NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 25, 2024.

Search: Author = N.Sandulescu

Found 90 matches.

Back to query form



2023PO01      Phys.Rev. C 107, 034318 (2023)

T.Popa, N.Sandulescu, M.Sambataro

Excited states of zero seniority based on a pair condensate

NUCLEAR STRUCTURE 108Sn; calculated energy levels with J=0, J, π, occupation probabilities of single-particle states. Investigated the properties of excited states of zero seniority generated from the ground-state pair condensate. Comparison to experimental data.

doi: 10.1103/PhysRevC.107.034318
Citations: PlumX Metrics


2023SA15      Eur.Phys.J. A 59, 87 (2023)

M.Sambataro, N.Sandulescu

Intrinsic quartet states and band-like structures in N = Z nuclei

NUCLEAR STRUCTURE 24Mg, 28Si, 48Cr; analyzed available data; deduced level energies, J, π, the emergence of band-like structures in N=Z nuclei in terms of quartet-based intrinsic states.

doi: 10.1140/epja/s10050-023-01003-w
Citations: PlumX Metrics


2023SA28      Nucl.Phys. A1036, 122675 (2023)

M.Sambataro, N.Sandulescu, D.Gambacurta

Coexistence of quartets and pairs in even-even N>Z nuclei

NUCLEAR STRUCTURE 22,24,26,28Ne, 24,26,28,30Mg, 28,30,32Si, 46,48,50,52Ti, 48,50,52,54Cr; analyzed the structure of the ground states of even-even nuclei; deduced occupation probabilities of the single-particle orbits, description of the ground states of these nuclei as a product of two terms, one representing the proton-neutron subsystem with an equal number of protons and neutrons and the other one associated with the excess neutrons.

doi: 10.1016/j.nuclphysa.2023.122675
Citations: PlumX Metrics


2022NE02      Phys.Rev. C 105, 034325 (2022)

D.Negrea, N.Sandulescu, D.Gambacurta

Proton-neutron pairing and binding energies of nuclei close to the N=Z line

NUCLEAR STRUCTURE 24,26,28Mg, 28,30,32Si, 32,34,36S, 36,38,40Ar, 40,42,44Ca, 44,46,48Ti, 48,50,52Cr, 52,54,56Fe, 56,58,60Ni, 60,62,64Zn, 64,66,68Ge, 68,70,72Se, 72,74,76Kr, 76,78,80Sr, 80,82,84Zr, 84,86,88Mo, 88,90,92Ru, 92,94,96Pd, 96,98,100Cd, 100Sn; calculated binding energies for N=Z, N=Z+2 and N=Z+4 nuclei using different pairing forces and approximations, interaction energies and pairing energies, and compared with experimental binding energies; analyzed contribution of isovector and isoscalar proton-neutron pairing to the binding energies of even-even nuclei. 64Ge; calculated pairing energy, interaction energy and self-energy, diagonal and nondiagonal matrix elements of the isovector and isoscalar pairing force. Mean-field approach with Skyrme-type functional and quartet condensation model (Skyrme-HF+QCM calculations).

doi: 10.1103/PhysRevC.105.034325
Citations: PlumX Metrics


2022SA38      Phys.Lett. B 827, 136987 (2022)

M.Sambataro, N.Sandulescu

Band-like structures and quartets in deformed N = Z nuclei

NUCLEAR STRUCTURE 24Mg, 28Si, 48Cr; calculated energy levels, J, π using the formalism of α-like quartets. Comparison with available data.

doi: 10.1016/j.physletb.2022.136987
Citations: PlumX Metrics


2021SA60      Phys.Lett. B 820, 136476 (2021)

M.Sambataro, N.Sandulescu

α-Like quartetting in the excited states of proton-neutron pairing Hamiltonians

NUCLEAR STRUCTURE 28Si; calculated energy levels, J, π using the quartet condensation model (QCM). Comparison with available data.

doi: 10.1016/j.physletb.2021.136476
Citations: PlumX Metrics


2020BA57      Phys.Rev. C 102, 061301 (2020)

V.V.Baran, D.R.Nichita, D.Negrea, D.S.Delion, N.Sandulescu, P.Schuck

Bridging the quartet and pair pictures of isovector proton-neutron pairing

doi: 10.1103/PhysRevC.102.061301
Citations: PlumX Metrics


2020SA50      J.Phys.(London) G47, 045112 (2020)

M.Sambataro, N.Sandulescu

Exact T = 0 eigenstates of the isovector pairing Hamiltonian

doi: 10.1088/1361-6471/ab6ee2
Citations: PlumX Metrics


2018LA09      Phys.Rev. C 98, 014310 (2018)

R.-D.Lasseri, J.-P.Ebran, E.Khan, N.Sandulescu

Localization of pairing correlations in nuclei within relativistic mean field models

NUCLEAR STRUCTURE 66Ni, 124Sn, 200Pb; calculated ground state energies, rms neutron radii, pairing energies, mean distance between two neutrons, average coherence lengths for pairing tensor and Cooper pair wave function, and two-body correlation functions. 120Sn; calculated coherence length for various intensities of the pairing force, and uivi for single-particle states. Relativistic Hartree-Bogoliubov (RHB) and relativistic mean field (RMF) plus projected BCS (RHB+RMF+PBCS) models.

doi: 10.1103/PhysRevC.98.014310
Citations: PlumX Metrics


2018NE10      Phys.Rev. C 98, 064319 (2018)

D.Negrea, P.Buganu, D.Gambacurta, N.Sandulescu

Isovector and isoscalar proton-neutron pairing in N > Z nuclei

NUCLEAR STRUCTURE 20,22,24,26Ne, 24,26,28,30Mg, 28,30,32,34Si, 44,46,48,50Ti, 48,50,52,54Cr, 52,54,56,58Fe, 104,106,108,110Te, 108,110,112,114Xe, 112,114,116,118Ba; calculated isovector and isoscalar nucleon pairing energies, and errors in the correlation energies using extended quartet condensation model (QCM) applied for a set of nucleons moving in a fixed mean field generated by Skyrme-HF calculations.

doi: 10.1103/PhysRevC.98.064319
Citations: PlumX Metrics


2018SA50      Phys.Lett. B 786, 11 (2018)

M.Sambataro, N.Sandulescu

Quartet structure of N=Z nuclei in a boson formalism: The case of 28Si

NUCLEAR STRUCTURE 28Si; calculated energy levels, J, π, potential energy surfaces, B(E2). Comparison with experimental data.

doi: 10.1016/j.physletb.2018.09.011
Citations: PlumX Metrics


2017NE07      Prog.Theor.Exp.Phys. 2017, 073D05 (2017)

D.Negrea, N.Sandulescu, D.Gambacurta

Isovector and isoscalar pairing in odd-odd N = Z nuclei within a quartet approach

NUCLEAR STRUCTURE N=8-32; calculated energy difference between the lowest T=1 and T=0 isospin states as function of N=Z=A/2, pairing energies.

doi: 10.1093/ptep/ptx071
Citations: PlumX Metrics


2017SA13      Eur.Phys.J. A 53, 47 (2017)

M.Sambataro, N.Sandulescu

Quartet correlations in N = Z nuclei induced by realistic two-body interactions

NUCLEAR STRUCTURE 20Ne, 24Mg, 28Si, 32S; calculated total energy, binding energy, correlation energy, mass excess using gs correlations in terms of condensate of α-like quartets. Compared with other calculations.

doi: 10.1140/epja/i2017-12240-7
Citations: PlumX Metrics


2016SA22      Phys.Rev. C 93, 054320 (2016)

M.Sambataro, N.Sandulescu

Isoscalar-isovector proton-neutron pairing and quartet condensation in N=Z nuclei

NUCLEAR STRUCTURE 20Ne, 24Mg, 28Si, 44Ti, 48Cr, 52Fe, 104Te, 108Xe, 112Ba; calculated ground-state correlation energies, isovector (T=1) and isoscalar (T=0) pairing energies for N=Z nuclei using alpha-like quartet condensation model (QCM); deduced coexistence of isovector and isoscalar proton-neutron pairing correlations. Comparison of calculations with various pairing Hamiltonians.

doi: 10.1103/PhysRevC.93.054320
Citations: PlumX Metrics


2015SA23      Phys.Rev. C 91, 064318 (2015)

M.Sambataro, N.Sandulescu

Quarteting and spin-aligned proton-neutron pairs in heavy N=Z nuclei

NUCLEAR STRUCTURE 92Pd, 96Cd; calculated levels, J, π, B(E2), squared overlaps between the QM low-lying yrast states and the corresponding eigenstates in the various QM approximations; deduced role of maximally aligned isoscalar pairs in heavy N=Z nuclei, in particular for J=9, using quartet model (QM).

doi: 10.1103/PhysRevC.91.064318
Citations: PlumX Metrics


2015SA24      Rom.J.Phys. 60, 799 (2015)

M.Sambataro, N.Sandulescu, C.W.Johnson

Proton-Neutron Pairing in Self-Conjugate Nuclei in a Formalism of Quartets

NUCLEAR STRUCTURE 20Ne, 24Mg, 28Si, 32S, 44Ti, 48Cr, 52Fe, 104Te, 108Xe, 112Ba; calculated ground state correlation energies.


2015SA25      Rom.J.Phys. 60, 805 (2015)

N.Sandulescu, D.Negrea

Pairing, Quartet Condensation and Wigner Energy in Nuclei

NUCLEAR STRUCTURE A=20-104; calculated the strength of the symmetry energy term, isovector pairing interaction. Mean-field models.


2015SA34      Phys.Rev.Lett. 15, 112501 (2015)

M.Sambataro, N.Sandulescu

Four-Body Correlations in Nuclei

NUCLEAR STRUCTURE 20Ne, 20F, 20O, 24Mg, 28Si, 92Pd; calculated energy levels, J, π, low-energy yrast spectra. Quartet and shell model approaches.

doi: 10.1103/PhysRevLett.115.112501
Citations: PlumX Metrics


2015SA53      Phys.Lett. B 751, 348 (2015)

N.Sandulescu, D.Negrea, D.Gambacurta

Proton-neutron pairing in N = Z nuclei: Quartetting versus pair condensation

NUCLEAR STRUCTURE 16O, 40Ca, 100Sn, 20Ne, 24Mg, 28Si, 44Ti, 48Cr, 52Fe, 104Te, 108Xe, 112Ba; calculated proton-neutron pairing and correlation energies using the pair-quartet condensation model (PQCM). Comparison with available data.

doi: 10.1016/j.physletb.2015.10.063
Citations: PlumX Metrics


2015SA54      Phys.Lett. B 740, 137 (2015)

M.Sambataro, N.Sandulescu, C.W.Johnson

Isoscalar and isovector pairing in a formalism of quartets

NUCLEAR STRUCTURE 16O, 40Ca, 100Sn, 20Ne, 24Mg, 28Si, 44Ti, 48Cr, 52Fe, 104Te, 108Xe, 112Ba; calculated ground state correlation energies for the isovector plus isoscalar pairing Hamiltonian in even-even N=Z nuclei in a formalism of alpha-like quartets. Comparison with available data.

doi: 10.1016/j.physletb.2014.11.036
Citations: PlumX Metrics


2014NE10      Phys.Rev. C 90, 024322 (2014)

D.Negrea, N.Sandulescu

Isovector proton-neutron pairing and Wigner energy in Hartree-Fock mean field calculations

NUCLEAR STRUCTURE A=24-100; calculated even-even to odd-odd mass differences, strength of the symmetry energy term, contribution of the Wigner energy relative to standard symmetry energy. Isovector proton-neutron pairing in self-consistent mean field calculations, where mean field is generated by SkyrmeHartree-Fock functional. Comparison with experimental data.

doi: 10.1103/PhysRevC.90.024322
Citations: PlumX Metrics


2013GA38      Phys.Rev. C 88, 034324 (2013)

D.Gambacurta, D.Lacroix, N.Sandulescu

Pairing and specific heat in hot nuclei

NUCLEAR STRUCTURE 161,162Dy, 171,172Yb; calculated neutron pairing gap as a function of temperature, neutron, proton and total specific heat capacities in the framework of particle-number projection BCS formalism extended to finite temperature (FT-VAP) with Hamiltonian generated by Skyrme-HF and RMF calculations. Comparison with experimental data.

doi: 10.1103/PhysRevC.88.034324
Citations: PlumX Metrics


2013SA60      Phys.Rev. C 88, 061303 (2013)

M.Sambataro, N.Sandulescu

Isovector pairing in a formalism of quartets for N=Z nuclei

NUCLEAR STRUCTURE 20Ne, 24Mg, 28Si, 32S, 44Ti, 48Cr, 52Fe, 104Te, 108Xe, 112Ba; calculated ground-state correlation energies for spherical, and axially deformed single-particle states using pairing and isovector pairing force in N=Z nuclei. Quartet model (QM), and quartet condensation model (QCM).

doi: 10.1103/PhysRevC.88.061303
Citations: PlumX Metrics


2012LE21      J.Phys.:Conf.Ser. 381, 012107 (2012)

Y.Lei, S.Pittel, N.Sandulescu, A.Poves, B.Thakur, Y.M.Zhao

Systematic study of proton-neutron pairing correlations in the nuclear shell model

NUCLEAR STRUCTURE 44,46Ti, 48Cr; calculated levels, J, π, rotational ground-state band, mass excess. 48Cr calculated yrast band. Shell model including deformation, spin-orbit effects, isoscalar, isovector pairing. Compared to available data.

doi: 10.1088/1742-6596/381/1/012107
Citations: PlumX Metrics


2012LE22      J.Phys.:Conf.Ser. 387, 012018 (2012)

Y.Lei, S.Pittel, N.Sandulescu, A.Poves, B.Thakur, Y.M.Zhao

Systematic study of isoscalar and isovector pairing in the 2p1f shell

NUCLEAR STRUCTURE 44,46Ti, 48Cr; calculated levels, J, π, mass excess, ground band, yrast, yrare bands with isovector, isoscalar and SU(4) pairing. Levels compared with data.

doi: 10.1088/1742-6596/387/1/012018
Citations: PlumX Metrics


2012SA24      Phys.Rev. C 85, 061303 (2012)

N.Sandulescu, D.Negrea, J.Dukelsky, C.W.Johnson

Quartet condensation and isovector pairing correlations in N=Z nuclei

NUCLEAR STRUCTURE 20Ne, 24Mg, 28Si, 32S, 44Ti, 48Cr, 52Fe, 104Te, 108Xe, 112Ba; calculated correlation energies for the exact shell model diagonalizations (SM), quartet condensation model (QCM), and the two PBCS approximations using isovector pairing forces extracted from standard shell model interactions with spherical single-particle states, and isovector pairing force of seniority type with axially-deformed single-particle states.

doi: 10.1103/PhysRevC.85.061303
Citations: PlumX Metrics


2012SA47      Phys.Rev. C 86, 041302 (2012)

N.Sandulescu, D.Negrea, C.W.Johnson

Four-nucleon α-type correlations and proton-neutron pairing away from the N=Z line

NUCLEAR STRUCTURE 20,22,24,26,28,30Ne, 24,26,28,30,32Mg, 28,30,32Si, 44,46,48,50Ti, 48,50,52,54Cr, 104,106,108,110,112Te, 108,110,112,114Xe; calculated pairing correlation energies using exact diagonalization, the quartet condensation model (QCM), and the PBCS1 approximation. Importance of four-nucleon correlations of α type in systems with neutron-proton pairing.

doi: 10.1103/PhysRevC.86.041302
Citations: PlumX Metrics


2011GR19      Phys.Rev. C 84, 065801 (2011)

F.Grill, J.Margueron, N.Sandulescu

Cluster structure of the inner crust of neutron stars in the Hartree-Fock-Bogoliubov approach

NUCLEAR STRUCTURE Z=12-60, N=82-1750; calculated neutron and proton densities, pairing gaps, HF binding energies, pairing correlations in the inner crust of neutron stars. SkyrmeHartree-Fock-Bogoliubov (HFB) calculations with zero-range density-dependent pairing forces by treating nuclear clusters in the Wigner-Seitz approximation.

doi: 10.1103/PhysRevC.84.065801
Citations: PlumX Metrics


2011KH04      Int.J.Mod.Phys. E20, 387 (2011)

E.Khan, N.Sandulescu

Microscopic description of temperature and pairing effects in nuclei

NUCLEAR STRUCTURE 84Ni, 124,130Sn; calculated specific heat. FT-HFB framework.

doi: 10.1142/S0218301311017764
Citations: PlumX Metrics


2011LE27      Phys.Rev. C 84, 044318 (2011)

Y.Lei, S.Pittel, N.Sandulescu, A.Poves, B.Thakur, Y.M.Zhao

Systematic study of proton-neutron pairing correlations in the nuclear shell model

NUCLEAR STRUCTURE 42Sc, 44,45,46Ti, 46V, 48Cr; calculated level energies, energy splittings, yrast and yrare bands, E2 transition matrix elements, proton-neutron pairing modes, isoscalar and isovector pairs. Parameterized Hamiltonian, shell-model framework. Comparison with experimental data.

doi: 10.1103/PhysRevC.84.044318
Citations: PlumX Metrics


2010FO12      Phys.Rev. C 82, 065804 (2010)

M.Fortin, F.Grill, J.Margueron, D.Page, N.Sandulescu

Thermalization time and specific heat of the neutron stars crust

doi: 10.1103/PhysRevC.82.065804
Citations: PlumX Metrics


2010PI02      Phys.Rev. C 81, 034307 (2010)

N.Pillet, N.Sandulescu, P.Schuck, J.-F.Berger

Two-particle spatial correlations in superfluid nuclei

NUCLEAR STRUCTURE 102Sr, 152Sm, 238U; calculated local and nonlocal parts of the pairing tensor, and coherence lengths. 60Ni, 120,136Sn, 212Pb; calculated pairing correlation energies and average pairing fields, and coherence lengths. Effect of pairing on two-neutron spatial correlations in deformed nuclei. Hartree-Fock Bogoliubov calculations with D1S Gogny force.

doi: 10.1103/PhysRevC.81.034307
Citations: PlumX Metrics


2009SA39      Phys.Rev. C 80, 044335 (2009)

N.Sandulescu, B.Errea, J.Dukelsky

Isovector neutron-proton pairing with particle number projected BCS

NUCLEAR STRUCTURE Z=4-10, N=4-10; calculated odd-even mass differences and correlation energies for N=Z nuclei using particle number projected BCS (PBCS) approximation.

doi: 10.1103/PhysRevC.80.044335
Citations: PlumX Metrics


2008DU21      Int.J.Mod.Phys. E17, 2155 (2008)

J.Dukelsky, B.Errea, S.H.Lerma, G.G.Dussel, C.Esebbag, N.Sandulescu

Exactly solvable proton-neutron pairing Hamiltonians and quartet correlations

doi: 10.1142/S0218301308011264
Citations: PlumX Metrics


2008PI07      Int.J.Mod.Phys. E17, Supplement 1, 122 (2008)

S.Pittel, B.Thakur, N.Sandulescu

The density matrix renormalization group and the nuclear shell model

NUCLEAR STRUCTURE 48Cr, 56Ni; calculated ground state energy, lowest excited state energies, J, π.

doi: 10.1142/S021830130801180X
Citations: PlumX Metrics


2008SA42      Phys.Rev. C 78, 064318 (2008)

N.Sandulescu, G.F.Bertsch

Accuracy of BCS-based approximations for pairing in small Fermi systems

NUCLEAR STRUCTURE 117Sn, 207Pb; calculated neutron pairing gap. 116Sn, 206Pb; calculated pairing correlation energy. Number-projected BCS theory.

doi: 10.1103/PhysRevC.78.064318
Citations: PlumX Metrics


2008TH06      Phys.Rev. C 78, 041303 (2008)

B.Thakur, S.Pittel, N.Sandulescu

Density matrix renormalization group study of 48Cr and 56Ni

NUCLEAR STRUCTURE 48Cr, 56Ni; calculated energies of ground state and low-lying excited states. Density Matrix Renormalization Group Method.

doi: 10.1103/PhysRevC.78.041303
Citations: PlumX Metrics


2007GR20      Nucl.Phys. A788, 337c (2007)

M.Grasso, S.Yoshida, N.Sandulescu, N.Van Giai

Giant halo and anti-halo in the non-relativistic mean field approach

NUCLEAR STRUCTURE Zr; calculated radii, two-neutron separation energies, halo features. Non-relativistic mean field approach.

doi: 10.1016/j.nuclphysa.2007.01.063
Citations: PlumX Metrics


2007KH15      Nucl.Phys. A789, 94 (2007)

E.Khan, N.Van Giai, N.Sandulescu

Pairing interactions and vanishing pairing correlations in hot nuclei

NUCLEAR STRUCTURE Sn; calculated mean neutron pairing gaps using finite temperature HFB calculation using Skyrme and zero-range, density-dependent pairing interactions.

doi: 10.1016/j.nuclphysa.2007.03.005
Citations: PlumX Metrics


2007MO21      Phys.Rev. C 75, 065807 (2007)

C.Monrozeau, J.Margueron, N.Sandulescu

Nuclear superfluidity and cooling time of neutron star crusts

doi: 10.1103/PhysRevC.75.065807
Citations: PlumX Metrics


2007PI11      Phys.Rev. C 76, 024310 (2007)

N.Pillet, N.Sandulescu, P.Schuck

Generic strong coupling behavior of Cooper pairs on the surface of superfluid nuclei

doi: 10.1103/PhysRevC.76.024310
Citations: PlumX Metrics


2006GR27      Phys.Rev.C 74, 064317 (2006)

M.Grasso, S.Yoshida, N.Sandulescu, N.Van Giai

Giant neutron halos in the non-relativistic mean field approach

NUCLEAR STRUCTURE 56,58,60,62,64,66,68,70,72Ca, 116,118,120,122,124,126,128,130,132,134,136,138,140Zr; calculated radii, two-neutron separation energies, halo features. Non-relativistic mean field approach.

doi: 10.1103/PhysRevC.74.064317
Citations: PlumX Metrics


2006GU11      Nucl.Phys. A772, 1 (2006)

P.A.M.Guichon, H.H.Matevosyan, N.Sandulescu, A.W.Thomas

Physical origin of density dependent forces of Skyrme type within the quark meson coupling model

NUCLEAR STRUCTURE 16O, 40,48Ca, 208Pb; calculated binding energies, radii, proton and neutron densities. Ni, Zr; calculated two-neutron drip line. 42Si, 60Ge; calculated two-neutron separation energy, shell quenching features. Quark-meson coupling model, comparison with Skyrme models, astrophysical implications discussed.

doi: 10.1016/j.nuclphysa.2006.04.002
Citations: PlumX Metrics


2006ID01      Nucl.Phys. A771, 93 (2006)

R.Id Betan, N.Sandulescu, T.Vertse

Quasiparticle resonances in the BCS approach

NUCLEAR STRUCTURE 17O, 79Ni; calculated single-particle states; 20,22O, 84Ni; calculated pairing energies, radii, single-particle states, quasiparticle resonances. Berggren representation.

doi: 10.1016/j.nuclphysa.2006.03.003
Citations: PlumX Metrics


2006PI02      Phys.Rev. C 73, 014301 (2006)

S.Pittel, N.Sandulescu

Density matrix renormalization group and the nuclear shell model

NUCLEAR STRUCTURE 48Cr; calculated ground and excited states energies. Density matrix renormalization group method.

doi: 10.1103/PhysRevC.73.014301
Citations: PlumX Metrics


2005ID01      J.Phys.(London) G31, S1329 (2005)

R.Id Betan, R.J.Liotta, N.Sandulescu, T.Vertse

Description of the continuum part of the spectrum by using the complex energy plane

NUCLEAR STRUCTURE 80Ni; calculated resonance energies, continuum features. 11Li; calculated ground state wave function, resonance and halo features. Complex energy plane.

doi: 10.1088/0954-3899/31/8/011
Citations: PlumX Metrics


2005ID02      Phys.Rev. C 72, 054322 (2005)

R.Id Betan, R.J.Liotta, N.Sandulescu, T.Vertse, R.Wyss

Complex shell model representation including antibound states

NUCLEAR STRUCTURE 11Li, 72Ca; calculated ground and excited states energies, two-particle wave functions; deduced halo features. Shell model formalism with antibound states.

doi: 10.1103/PhysRevC.72.054322
Citations: PlumX Metrics


2005KH08      Phys.Rev. C 71, 042801 (2005)

E.Khan, N.Sandulescu, N.Van Giai

Collective excitations in the inner crust of neutron stars: Supergiant resonances

doi: 10.1103/PhysRevC.71.042801
Citations: PlumX Metrics


2005PI09      Phys.Rev. C 71, 044306 (2005)

N.Pillet, N.Sandulescu, N.Van Giai, J.-F.Berger

Convergence of particle-hole expansions for the description of nuclear correlations

doi: 10.1103/PhysRevC.71.044306
Citations: PlumX Metrics


2005RU11      Eur.Phys.J. A 24, 389 (2005)

G.Russo, A.Insolia, U.Lombardo, N.G.Sandulescu

Momentum-dependent mean field in π0 production in Nb + Nb collisions

NUCLEAR REACTIONS 93Nb(93Nb, π0X), E=100, 250, 400 MeV/nucleon; calculated neutral pion production σ, σ(E). Boltzmann-Nordheim-Vlasov equation.

doi: 10.1140/epja/i2004-10148-y
Citations: PlumX Metrics


2005SA30      Phys.Rev. C 71, 054303 (2005)

N.Sandulescu, P.Schuck, X.Vinas

Nuclear pairing: Surface or bulk?

NUCLEAR STRUCTURE 104,108,112,114,116,120,124,128Sn; calculated particle and pairing densities, radial distribution of pairing correlations. Zero-range pairing forces.

doi: 10.1103/PhysRevC.71.054303
Citations: PlumX Metrics


2004ID01      Phys.Lett. B 584, 48 (2004)

R.Id Betan, R.J.Liotta, N.Sandulescu, T.Vertse

A shell model representation with antibound states

NUCLEAR STRUCTURE 11Li, 72Ca; calculated two-particle resonance features, role of antibound states.

doi: 10.1016/j.physletb.2004.01.042
Citations: PlumX Metrics


2004ID02      Few-Body Systems 34, 51 (2004)

R.Id Betan, R.J.Liotta, N.Sandulescu, T.Vertse

Two-Particle Resonances in the Complex Energy Plane

NUCLEAR STRUCTURE 11Li; calculated resonance energies.

doi: 10.1007/s00601-004-0028-4
Citations: PlumX Metrics


2004KH02      Phys.Rev. C 69, 014314 (2004)

E.Khan, N.Sandulescu, N.Van Giai, M.Grasso

Two-neutron transfer in nuclei close to the drip line

NUCLEAR REACTIONS 22O(t, p), E=15 MeV/nucleon; calculated form factors, σ(E, θ). Continuum quasiparticle RPA.

NUCLEAR STRUCTURE 18,20,22O; calculated single-particle energies, response functions for two-neutron transfer. Continuum quasiparticle RPA.

doi: 10.1103/PhysRevC.69.014314
Citations: PlumX Metrics


2004SA15      Phys.Rev. C 69, 045802 (2004)

N.Sandulescu, N.Van Giai, R.J.Liotta

Superfluid properties of the inner crust of neutron stars

doi: 10.1103/PhysRevC.69.045802
Citations: PlumX Metrics


2004SA41      Phys.Rev. C 70, 025801 (2004)

N.Sandulescu

Nuclear superfluidity and specific heat in the inner crust of neutron stars

doi: 10.1103/PhysRevC.70.025801
Citations: PlumX Metrics


2003ID01      Phys.Rev. C 67, 014322 (2003)

R.Id Betan, R.J.Liotta, N.Sandulescu, T.Vertse

Shell model in the complex energy plane and two-particle resonances

NUCLEAR STRUCTURE 78Ni, 100Sn; calculated single-particle states, two-particle resonance features. Shell model in the complex energy plane.

doi: 10.1103/PhysRevC.67.014322
Citations: PlumX Metrics


2003ID03      Acta Phys.Hung.N.S. 18, 267 (2003)

R.Id Betan, R.J.Liotta, N.Sandulescu, T.Vertse

Clusters as Many-Body Resonances

NUCLEAR STRUCTURE 80Ni; calculated two-particle resonance energies.

doi: 10.1556/APH.18.2003.2-4.24
Citations: PlumX Metrics


2003SA53      Phys.Rev. C 68, 054323 (2003)

N.Sandulescu, L.S.Geng, H.Toki, G.C.Hillhouse

Pairing correlations and resonant states in the relativistic mean field theory

NUCLEAR STRUCTURE 120,122,124,126,128,130,132,134,136,138Zr; calculated single-particle energies, pairing energies, radii, resonant continuum coupling effects. Relativistic mean field theory.

doi: 10.1103/PhysRevC.68.054323
Citations: PlumX Metrics


2003SH15      Phys.Rev. C 67, 061302 (2003)

C.Shen, U.Lombardo, P.Schuck, W.Zuo, N.Sandulescu

Screening effects on 1S0 pairing in neutron matter

doi: 10.1103/PhysRevC.67.061302
Citations: PlumX Metrics


2002GR14      Phys.Lett. 535B, 103 (2002)

M.Grasso, N.Van Giai, N.Sandulescu

Continuum HFB Calculations with Finite Range Pairing Interactions

NUCLEAR STRUCTURE 18C; calculated total energy, pairing interaction features. Hartree-Fock-Bogoliubov approach, Skyrme and Gogny forces.

doi: 10.1016/S0370-2693(02)01719-7
Citations: PlumX Metrics


2002GR35      Prog.Theor.Phys.(Kyoto), Suppl. 146, 619 (2002)

M.Grasso, E.Khan, N.Van Giai, N.Sandulescu

Pairing Correlations in Nuclei Close to the Drip Line

NUCLEAR STRUCTURE 74,76,78,80,82,84,86,88Ni; calculated pairing correlation energies. 24O calculated quadrupole strength distribution.

doi: 10.1143/PTPS.146.619
Citations: PlumX Metrics


2002ID01      Phys.Rev.Lett. 89, 042501 (2002)

R.Id Betan, R.J.Liotta, N.Sandulescu, T.Vertse

Two-Particle Resonant States in a Many-Body Mean Field

NUCLEAR STRUCTURE 80Ni; calculated two-particle resonance energies. Berggren representation.

doi: 10.1103/PhysRevLett.89.042501
Citations: PlumX Metrics


2002KH10      Phys.Rev. C66, 024309 (2002)

E.Khan, N.Sandulescu, M.Grasso, N.V.Giai

Continuum quasiparticle random phase approximation and the time-dependent Hartree-Fock-Bogoliubov approach

NUCLEAR STRUCTURE 18,20,22,24O; calculated neutron pairing gaps, transitions B(E2), quadrupole strength functions. Continuum quasiparticle RPA, linear response method.

doi: 10.1103/PhysRevC.66.024309
Citations: PlumX Metrics


2001BI02      Phys.Rev. C63, 024610 (2001)

A.Bianchini, R.J.Liotta, N.Sandulescu

Critical Assessment of Particle Decay as a Probe to Study the Continuum

doi: 10.1103/PhysRevC.63.024610
Citations: PlumX Metrics


2001GR32      Phys.Rev. C64, 064321 (2001)

M.Grasso, N.Sandulescu, V.G.Nguyen, R.J.Liotta

Pairing and Continuum Effects in Nuclei Close to the Drip Line

NUCLEAR STRUCTURE 84Ni; calculated single-particle energies, widths, neutron pairing densities. 74,76,78,80,82,84,86,88Ni; calculated pairing correlation energies, two-neutron separation energies, neutron radii. Hartree-Fock-Bogoliubov calculations, different boundary conditions compared.

doi: 10.1103/PhysRevC.64.064321
Citations: PlumX Metrics


2000IN04      Phys.Rev. C61, 067902 (2000)

A.Insolia, U.Lombardo, N.Sandulescu

Transverse Flow in Au + Au Collisions

NUCLEAR REACTIONS 197Au(197Au, X), E=200-1200 MeV; calculated p, d, t, α fragments transverse flow. Transport model, comparison with data.

doi: 10.1103/PhysRevC.61.067902
Citations: PlumX Metrics


2000SA14      Phys.Rev. C61, 044317 (2000)

N.Sandulescu, O.Civitarese, R.J.Liotta

Temperature Dependent BCS Equations with Continuum Coupling

doi: 10.1103/PhysRevC.61.044317
Citations: PlumX Metrics


2000SA27      Phys.Rev. C61, 061301 (2000)

N.Sandulescu, V.G.Nguyen, R.J.Liotta

Resonant Continuum in the Hartree-Fock + BCS Approximation

NUCLEAR STRUCTURE 84Ni; calculated neutron density, single-neutron levels energies, occupation numbers; deduced role of resonanant continuum. Hartree-Fock plus BCS approach.

doi: 10.1103/PhysRevC.61.061301
Citations: PlumX Metrics


1999DA05      Nucl.Phys. A646, 3 (1999)

I.Danko, Zs.Dombradi, Z.Gacsi, J.Gulyas, A.Krasznahorkay, N.Sandulescu, J.Blomqvist, R.J.Liotta

Low-Lying States of 109Sn from the 106Cd(α, nγ) Reaction

NUCLEAR REACTIONS 106Cd(α, nγ), E=15-20 MeV; measured Eγ, Iγ. 106Cd(α, nγ), E=20 MeV; measured Eγ, Iγ, E(ce), I(ce), γγ-coin. 109Sn deduced levels, J, π, ICC, configurations. Superconducting magnetic lens electron spectrometer. Quasiparticle shell model analysis.

doi: 10.1016/S0375-9474(98)00631-9
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


1998DE05      Phys.Rev. C57, 986 (1998)

D.S.Delion, R.J.Liotta, N.Sandulescu, T.Vertse

Probing Monopole Double Giant Resonances by Dilepton (E0) Emission

NUCLEAR STRUCTURE 208Pb; calculated two-particle plus two-hole levels, partial decay widths; deduced continuum coupling role, monopole, double giant resonances decay features.

doi: 10.1103/PhysRevC.57.986
Citations: PlumX Metrics


1998VE02      Phys.Rev. C57, 3089 (1998)

T.Vertse, A.T.Kruppa, R.J.Liotta, W.Nazarewicz, N.Sandulescu, T.R.Werner

Shell Corrections for Finite Depth Potentials: Particle continuum effects

NUCLEAR STRUCTURE 78Ni, 90,96,104,106,108,110,122Zr, 124Zr, 132Sn, 146Gd, 208Pb, 298Fl; calculated neutron shell correction energies. 48Ni, 90Zr, 100,132Sn, 146Gd, 180,208Pb; calculated proton shell correction energies. 146Gd, 208Pb calculated smoothed level densities. Smoothing procedure with particle continuum contribution.

doi: 10.1103/PhysRevC.57.3089
Citations: PlumX Metrics


1998ZU01      Phys.Lett. 421B, 1 (1998)

W.Zuo, G.Giansiracusa, U.Lombardo, N.Sandulescu, H.-J.Schulze

Single-Particle Properties in Neutron Matter from Extended Brueckner Theory

doi: 10.1016/S0370-2693(97)01600-6
Citations: PlumX Metrics


1997SA08      Phys.Rev. C55, 1250 (1997)

N.Sandulescu, O.Civitarese, R.J.Liotta, T.Vertse

Effects Due to the Continuum on Shell Corrections at Finite Temperatures

NUCLEAR STRUCTURE 208Pb; calculated neutrons shell correction to free energy; deduced corrections wash out temperature. Extension of Strutinsky method, finite depth mean field potential continuum spectrum included.

doi: 10.1103/PhysRevC.55.1250
Citations: PlumX Metrics


1997SA18      Phys.Lett. 394B, 6 (1997)

N.Sandulescu, R.J.Liotta, R.Wyss

BCS Equations in the Continuum

NUCLEAR STRUCTURE 170Sn; calculated continuum single particle spectrum resonant part. BCS equations, pairing correlations.

doi: 10.1016/S0370-2693(96)01688-7
Citations: PlumX Metrics


1997SA22      Phys.Rev. C55, 2708 (1997)

N.Sandulescu, J.Blomqvist, T.Engeland, M.Hjorth-Jensen, A.Holt, R.J.Liotta, E.Osnes

Generalized Seniority Scheme in Light Sn Isotopes

NUCLEAR STRUCTURE 104,106,108,110,112Sn; calculated levels, wave functions. Generalized seniority scheme, shell model, truncation.

doi: 10.1103/PhysRevC.55.2708
Citations: PlumX Metrics


1996GI02      Phys.Rev. C53, R1478 (1996)

G.Giansiracusa, U.Lombardo, N.Sandulescu

Correlations in the In-Medium Nucleon-Nucleon Cross Section

NUCLEAR REACTIONS 1n, 1H(n, n), E ≤ 400 MeV; calculated σ(E); deduced ground state correlations role. Extended Bruecker-Hartree-Fock theory.

doi: 10.1103/PhysRevC.53.R1478
Citations: PlumX Metrics


1996LI57      Phys.Lett. 367B, 1 (1996)

R.J.Liotta, E.Maglione, N.Sandulescu, T.Vertse

A Representation to Describe Nuclear Processes in the Continuum

doi: 10.1016/0370-2693(95)01415-2
Citations: PlumX Metrics


1995IN01      Nucl.Phys. A583, 547c (1995)

A.Insolia, U.Lombardo, G.Russo, N.G.Sandulescu

Transverse Flow and π0 Production from the BNV Transport Equation with a Microscopic EOS

NUCLEAR REACTIONS Ca(Ca, X), Nb(Nb, X), 197Au(197Au, X), E ≤ 800 MeV/nucleon; analyzed mean transverse momentum vs E, π0 production angle-integrated σ vs E. Nonrelativistic Brueckner-Bethe-Goldstone approach.

doi: 10.1016/0375-9474(94)00718-3
Citations: PlumX Metrics


1995SA03      Nucl.Phys. A582, 257 (1995)

N.Sandulescu, J.Blomqvist, R.J.Liotta

Microscopic Description of Light Sn Isotopes

NUCLEAR STRUCTURE 103,104,105,106,107,108,109,110,111,112,113Sn; calculated levels. Quasiparticle multi-step shell model.

doi: 10.1016/0375-9474(94)00455-V
Citations: PlumX Metrics


1995SA49      Phys.Scr. T56, 84 (1995)

N.Sandulescu, J.Blomqvist, R.J.Liotta

Microscopic Description of Light Sn Isotopes

NUCLEAR STRUCTURE A=100-114; compiled, reviewed level calculation, Sn isotopes. Shell model.

doi: 10.1088/0031-8949/1995/T56/013
Citations: PlumX Metrics


1994IN03      Phys.Lett. 334B, 12 (1994)

A.Insolia, U.Lombardo, N.G.Sandulescu, A.Bonasera

Nuclear Dynamics for Heavy Ion Collisions with a Momentum Dependent Potential

NUCLEAR REACTIONS Ca(Ca, X), 93Nb(93Nb, X), E ≤ 800 MeV/nucleon; calculated mean transverse momentum vs E; deduced momentum dependent mean field features for soft, stiff equation of state. Boltzmann-Nordheim-Vlasov equation, microscopic approach.

doi: 10.1016/0370-2693(94)90584-3
Citations: PlumX Metrics


1994SA55      J.Phys.(London) G20, 2001 (1994)

N.Sandulescu, R.J.Liotta

Pauli Blocking in the BCS Approximation for Spherical Nuclei

NUCLEAR STRUCTURE 111Sn; calculated Pauli-blocking corrections, single particle energies renormalization. BCS approximation.

doi: 10.1088/0954-3899/20/12/016
Citations: PlumX Metrics


1993RA22      Int.J.Mod.Phys. E2, 629 (1993)

A.A.Raduta, N.Sandulescu, J.Suhonen

Semiclassical Description of Spin Excitations of the Particle-Core Interaction System

doi: 10.1142/S0218301393000273
Citations: PlumX Metrics


1993SA04      Phys.Rev. C47, 554 (1993)

N.Sandulescu, A.Insolia, J.Blomqvist, R.J.Liotta

Three-Quasiparticle States Analysis in Odd-Mass Lead Isotopes

NUCLEAR STRUCTURE 196,197,198,199,200,201,202,203,204Pb; calculated levels. Quasiparticle multi-step shell model method, three-quasiparticle excitations.

doi: 10.1103/PhysRevC.47.554
Citations: PlumX Metrics


1993SA51      Roum.J.Phys. 38, 445 (1993)

N.Sandulescu, A.Insolia, J.Blomqvist, R.J.Liotta

Multistep-Shell-Model Method Calculation of High Quasiparticle Excitations

NUCLEAR STRUCTURE 196,197,198,199,200,201,202,203,204Pb; 114,116,118,120,122,124,126,128,117,119,121,123Sn; calculated levels. Multi-step shell model, quasiparticle excitations.


1992IN02      Nucl.Phys. A550, 34 (1992)

A.Insolia, N.Sandulescu, J.Blomqvist, R.J.Liotta

Microscopic Structure of Sn Isotopes

NUCLEAR STRUCTURE 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131Sn; calculated levels. Multi-step shell model BCS formalism.

doi: 10.1016/0375-9474(92)91131-8
Citations: PlumX Metrics


1992SA12      Phys.Lett. 288B, 235 (1992)

N.Sandulescu, A.Insolia, B.Fant, J.Blomqvist, R.J.Liotta

Spherical Degrees of Freedom in 194Pb

NUCLEAR STRUCTURE 194Pb; calculated levels; deduced spherical, deformed excitation coexistence. Quasiparticle multi-step shell model.

doi: 10.1016/0370-2693(92)91096-R
Citations: PlumX Metrics


1986RA22      Rev.Roum.Phys. 31, 765 (1986)

A.A.Raduta, N.Sandulescu

Description of the Even-Even Gd Isotopes in Terms of Projected Quadrupole Coherent States

NUCLEAR STRUCTURE 150,152,154,156,158,160Gd; calculated excitation energies, B(E2), branching ratios. Coherent state model.


1984RA05      Rev.Roum.Phys. 29, 55 (1984)

A.A.Raduta, S.Stoica, N.Sandulescu

The Energies Predicted by the Coherent State Model for near Vibrational Nuclei

NUCLEAR STRUCTURE 188,190,192,194Pt, 182,184,186,188,190,192Os, 194,196Hg, 162Dy; calculated levels. Coherent state model.


Back to query form


Note: The following list of authors and aliases matches the search parameter N.Sandulescu: , N.G.SANDULESCU