585 (2011); Izv.Akad.Nauk RAS, Ser.Fiz 75, 621 (2011)
O.V.Bespalova, T.A.Ermakova, A.A.Klimochkina, H.Koura, E.A.Romanovskii, T.I.Spasskaya
Evaluation and analysis of neutron single-particle energies in 78Ni nucleus
NUCLEAR STRUCTURE 78Ni, 90Zr, 100Sn; analyzed experimental data; calculated single-particle energies. Koura-Yamada potential.
doi: 10.3103/S1062873811040071
Phys.Rev. C 83, 064319 (2011)
M.Bender, P.-H.Heenen
What can be learned from binding energy differences about nuclear structure: The example of δVpn
NUCLEAR STRUCTURE Z=15-100, N=15-150; 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132Sn, 180,182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212Pb, 120,122,124,126,128,130,132,134,136,138,140,142,144,146,148Ba, 130,132,134,136,138,140,142,144,146,148,150,152,154Nd, 140,142,144,146,148,150,152,154,156,158,160Gd; A=130-210, N-Z=32; A=132, 168, N-Z=12-34; calculated maps of binding energy difference δVpn, deformation of mean-field ground state. 204,206Hg, 206,208Pb; calculated decomposition of δVpn into contributions from the different terms of the energy density functionals. Angular momentum and particle-number projected generator coordinate method and the Skyrme interaction SLy4Skyrme interaction SLy4. Comparison with experimental data.
doi: 10.1103/PhysRevC.83.064319
Int.J.Mod.Phys. E20, 1663 (2011)
A.Bhagwat, Y.K.Gambhir
Evolution of shell structure in nuclei
NUCLEAR STRUCTURE 14,16,18,20,22,24,26,28,30,32O, 54,56,58,60,62,64,66,68,70,72,74,76,78,80,82,84,86,88,90,92,94,96,98,100,102Ni, 80,82,84,86,88,90,92,94,96,98,100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140,142,144,146,148,150,152,154Zr, 98,100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140,142,144,146,148,150,152,154,156,158,160,162,164,166,168,170,172,174,176,178,180Sn, 180,182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214,216,218,220,222,224,226,228,230,232,234,236,238,240,242,244,246,248,250,252,254,256,258,260,262,264,266,268,270,272Pb, 130,132,134,136,138,140,142,144,146,148,150,152,154,156,158,160,162,164,166,168,170,172,174Gd; calculated pairing energy, two-neutron separation energy. RMF calculations, comparison with experimental data.
doi: 10.1142/S0218301311019581
J.Phys.:Conf.Ser. 312, 092002 (2011)
J.Dobaczewski
Current Developments in Nuclear Density Functional Methods
NUCLEAR STRUCTURE 40,48Ca, 56,78Ni, 100,132Sn, 208Pb; calculated proton radius, binding energy, mass excess using Gogny D1S and second-order Skyrme-like EDF (energy density formalism).
doi: 10.1088/1742-6596/312/9/092002
Phys.Rev. C 84, 024301 (2011)
D.Gambacurta, L.Li, G.Colo, U.Lombardo, N.Van Giai, W.Zuo
Determination of local energy density functionals from Brueckner-Hartree-Fock calculations
NUCLEAR STRUCTURE 16O, 40Ca, 48Ca, 56Ni, 78Ni, 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132Sn, 208Pb; calculated binding energies, charge radii. 208Pb; calculated energies of giant monopole (ISGMR), dipole (IVGDR), quadrupole (ISGQR) and Gamow-Teller resonances. Brueckner-Hartree-Fock approximation, Skyrme parameterization and local energy density functionals. Comparison with experimental data.
doi: 10.1103/PhysRevC.84.024301
Phys.Rev. C 83, 064317 (2011)
H.Hergert, P.Papakonstantinou, R.Roth
Quasiparticle random-phase approximation with interactions from the Similarity Renormalization Group
NUCLEAR STRUCTURE 56Ca; calculated number operator response for nonspurious monopole states, isoscalar and isovector dipole strengths. 4He, 16,24O, 34Si, 40,48Ca, 56,68,78Ni, 88Sr, 90Zr, 100,114,132Sn, 146Gd, 208Pb; calculated ground-state energy per nucleon and charge radii. 16O, 40,48Ca, 100,132Sn; calculated proton and neutron spin-orbit splittings. 36,38,40,42,44,46,48,50,52,54,56,58,60Ca; calculated ground-state energies per nucleon, charge radii, odd-even mass differences, and pairing energies, isoscalar and isovector monopole, dipole and quadrupole responses, isoscalar monopole centroids and energies of the first excited 0+ states, centroids of isovector dipole response, isoscalar quadrupole centroids and energies of the first 2+ states. 40,48Ca; calculated single particle energies. 120Sn; calculated canonical single-neutron energies, isoscalar monopole response, running energy-weighted sums, centroid energies of the isoscalar monopole strength distribution. 50Ca; calculated proton and neutron transition densities for monopole peaks. 36,44Ca; calculated proton and neutron dipole transition densities. 54Ca; calculated proton and neutron quadrupole transition densities for a pygmy and a GQR mode. Quasiparticle random phase approximation built on the HFB ground states. Comparison with experimental data.
doi: 10.1103/PhysRevC.83.064317
Int.J.Mod.Phys. E20, 281 (2011)
J.Kvasil, V.O.Nesterenko, W.Kleinig, D.Bozik, P.-G.Reinhard
Skyrme-Hartree-Fock description of the dipole strength in neutron-rich tin isotopes
NUCLEAR STRUCTURE 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140,142,144,146,148,150,152,154,156,158,160,162,164,166Sn; analyzed low-energy E1 strengths, neutron and proton quadrupole deformations.
doi: 10.1142/S0218301311017636
Phys.Rev. C 84, 064602 (2011)
E.G.Lanza, A.Vitturi, M.V.Andres, F.Catara, D.Gambacurta
Excitations of pygmy dipole resonances in exotic and stable nuclei via Coulomb and nuclear fields
NUCLEAR REACTIONS 132Sn(α, α'), (40Ca, 40Ca'), (48Ca, 48Ca'), E=30, 60, 100 MeV; 208Pb(17O, 17O'), E=20, 50 MeV; calculated form factors for PDR states and GDR, partial wave cross sections, differential cross sections. 100Sn, 120Sn, 132Sn, 208Pb; calculated isovector strength distributions B(E1), RPA transition strengths for low-lying states. Hartree-Fock plus RPA random phase approximation (RPA), with Skyrme interaction.
doi: 10.1103/PhysRevC.84.064602
Prog.Part.Nucl.Phys. 66, 368 (2011)
H.Lenske, S.E.A.Orrigo, N.Tsoneva
Density functional theory for reactions of astrophysical interest
NUCLEAR STRUCTURE 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132Sn; calculated electric dipole strength distributions, B(E1), nuclear skin thickness. QRPA results.
NUCLEAR REACTIONS 138Ba(γ, X), E<9 mEV; calculated photo-absorption σ. QRPA results.
doi: 10.1016/j.ppnp.2011.01.036
Phys.Rev. C 84, 014310 (2011)
J.Le Bloas, M.Koh, P.Quentin, L.Bonneau, J.I.A.Ithnin
Exact Coulomb exchange calculations in the Skyrme-Hartree-Fock-BCS framework and tests of the Slater approximation
NUCLEAR STRUCTURE 16O, 24Mg, 40,48Ca, 48Cr, 48,56Ni, 90Zr, 106Mo, 100,132Sn, 174,176,178Hf, 206,208,210Pb, 238U, 298Fl, 310126; Z=20-34, N=28; Z=40-58, N=64; Z=52-62, N=78; Z=68-80, N=106; Z=76-88, N=126; Z=86-100, N=146; calculated Coulomb interaction and fission properties for even-even nuclei within the Skyrme-Hartree-Fock/Bardeen-Cooper-Schrieffer approach. Pairing correlations. 70Se; calculated deformation energy curves. 212Po, 214Rn, 216Ra, 218Th; calculated α decay properties.
doi: 10.1103/PhysRevC.84.014310
Phys.Rev. C 84, 014305 (2011)
E.V.Litvinova, A.V.Afanasjev
Dynamics of nuclear single-particle structure in covariant theory of particle-vibration coupling: From light to superheavy nuclei
NUCLEAR STRUCTURE 56Ni, 100,132Sn, 208Pb; calculated single particle spectra and strength distributions, proton and neutron shell gaps, spin-orbit and pseudospin doublet splitting energies. 55Co, 55,57Ni, 57Cu, 99,131In, 99,101,131,133Sn, 101,133Sb, 207Tl, 207,209Pb, 209Bi; calculated spectroscopic factors in single-particle transfer reactions. 292120; calculated single-particle spectrum. Relativistic particle-vibration model in combination with the cranked relativistic mean-field (CRMF) approach. Comparison with experimental data.
doi: 10.1103/PhysRevC.84.014305
Phys.Rev. C 83, 034305 (2011)
N.Nikolov, N.Schunck, W.Nazarewicz, M.Bender, J.Pei
Surface symmetry energy of nuclear energy density functionals
NUCLEAR STRUCTURE 192,194Hg, 192,194,196Pb, 236,238U, 240Pu, 242Cm; calculated deformation energies versus deformation parameter, 0+ superdeformed bandhead energies in Hg and Pb nuclei, and fission isomers in actinides. 236,248,260,270,298U; calculated contributions of the Coulomb, surface symmetry, curvature, and surface terms of fission isomers. 100Sn, 100Zr; calculated contribution to the total deformation energy per nucleon. Nuclear energy density functional (EDF) theory applied to examine the role of the surface symmetry energy in nuclei using various Skyrme energy density functionals (EDFs). Comparison with experimental data.
doi: 10.1103/PhysRevC.83.034305
Eur.Phys.J. A 47, 14 (2011)
P.Papakonstantinou, V.Yu.Ponomarev, R.Roth, J.Wambach
Isoscalar dipole coherence at low energies and forbidden E1 strength
NUCLEAR STRUCTURE 16O, 40Ca, 56Ni, 100Sn; calculated ISD, E1 response, GDR peak energy, B(E1), γ transition strengths, transition densities using RPA with finite-range forces.
doi: 10.1140/epja/i2011-11014-7
Phys.Rev. C 84, 054309 (2011); Erratum Phys.Rev. C 93, 069905 (2016)
X.Roca-Maza, X.Vinas, M.Centelles, P.Ring, P.Schuck
Relativistic mean-field interaction with density-dependent meson-nucleon vertices based on microscopical calculations
NUCLEAR STRUCTURE 16,18,26,28,30Ne, 20,32Mg, 34,36Si, 36S, 38,40Ar, 36,38,40,42,44,46,48,50,52Ca, 40,42,44,48,50,52,54Ti, 46,52Cr, 54,64,66,68Fe, 54,56,58,66,68,70,72Ni, 58,70,72Zn, 82Ge, 84,86Se, 86,88Kr, 86,88,90Sr, 86,88,90,92Zr, 86,88,90,92,94Mo, 94,96Ru, 96,98Pd, 98,100Cd, 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134Sn, 126,128,130,132,134,136Te, 134,136,138Xe, 136,138,140Ba, 138,140,142,144Ce, 140,142,144Nd, 142,144,146Sm, 146Gd, 148Dy, 150Er, 152Yb, 170,172Pt, 172,174,176,204,206Hg, 178,180,182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214Pb, 204,206,208,210,212,214,216Po, 208,210,212,214,216Rn, 210,212,214,216,218Ra, 212,214,216,218,220Th, 224U; analyzed binding energies, and charge radii. 100,132,176Sn; calculated isoscalar, isovector parts of the spin-orbit potential, spin orbit splitting. Relativistic Brueckner theory, high-precision density functional DD-MEδ with density-dependent meson-nucleon couplings. Comparison with experimental data.
doi: 10.1103/PhysRevC.84.054309
Phys.Rev. C 83, 025801 (2011)
P.Sarriguren
Stellar weak decay rates in neutron-deficient medium-mass nuclei
RADIOACTIVITY 50,52,54Ni, 56,58,60Zn, 62,64,66Ge, 66,68,70Se, 70,72,74Kr, 74,76,78Sr, 80,82,84Zr, 84,86,88Mo, 88,90,92Ru, 92,94,96Pd, 96,98,100Cd, 100,102,104Sn(β+), (EC); calculated G-T strength distributions, and decay rates of waiting point and neighboring nuclides under stellar density and temperature conditions in rp process using self-consistent deformed Skyrme-Hartree Fock + BCS + quasiparticle random-phase-approximation (QRPA) approach.
doi: 10.1103/PhysRevC.83.025801
Acta Phys.Pol. B42, 415 (2011)
W.Satula, J.Dobaczewski, W.Nazarewicz, M.Rafalski
Isospin Mixing in Nuclei around N∼Z and the Superallowed β -decay
NUCLEAR STRUCTURE 40Ca, 42Sc, 80Zr, 100Sn; calculated isospin impurities, isospin-breaking correction.
Int.J.Mod.Phys. E20, 244 (2011)
W.Satula, J.Dobaczewski, W.Nazarewicz, M.Borucki, M.Rafalski
Isospin mixing in the vicinity of the N = Z line
NUCLEAR STRUCTURE 14N, 40Ca, 100Sn; calculated kernels, isospin impurities, symmetry energies.
doi: 10.1142/S0218301311017582
Phys.Rev. C 84, 044317 (2011)
H.Shimoyama, M.Matsuo
Anomalous pairing vibration in neutron-rich Sn isotopes beyond the N=82 magic number
NUCLEAR STRUCTURE 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140,142,144,146,148,150Sn; calculated monopole neutron pair transfer strengths, neutron pair transition strength functions, neutron transition densities. Dependence of anomalous pair vibration on the effective pairing interaction. Skyrme-Hartree-Fock-Bogoliubov mean-field model, continuum quasiparticle random phase approximation.
doi: 10.1103/PhysRevC.84.044317
Phys.Rev. C 84, 054313 (2011)
N.K.Timofeyuk
Properties of one-nucleon overlap functions for A ≥ 16 double-closed-shell nuclei in the source-term approach
NUCLEAR STRUCTURE 16,17,24O, 25F, 40,41,48,49,60Ca, 41,49Sc, 56,57,78Ni, 100,132,133Sn, 208,209Pb, 209Bi; calculated spectroscopic factors, rms radii, asymptotic normalization coefficients for one-nucleon removal and addition reactions. Source term approach, and independent-particle model. Comparison with experimental data for one nucleon knockout reactions.
doi: 10.1103/PhysRevC.84.054313
Phys.Rev. C 86, 044316 (2012)
A.Bhagwat, X.Vinas, M.Centelles, P.Schuck, R.Wyss
Microscopic-macroscopic approach for binding energies with the Wigner-Kirkwood method. II. Deformed nuclei
NUCLEAR STRUCTURE 63Ge, 65As, 67Se, 71,80,82,84,86,88,90,92,94,96,98,100,102,104Kr, 76,78,80,82,84,86,88,90,92,94,96,98,100,102Sr, 84,86,88,90,92,94,96,98,100,102,104,106,108Zr, 86,88,90,92,94,96,98,100,102,104,106,108,110Mo, 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134Sn, 140,142,144,146,148,150,152,154,156,158,160,162Gd, 186,188,190,192,194,196,198,200,202,204,206,208,210,212,214Po; calculated S2n, β2, Sp, binding energy using Microscopic-macroscopic model with Wigner-Kirkwood expansion. Comparison with experimental data. Z, N>7; deduced difference between the calculated and the corresponding experimental binding energies for 561 nuclides.
RADIOACTIVITY 279,280Rg, 282,283Nh, 287,288,289Fl, 287,288Mc, 291,292,293Lv, 294Og(α); calculated Q values and half-lives. Comparison with experimental data.
doi: 10.1103/PhysRevC.86.044316
Phys.Rev. C 86, 014307 (2012)
B.G.Carlsson, J.Toivanen, A.Pastore
Collective vibrational states within the fast iterative quasiparticle random-phase approximation method
NUCLEAR STRUCTURE 18O; calculated levels, J, π, B(E0), B(E1), B(E2). 38,40,42,44,46,48,50,52,54Ca, 52,54,56,58,60,62,64,66,68,70,72,74,76,78,80Ni, 182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214Pb, 98,100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138Sn; calculated levels, J, π, B(E2), B(E3), two-quasi particle components for first 2+ and 3- states. Quasiparticle random-phase approximation (QRPA) calculations using iterative non-Hermitian Arnoldi diagonalization procedures. Comparison with experimental data.
doi: 10.1103/PhysRevC.86.014307
J.Phys.(London) G39, 035104 (2012)
L.-W.Chen, J.-Z.Gu
Correlations between the nuclear breathing mode energy and properties of asymmetric nuclear matter
NUCLEAR STRUCTURE 208Pb, 100,132Sn; calculated nuclear isoscalar giant monopole resonance (ISGMR) energies, response functions; deduced correlations between ISGMR and symmetry energies. Microscopic HF calculations.
doi: 10.1088/0954-3899/39/3/035104
Phys.Rev. C 85, 024322 (2012)
G.Co, V.De Donno, P.Finelli, M.Grasso, M.Anguiano, A.M.Lallena, C.Giusti, A.Meucci, F.D.Pacati
Mean-field calculations of the ground states of exotic nuclei
NUCLEAR STRUCTURE 16,22,24,28O, 40,48,52,60Ca, 48,56,68,78Ni, 100,114,116,132Sn; calculated binding energies, single particle energies, rms charge radii, neutron skin thickness. Mean-field approach, nonrelativistic Hartree-Fock, relativistic Hartree calculations. Comparison with experimental data.
NUCLEAR REACTIONS 40,48,52,60Ca(e, e'p), (e, e), E=483.2 MeV; calculated reduced cross sections, elastic scattering cross sections, neutron, proton and matter distributions, Mean-field approach, nonrelativistic Hartree-Fock, relativistic Hartree calculations. Comparison with experimental data.
doi: 10.1103/PhysRevC.85.024322
Phys.Rev. C 85, 034317 (2012)
M.Grasso, D.Lacroix, A.Vitturi
Pair-transfer probability in open- and closed-shell Sn isotopes
NUCLEAR STRUCTURE 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140,142,144Sn; calculated two nucleon transfer (removal or addition) strength from ground-state to ground-state, neutron Fermi energy, entropy, pairing gap for mixed pairing case and pure surface case. Canonical basis formulation, and Hartree-Fock-Bogoliubov (HFB) theory. Discussed role of particle number restoration.
doi: 10.1103/PhysRevC.85.034317
Nature(London) 486, 341 (2012)
C.B.Hinke, M.Bohmer, P.Boutachkov, T.Faestermann, H.Geissel, J.Gerl, R.Gernhauser, M.Gorska, A.Gottardo, H.Grawe, J.L.Grebosz, R.Krucken, N.Kurz, Z.Liu, L.Maier, F.Nowacki, S.Pietri, Zs.Podolyak, K.Sieja, K.Steiger, K.Straub, H.Weick, H.-J.Wollersheim, P.J.Woods, N.Al-Dahan, N.Alkhomashi, A.Atac, A.Blazhev, N.F.Braun, I.T.Celikovic, T.Davinson, I.Dillmann, C.Domingo-Pardo, P.C.Doornenbal, G.de France, G.F.Farrelly, F.Farinon, N.Goel, T.C.Habermann, R.Hoischen, R.Janik, M.Karny, A.Kaskas, I.M.Kojouharov, Th.Kroll, Y.Litvinov, S.Myalski, F.Nebel, S.Nishimura, C.Nociforo, J.Nyberg, A.R.Parikh, A.Prochazka, P.H.Regan, C.Rigollet, H.Schaffner, C.Scheidenberger, S.Schwertel, P.-A.Soderstrom, S.J.Steer, A.Stolz, P.Strmen
Superallowed Gamow-Teller decay of the doubly magic nucleus 100Sn
RADIOACTIVITY 100Sn(β+), (EC) [from Be(124Xe, X)100Sn, E = 1 GeV/nucleon]; measured decay products, Eγ, Iγ, Eβ, Iβ. 100In; deduced T1/2, log ft, Gamow-Teller strength, energy levels, J, π, distribution of positron energies. Comparison with available data, large scale shell model calculations.
doi: 10.1038/nature11116
Phys.Rev. C 86, 014313 (2012)
G.Lorusso, A.Becerril, A.Amthor, T.Baumann, D.Bazin, J.S.Berryman, B.A.Brown, R.H.Cyburt, H.L.Crawford, A.Estrade, A.Gade, T.Ginter, C.J.Guess, M.Hausmann, G.W.Hitt, P.F.Mantica, M.Matos, R.Meharchand, K.Minamisono, F.Montes, G.Perdikakis, J.Pereira, M.Portillo, H.Schatz, K.Smith, J.Stoker, A.Stolz, R.G.T.Zegers
β-delayed proton emission in the 100Sn region
RADIOACTIVITY 89Ru, 91,92Rh, 93Pd, 95,96,96mAg, 96,97,97mCd, 98,98m,99,100In, 100,101Sn[from 9Be(112Sn, X), E=140 MeV/nucleon](β+), (EC), (β+p); measured Eγ, Iγ, β spectra, E(p), I(p), βγ-coin, βp-coin, γβp-coin, fragment yields, half-lives, β-delayed proton emission branching ratios using NSCL Beta Counting System and SeGA array. Discussed rp-process implications. Comparison with previous studies and theoretical calculations. X-ray bursts calculations.
doi: 10.1103/PhysRevC.86.014313
Prog.Theor.Phys.(Kyoto), Suppl. 196, 39 (2012)
U.Lombardo
NN Effective Interaction from the Brueckner Theory and Applications to Nuclear Systems
NUCLEAR STRUCTURE 16O, 40,48Ca, 56,78Ni, 100,132Sn, 208Pb; calculated binding energies, charge radii, isospin splitting.
doi: 10.1143/PTPS.196.39
Phys.Rev. C 85, 054313 (2012)
T.Marketin, G.Martinez-Pinedo, N.Paar, D.Vretenar
Role of momentum transfer in the quenching of Gamow-Teller strength
NUCLEAR REACTIONS 90Zr(p, n), (n, p), E=300 MeV; analyzed differential cross section data; deduced pn-RQRPA strengths in β- and β+ channels obtained with the Gamow-Teller (GT) operator, GT+IVSM operator, and full L=0 operator, momentum transfer. Relativistic Hartree-Bogoliubov model. Comparison with Ikeda sum rule.
NUCLEAR STRUCTURE 48Ca, 90Zr, 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140,142,144,146,148,150Sn, 208Pb; analyzed L=0 β- strength functions, GT and IVSM centroids using Relativistic Hartree-Bogoliubov (RHB) plus proton-neutron relativistic quasiparticle random-phase approximation (pn-RQRPA) with GT operator, the GT plus isovector spin monopole (IVSM) mode term, and the operator that contains the full momentum-transfer dependence.
doi: 10.1103/PhysRevC.85.054313
Prog.Theor.Phys.(Kyoto), Suppl. 196, 371 (2012)
H.Nakada
Mean-Field and RPA Approaches to Stable and Unstable Nuclei with Semi-Realistic NN Interaction
NUCLEAR STRUCTURE 208Pb, 90Zr, 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130Sn; calculated B(E2), energy levels, J, π. M3Y-type semi-realistic NN interactions in the mean-field and RPA framework.
doi: 10.1143/PTPS.196.371
Phys.Rev. C 86, 031306 (2012)
X.Roca-Maza, G.Colo, H.Sagawa
New Skyrme interaction with improved spin-isospin properties
NUCLEAR STRUCTURE 16O, 40,48Ca, 56,68Ni, 90Zr, 100,132Sn, 208Pb; calculated binding energies, charge radii, proton spin-orbit splittings using the Skyrme-Aizu-Milano (SAMi) functional. 48Ca, 90Zr, 208Pb; calculated Gamow-Teller (GT) strength distributions and spin dipole resonance (SDR) strength functions using several Skyrme interactions. New Skyrme energy density functional proposed. Comparison with experimental data.
doi: 10.1103/PhysRevC.86.031306
Phys.Rev. C 86, 034314 (2012)
N.A.Smirnova, K.Heyde, B.Bally, F.Nowacki, K.Sieja
Nuclear shell evolution and in-medium NN interaction
NUCLEAR STRUCTURE 16,18,20,22,28,36O, 24Ne, 26Mg, 34,42Si, 36,44S, 40,42,44,46,48Ca, 50Ti, 52Cr, 54Fe, 56Ni, 80,82,84,86,88,90Zr, 92Mo, 94Ru, 96Pd, 98Cd, 100Sn; calculated neutron and proton effective single-particle energies (ESPEs) based on an effective two-body shell-model interaction in sdpf shell-model space. Role of central and tensor terms in understanding evolution of the shell gaps at N=20 and N=28.
doi: 10.1103/PhysRevC.86.034314
Phys.Rev. C 85, 034322 (2012)
M.Urban
Pygmy resonance and torus mode within Vlasov dynamics
NUCLEAR STRUCTURE 16,18,20,22O, 100,116,132Sn; calculated electric dipole moment, E1 strength, transition densities and velocity fields for GDR and pygmy dipole resonances. Semiclassical Thomas-Fermi (TF) plus Vlasov approach.
doi: 10.1103/PhysRevC.85.034322
Phys.Rev. C 85, 054319 (2012)
D.Voitenkov, S.Kamerdzhiev, S.Krewald, E.E.Saperstein, S.V.Tolokonnikov
Self-consistent calculations of quadrupole moments of the first 2+ states in Sn and Pb isotopes
NUCLEAR MOMENTS 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134Sn, 190,192,194,196,198,200,202,204,206,208Pb; calculated static quadrupole moments of first 2+ states. Ground state correlations. Dependence of quadrupole moment on neutron access. Self-consistent calculations based on quasiparticle random-phase approximation (QRPA) and energy density functionals. Comparison with experimental data.
doi: 10.1103/PhysRevC.85.054319
Phys.Rev. C 86, 054309 (2012)
K.Washiyama, K.Bennaceur, B.Avez, M.Bender, P.-H.Heenen, V.Hellemans
New parametrization of Skyrme's interaction for regularized multireference energy density functional calculations
NUCLEAR STRUCTURE 40,48Ca, 56Ni, 100,132Sn, 208Pb; calculated binding energy, charge radii. 24Mg, 74Kr, 80,100Zr, 186Pb; calculated potential energy curves versus β2. 240Pu; calculated fission barrier versus β2. 194Hg; calculated dynamical moment of inertia of superdeformed band. 249Bk, 251Cf; calculated one-quasiparticle levels. Z=20, A=36-52; Z=28, A=54-72; Z=50, A=100-134; Z=82, A=180-214; N=20, Z=10-22; N=50, Z=30-50; N=82, Z=48-70; N=126, Z=80-92; calculated binding energies, charge radii for even-even nuclei. Energy density functional calculations for spherical and deformed nuclei with new Skyrme parametrization with integer powers of the density. Comparison with experimental data.
doi: 10.1103/PhysRevC.86.054309
Nucl.Phys. A877, 35 (2012)
E.Yuksel, E.Khan, K.Bozkurt
Analysis of the neutron and proton contributions to the pygmy dipole mode in doubly magic nuclei
NUCLEAR STRUCTURE 16,24O, 40,48,70Ca, 56,68,78Ni, 100,132Sn, 208Pb; calculated GDR, Pygmy dipole strength distribution using self-consistent HF+RPA with Skyrme interactions. Comparison with data.
doi: 10.1016/j.nuclphysa.2012.01.006
Eur.Phys.J. A 49, 76 (2013)
B.Avez, C.Simenel
Structure and direct decay of Giant Monopole Resonances
NUCLEAR STRUCTURE 16O; calculated, analyzed giant monopole resonance, monopole moment time evolution, strength function. Compared with available data. 100,132Sn; calculated, analyzed GMR (giant monopole resonance) strength function. RPA with time-dependent energy density functional method in linear response regime.
doi: 10.1140/epja/i2013-13076-9
Nucl.Phys. A913, 1 (2013)
R.Bhattacharya
Tensor interaction and its influence on evolution of nuclear shells
NUCLEAR STRUCTURE 40,48Ca, 56Ni, 90Zr, 100,132Sn, 208Pb; calculated levels, J, π, shell gaps for Z=8, 20, 28 and N=8, 20, 28 chains, spin-orbit splitting of shell model states near 132Sn and 208Pb using Hartree-Fock theory with Skyrme density dependent, tensor interaction and spin-orbit; deduced parameters. Compared with available data.
doi: 10.1016/j.nuclphysa.2013.05.006
Phys.Rev.Lett. 111, 232502 (2013)
B.A.Brown
Constraints on the Skyrme Equations of State from Properties of Doubly Magic Nuclei
NUCLEAR STRUCTURE 16,24O, 34Si, 40,48Ca, 48,68Ni, 88Sr, 100,132Sn, 208Pb; analyzed properties of doubly magic nuclei; deduced the value of the neutron equation of state and Skyrme equations of state on the neutron skin. Comparison with available data.
doi: 10.1103/PhysRevLett.111.232502
Phys.Rev. C 87, 054303 (2013)
B.G.Carlsson, J.Toivanen, U.von Barth
Fluctuating parts of nuclear ground-state correlation energies
NUCLEAR STRUCTURE 14,16,18,20,22O, 36,38,40,42,44,46,48,50Ca, 52,54,56,58,60,62,64,66,68,70,72,74,76,78Ni, 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136Sn; calculated correlations and fluctuating parts in ground-state binding energies, octupole shape vibrations using QRPA and MBPT2. Comparison with experimental data.
doi: 10.1103/PhysRevC.87.054303
Phys.Rev. C 87, 034305 (2013)
G.Co, V.De Donno, M.Anguiano, A.M.Lallena
Pygmy and giant electric dipole responses of medium-heavy nuclei in a self-consistent random-phase approximation approach with a finite-range interaction
NUCLEAR STRUCTURE 16,22,24,28O, 40,48,52,60Ca, 48,56,68,78Ni, 90Zr, 100,114,116,132Sn, 208Pb; calculated photoabsorption σ(E), proton and neutron transition densities, centroids of pygmy dipole and giant dipole resonances (PDR, GDR). Gogny interaction in a self-consistent Hartree-Fock plus random phase approximation method. Comparison with experimental data, and for details of PDR and GDR structures.
doi: 10.1103/PhysRevC.87.034305
Phys.Scr. T154, 014002 (2013)
J.Dudek, B.Szpak, B.Fornal, A.Dromard
Predictive power and theoretical uncertainties of mathematical modelling for nuclear physics
NUCLEAR STRUCTURE 16O, 40,48Ca, 56Ni, 90Zr, 100,132Sn, 208Pb; calculated level energies, J, π, proton radius and their uncertainties. Comparison with available data.
doi: 10.1088/0031-8949/2013/T154/014002
Prog.Part.Nucl.Phys. 69, 85 (2013)
T.Faestermann, M.Gorska, H.Grawe
The structure of 100Sn and neighbouring nuclei
NUCLEAR STRUCTURE 100,108,110,112,114Sn; compiled experimental data, B(E2), shell model results.
doi: 10.1016/j.ppnp.2012.10.002
Phys.Atomic Nuclei 76, 828 (2013)
V.I.Isakov
Global properties of nuclei from 100Sn to 132Sn
NUCLEAR STRUCTURE 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132Sn; calculated binding energies, two-neutron separation energy, proton separation energy, rms radii for protons and neutrons, occupancies, B(E2), energy levels, J, π. HF+BCS procedure.
doi: 10.1134/S1063778813070077
Phys.Scr. T154, 014019 (2013)
J.Kvasil, A.Repko, V.O.Nesterenko, W.Kleinig, P.-G.Reinhard, N.Lo Iudice
Toroidal, compression and vortical dipole strengths in 124Sn
NUCLEAR STRUCTURE 100,124,132Sn; calculated toroidal, vortical and compression dipole strength functions. Self-consistent separable Skyrme-RPA approach.
doi: 10.1088/0031-8949/2013/T154/014019
Phys.Rev. C 87, 014336 (2013)
H.Nakada
Semi-realistic nucleon-nucleon interactions with improved neutron-matter properties
NUCLEAR STRUCTURE 16,24O, 40,48Ca, 90Zr, 100,132Sn, 208Pb; calculated binding energies, rms matter radii, single-particle energies, proton and neutron rms radii. Z=8, N=7-18; Z=20, N=17-50; Z=28, N=24-62; Z=50, N=53-92; Z=82, N=97-134; calculated S(n). N=20, Z=14-28; N=28, Z=16-30; N=50, Z=28-50; N=82, Z=47-72; N=126, Z=70-94; calculated S(p). Z=82, N=116-134; calculated isotope shifts. Discussed tensor-force effects on shell structure. HFB calculations with new parameter sets of semi-realistic effective interactions. Comparison with experimental data.
doi: 10.1103/PhysRevC.87.014336
Phys.Rev. C 87, 051303 (2013)
Z.M.Niu, Y.F.Niu, Q.Liu, H.Z.Liang, J.Y.Guo
Nuclear β+/EC decays in covariant density functional theory and the impact of isoscalar proton-neutron pairing
RADIOACTIVITY 32,34Ar, 36,38Ca, 40,42Ti, 46,48,50Fe, 50,52,54Ni, 56,58Zn, 96,98,100Cd, 100,102,104Sn(β+), (EC); calculated half-lives, B(GT). Self-consistent proton-neutron QRPA with relativistic Hartree-Bogoliubov (QRPA+RHB) calculations. Comparison with experimental data.
doi: 10.1103/PhysRevC.87.051303
Phys.Rev. C 87, 014304 (2013)
X.Roca-Maza, M.Centelles, F.Salvat, X.Vinas
Electron scattering in isotonic chains as a probe of the proton shell structure of unstable nuclei
NUCLEAR STRUCTURE 22O, 24Ne, 26Mg, 28Si, 30S, 32Ar, 34Ca, 70Ca, 84Se, 90Zr, 100Sn, 122Zr, 140Ce, 146Gd, 154Hf; calculated proton and neutron single-particle levels, and charge densities. Relativistic nuclear mean-field interaction G2.
NUCLEAR REACTIONS 122Zr, 140Ce, 154Hf(e, e), E=250, 500 MeV; calculated DWBA and Mott differential σ(θ, E). 22O, 24Ne, 26Mg, 28Si, 30S, 32Ar, 34Ca, 70Ca, 74Cr, 78Ni, 80Zn, 82Ge, 84Se, 86Kr, 88Sr, 90Zr, 92Mo, 94Ru, 96Pd, 98Cd, 100Sn, 120Sr, 122Zr, 128Pd, 132Sn, 136Xe, 140Ce, 142Nd, 144Sm, 146Gd, 148Dy, 150Er, 152Yb, 154Hf(e, e), E=500 MeV; calculated Helm model parameters, mass-number dependence of Helm parameters, square charge form factors as function of Helm parameters in DWBA. Dirac partial-wave approach, and covariant mean-field model G2.
doi: 10.1103/PhysRevC.87.014304
Phys.Rev. C 87, 034327 (2013)
N.Wang, L.Ou, M.Liu
Nuclear symmetry energy from the Fermi-energy difference in nuclei
NUCLEAR STRUCTURE 16,22O, 22,42Si, 40,48,60Ca, 42Ti, 56,68,78Ni, 130Cd, 100,132,134Sn, 134Te, 144Sm, 182,208Pb; calculated neutron-proton Fermi-energy difference, nuclear symmetry energy, neutron-skin thickness. Skyrme energy density functionals and nuclear masses, with 54 Skyrme parameter sets. Comparison with experimental data.
doi: 10.1103/PhysRevC.87.034327
Chin.Phys.C 37, 124102 (2013)
D.Yang, L.-G.Cao, Z.-Y.Ma
Collective multipole excitations of exotic nuclei in relativistic continuum random phase approximation
NUCLEAR STRUCTURE 34,40,48,60Ca, 16,28O, 100,132Sn; calculated isoscalar and isovector collective multipole excitations, strength functions. Comparison with available data.
doi: 10.1088/1674-1137/37/12/124102
Eur.Phys.J. A 49, 124 (2013)
E.Yuksel, E.Khan, K.Bozkurt
The soft Giant Monopole Resonance as a probe of the spin-orbit splitting
NUCLEAR STRUCTURE 100,132Sn, 208Pb; calculated isoscalar monopole strength distribution using Skyrme HF plus RPA model.
doi: 10.1140/epja/i2013-13124-6
Chin.Phys.C 41, 030003 (2017)
M.Wang, G.Audi, F.G.Kondev, W.J.Huang, S.Naimi, X.Xu
The AME2016 atomic mass evaluation (II). Tables, graphs and references
ATOMIC MASSES A=1-295; compiled, evaluated atomic masses data.
doi: 10.1088/1674-1137/41/3/030003
Phys.Rev.Lett. 122, 222502 (2019)
D.Lubos, J.Park, T.Faestermann, R.Gernhauser, R.Krucken, M.Lewitowicz, S.Nishimura, H.Sakurai, D.S.Ahn, H.Baba, B.Blank, A.Blazhev, P.Boutachkov, F.Browne, I.Celikovic, G.de France, P.Doornenbal, Y.Fang, N.Fukuda, J.Giovinazzo, N.Goel, M.Gorska, S.Ilieva, N.Inabe, T.Isobe, A.Jungclaus, D.Kameda, Y.K.Kim, I.Kojouharov, T.Kubo, N.Kurz, Y.K.Kwon, G.Lorusso, K.Moschner, D.Murai, I.Nishizuka, Z.Patel, M.M.Rajabali, S.Rice, H.Schaffner, Y.Shimizu, L.Sinclair, P.-A.Soderstrom, K.Steiger, T.Sumikama, H.Suzuki, H.Takeda, Z.Wang, N.Warr, H.Watanabe, J.Wu, Z.Xu
Improved Value for the Gamow-Teller Strength of the 100Sn Beta Decay
RADIOACTIVITY 100Sn(β+) [from 9Be(124Xe, X), E=345 MeV/nucleon]; measured decay products, Eγ, Iγ, Eβ, Iβ; deduced Gamow-Teller Strength, Q-value, T1/2. Comparison with available data.
doi: 10.1103/PhysRevLett.122.222502
At.Data Nucl.Data Tables 125, 1 (2019)
P.Moller, M.R.Mumpower, T.Kawano, W.D.Myers
Nuclear properties for astrophysical and radioactive-ion-beam applications (II)
NUCLEAR STRUCTURE Z=8-136; calculated the ground-state odd-proton and odd-neutron spins and parities, proton and neutron pairing gaps, one- and two-neutron separation energies, quantities related to β-delayed one- and two-neutron emission probabilities, average energy and average number of emitted neutrons, β-decay energy release and T1/2 with respect to Gamow-Teller decay with a phenomenological treatment of first-forbidden decays, one- and two-proton separation energies, and α-decay energy release and half-life.
doi: 10.1016/j.adt.2018.03.003