NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 27, 2024.

Search: Author = M.Sambataro

Found 47 matches.

Back to query form



2024PO05      Nuovo Cim. C 47, 45 (2024)

T.Popa, N.Sandulescu, M.Sambataro

Pair condensation in the excited states of nuclei

NUCLEAR STRUCTURE 108Sn; calculated properties of the low-lying excited states of neutrons or protons interacting by pairing forces are usually described by breaking a pair from the ground state pair condensate and replacing it with an excited pair, occupation probabilities of single-particle orbits in the framework of the particle-number projected-BCS (PBCS) approach.

doi: 10.1393/ncc/i2024-24045-8
Citations: PlumX Metrics


2024SA22      Nuovo Cim. C 47, 42 (2024)

M.Sambataro

Spectra of N=Z nuclei in a formalism of quartets

NUCLEAR STRUCTURE 24Mg, 28Si, 48Cr; calculated energy levels, J, π in a formalism of quartets, quartets are α-like four-body structures characterized by an isospin T=0. Comparison with available data.

doi: 10.1393/ncc/i2024-24042-y
Citations: PlumX Metrics


2023PO01      Phys.Rev. C 107, 034318 (2023)

T.Popa, N.Sandulescu, M.Sambataro

Excited states of zero seniority based on a pair condensate

NUCLEAR STRUCTURE 108Sn; calculated energy levels with J=0, J, π, occupation probabilities of single-particle states. Investigated the properties of excited states of zero seniority generated from the ground-state pair condensate. Comparison to experimental data.

doi: 10.1103/PhysRevC.107.034318
Citations: PlumX Metrics


2023SA15      Eur.Phys.J. A 59, 87 (2023)

M.Sambataro, N.Sandulescu

Intrinsic quartet states and band-like structures in N = Z nuclei

NUCLEAR STRUCTURE 24Mg, 28Si, 48Cr; analyzed available data; deduced level energies, J, π, the emergence of band-like structures in N=Z nuclei in terms of quartet-based intrinsic states.

doi: 10.1140/epja/s10050-023-01003-w
Citations: PlumX Metrics


2023SA28      Nucl.Phys. A1036, 122675 (2023)

M.Sambataro, N.Sandulescu, D.Gambacurta

Coexistence of quartets and pairs in even-even N>Z nuclei

NUCLEAR STRUCTURE 22,24,26,28Ne, 24,26,28,30Mg, 28,30,32Si, 46,48,50,52Ti, 48,50,52,54Cr; analyzed the structure of the ground states of even-even nuclei; deduced occupation probabilities of the single-particle orbits, description of the ground states of these nuclei as a product of two terms, one representing the proton-neutron subsystem with an equal number of protons and neutrons and the other one associated with the excess neutrons.

doi: 10.1016/j.nuclphysa.2023.122675
Citations: PlumX Metrics


2022SA38      Phys.Lett. B 827, 136987 (2022)

M.Sambataro, N.Sandulescu

Band-like structures and quartets in deformed N = Z nuclei

NUCLEAR STRUCTURE 24Mg, 28Si, 48Cr; calculated energy levels, J, π using the formalism of α-like quartets. Comparison with available data.

doi: 10.1016/j.physletb.2022.136987
Citations: PlumX Metrics


2021SA60      Phys.Lett. B 820, 136476 (2021)

M.Sambataro, N.Sandulescu

α-Like quartetting in the excited states of proton-neutron pairing Hamiltonians

NUCLEAR STRUCTURE 28Si; calculated energy levels, J, π using the quartet condensation model (QCM). Comparison with available data.

doi: 10.1016/j.physletb.2021.136476
Citations: PlumX Metrics


2020SA50      J.Phys.(London) G47, 045112 (2020)

M.Sambataro, N.Sandulescu

Exact T = 0 eigenstates of the isovector pairing Hamiltonian

doi: 10.1088/1361-6471/ab6ee2
Citations: PlumX Metrics


2018SA50      Phys.Lett. B 786, 11 (2018)

M.Sambataro, N.Sandulescu

Quartet structure of N=Z nuclei in a boson formalism: The case of 28Si

NUCLEAR STRUCTURE 28Si; calculated energy levels, J, π, potential energy surfaces, B(E2). Comparison with experimental data.

doi: 10.1016/j.physletb.2018.09.011
Citations: PlumX Metrics


2017SA13      Eur.Phys.J. A 53, 47 (2017)

M.Sambataro, N.Sandulescu

Quartet correlations in N = Z nuclei induced by realistic two-body interactions

NUCLEAR STRUCTURE 20Ne, 24Mg, 28Si, 32S; calculated total energy, binding energy, correlation energy, mass excess using gs correlations in terms of condensate of α-like quartets. Compared with other calculations.

doi: 10.1140/epja/i2017-12240-7
Citations: PlumX Metrics


2016GA04      Phys.Rev. C 93, 024309 (2016)

D.Gambacurta, F.Catara, M.Grasso, M.Sambataro, M.V.Andres, E.G.Lanza

Nuclear excitations as coupled one and two random-phase-approximation modes

NUCLEAR STRUCTURE 16O; calculated low-lying levels and giant resonances (dipole, quadrupole and octupole), J, π, monopole (E0), dipole (E1), isoscalar quadrupole (E2), and isoscalar octupole (E3) response functions. Double random-phase approximation (DRPA) method to include two -particle two-hole (2p-2h) configurations and by coupling them with the 1p-1h ones and among themselves. Comparison with experimental values.

doi: 10.1103/PhysRevC.93.024309
Citations: PlumX Metrics


2016SA22      Phys.Rev. C 93, 054320 (2016)

M.Sambataro, N.Sandulescu

Isoscalar-isovector proton-neutron pairing and quartet condensation in N=Z nuclei

NUCLEAR STRUCTURE 20Ne, 24Mg, 28Si, 44Ti, 48Cr, 52Fe, 104Te, 108Xe, 112Ba; calculated ground-state correlation energies, isovector (T=1) and isoscalar (T=0) pairing energies for N=Z nuclei using alpha-like quartet condensation model (QCM); deduced coexistence of isovector and isoscalar proton-neutron pairing correlations. Comparison of calculations with various pairing Hamiltonians.

doi: 10.1103/PhysRevC.93.054320
Citations: PlumX Metrics


2015SA23      Phys.Rev. C 91, 064318 (2015)

M.Sambataro, N.Sandulescu

Quarteting and spin-aligned proton-neutron pairs in heavy N=Z nuclei

NUCLEAR STRUCTURE 92Pd, 96Cd; calculated levels, J, π, B(E2), squared overlaps between the QM low-lying yrast states and the corresponding eigenstates in the various QM approximations; deduced role of maximally aligned isoscalar pairs in heavy N=Z nuclei, in particular for J=9, using quartet model (QM).

doi: 10.1103/PhysRevC.91.064318
Citations: PlumX Metrics


2015SA24      Rom.J.Phys. 60, 799 (2015)

M.Sambataro, N.Sandulescu, C.W.Johnson

Proton-Neutron Pairing in Self-Conjugate Nuclei in a Formalism of Quartets

NUCLEAR STRUCTURE 20Ne, 24Mg, 28Si, 32S, 44Ti, 48Cr, 52Fe, 104Te, 108Xe, 112Ba; calculated ground state correlation energies.


2015SA34      Phys.Rev.Lett. 15, 112501 (2015)

M.Sambataro, N.Sandulescu

Four-Body Correlations in Nuclei

NUCLEAR STRUCTURE 20Ne, 20F, 20O, 24Mg, 28Si, 92Pd; calculated energy levels, J, π, low-energy yrast spectra. Quartet and shell model approaches.

doi: 10.1103/PhysRevLett.115.112501
Citations: PlumX Metrics


2015SA54      Phys.Lett. B 740, 137 (2015)

M.Sambataro, N.Sandulescu, C.W.Johnson

Isoscalar and isovector pairing in a formalism of quartets

NUCLEAR STRUCTURE 16O, 40Ca, 100Sn, 20Ne, 24Mg, 28Si, 44Ti, 48Cr, 52Fe, 104Te, 108Xe, 112Ba; calculated ground state correlation energies for the isovector plus isoscalar pairing Hamiltonian in even-even N=Z nuclei in a formalism of alpha-like quartets. Comparison with available data.

doi: 10.1016/j.physletb.2014.11.036
Citations: PlumX Metrics


2013SA60      Phys.Rev. C 88, 061303 (2013)

M.Sambataro, N.Sandulescu

Isovector pairing in a formalism of quartets for N=Z nuclei

NUCLEAR STRUCTURE 20Ne, 24Mg, 28Si, 32S, 44Ti, 48Cr, 52Fe, 104Te, 108Xe, 112Ba; calculated ground-state correlation energies for spherical, and axially deformed single-particle states using pairing and isovector pairing force in N=Z nuclei. Quartet model (QM), and quartet condensation model (QCM).

doi: 10.1103/PhysRevC.88.061303
Citations: PlumX Metrics


2012SA25      Phys.Rev. C 85, 064326 (2012)

M.Sambataro

Multipair approach to pairing in nuclei

NUCLEAR STRUCTURE 112,114,116,118Sn; calculated ground-state correlation energies as a function of pairing strength, occupation numbers, and pair transfer matrix elements by constructing pairing Hamiltonian for a finite nuclear system as a product of collective, real, and distinct pairs. Comparison with BCS and projected BCS (PBCS) calculations.

doi: 10.1103/PhysRevC.85.064326
Citations: PlumX Metrics


2007SA32      Phys.Rev. C 75, 054314 (2007)

M.Sambataro

Pair condensation in a finite Fermi system

doi: 10.1103/PhysRevC.75.054314
Citations: PlumX Metrics


2006GA02      Phys.Rev. C 73, 014310 (2006)

D.Gambacurta, M.Sambataro, F.Catara

Solvable many-level pairing model in a boson formalism

doi: 10.1103/PhysRevC.73.014310
Citations: PlumX Metrics


2006GA09      Phys.Rev. C 73, 024319 (2006)

D.Gambacurta, M.Grasso, F.Catara, M.Sambataro

Extension of the second random-phase approximation

doi: 10.1103/PhysRevC.73.024319
Citations: PlumX Metrics


2004GA47      Yad.Fiz. 67, 1804 (2004); Phys.Atomic Nuclei 67, 1776 (2004)

D.Gambacurta, M.Sambataro

Pairing Correlations in Finite Nuclear Systems

doi: 10.1134/1.1811177
Citations: PlumX Metrics


2003SA05      Nucl.Phys. A714, 463 (2003)

M.Sambataro

RPA-like calculations within limited particle-hole spaces

doi: 10.1016/S0375-9474(02)01372-6
Citations: PlumX Metrics


2002GR30      Phys.Rev. C 66, 064303 (2002)

M.Grasso, F.Catara, M.Sambataro

Boson-mapping-based extension of the random-phase approximation in a three-level Lipkin model

doi: 10.1103/PhysRevC.66.064303
Citations: PlumX Metrics


2002SA27      Czech.J.Phys. 52, 505 (2002)

M.Sambataro

Testing a New Class of Phonon Operators for RPA-Like Calculations within an Exactly Solvable Model

doi: 10.1023/A:1015305226107
Citations: PlumX Metrics


2001SA43      Yad.Fiz. 64, No 6, 1139 (2001); Phys.Atomic Nuclei 64, 1064 (2001)

M.Sambataro

Analysis of the SU(3) Model in Multistep Variational Approach

doi: 10.1134/1.1383618
Citations: PlumX Metrics


2000KW01      Acta Phys.Pol. B31, 2029 (2000)

E.Kwasniewicz, F.Catara, M.Sambataro

Description of A = 22 Nuclei in the Collective Pair Approximation

NUCLEAR STRUCTURE A=22; calculated levels, J. Collective pair approximation.


1999SA07      Phys.Rev. C59, 1422 (1999)

M.Sambataro, N.D.Dang

Variational Approach to Collective Excitations

doi: 10.1103/PhysRevC.59.1422
Citations: PlumX Metrics


1999SA11      Phys.Rev. C59, 2056 (1999)

M.Sambataro

β- and Double-β-decay Transitions in a Schematic Model

doi: 10.1103/PhysRevC.59.2056
Citations: PlumX Metrics


1999SA56      Phys.Rev. C60, 064320 (1999)

M.Sambataro

Many-Body Correlations in Multistep Variational Approach

doi: 10.1103/PhysRevC.60.064320
Citations: PlumX Metrics


1998SA53      Europhys.Lett. 44, 173 (1998)

M.Sambataro, J.Suhonen

On the Interdependence between Ground and One-Phonon RPA States

doi: 10.1209/epl/i1998-00453-y
Citations: PlumX Metrics


1997KW02      Acta Phys.Pol. B28, 1249 (1997)

E.Kwasniewicz, F.Catara, M.Sambataro

The Structure of 1s0d- 1p0f-Shell Nuclei in the Collective Pair Approximation

NUCLEAR STRUCTURE 20Ne; calculated levels; deduced shell model truncation effects. Collective pair approximation.


1997KW03      J.Phys.(London) G23, 911 (1997)

E.Kwasniewicz, F.Catara, M.Sambataro

Structure of Odd-A 1s0d- and 1p0f-Shell Nuclei in the Collective Pair Approximation

NUCLEAR STRUCTURE A=19; A=21; A=43; calculated levels. Collective pair approximation, shell model comparison.

doi: 10.1088/0954-3899/23/8/006
Citations: PlumX Metrics


1997SA30      Phys.Rev. C56, 782 (1997)

M.Sambataro, J.Suhonen

Quasiparticle Random-Phase Approximation and β-Decay Physics: Higher-order approximations in a boson formalism

doi: 10.1103/PhysRevC.56.782
Citations: PlumX Metrics


1995SA26      Phys.Rev. C51, 3066 (1995)

M.Sambataro, F.Catara

Extended Random-Phase Approximation in a Boson Formalism with Pauli Principle

doi: 10.1103/PhysRevC.51.3066
Citations: PlumX Metrics


1995SA51      Phys.Rev. C52, 3378 (1995)

M.Sambataro

Baryon Mapping of Quark Systems

doi: 10.1103/PhysRevC.52.3378
Citations: PlumX Metrics


1994CA28      Nucl.Phys. A579, 1 (1994)

F.Catara, N.Dinh Dang, M.Sambataro

Ground-State Correlations Beyond RPA

NUCLEAR STRUCTURE 208Pb, 146Gd; calculated levels, B(λ), EWSR. Ground state correlations beyond RPA.

doi: 10.1016/0375-9474(94)90790-0
Citations: PlumX Metrics


1992CA22      Phys.Rev. C46, 754 (1992)

F.Catara, M.Sambataro

Quark Distributions in Nuclei

NUCLEAR STRUCTURE 4He, 16O, 40Ca; calculated quark distribution; deduced short range correlations role in quark density.

doi: 10.1103/PhysRevC.46.754
Citations: PlumX Metrics


1991GA25      Europhys.Lett. 16, 711 (1991)

Y.Y.Gao, F.Catara, M.Sambataro, A.Vitturi

Study of Negative-Parity States in Near-Closed-Shell Nuclei in the Collective-Pair Approximation Including Particle-Hole Excitations

NUCLEAR STRUCTURE 18O; calculated levels; deduced (particle-particle)-, (particle-hole)- degrees of freedom role in octupole states. Collective pair approximation.


1984ME04      Phys.Rev. C29, 1839 (1984)

R.A.Meyer, J.Lin, G.Molnar, B.Fazekas, A.Veres, M.Sambataro

Influence of Cross Subshell Excitations on the Collective States of 98Mo Observed by β Decay and (n, n'γ) Reaction Spectroscopy

RADIOACTIVITY 98mNb(β-) [from 98Mo(n, p), E=14 MeV]; measured Eγ, Iγ, γγ(t), γγ-coin; deduced log ft. 98Mo deduced levels, J, π, γ-branching, Iβ, absolute Iγ, δ. Compton suppression.

NUCLEAR REACTIONS 98Mo(n, n'γ), E=14 MeV; measured γ(θ), Eγ, Iγ, γγ-coin, γγ(θ). 98Mo deduced levels, δ, J, π. Enriched target.

NUCLEAR STRUCTURE 98Mo; calculated levels, γ-branching ratios, cross subshell excitations. Interacting boson model.

doi: 10.1103/PhysRevC.29.1839
Citations: PlumX Metrics


1984SA16      Nucl.Phys. A423, 333 (1984)

M.Sambataro, O.Scholten, A.E.L.Dieperink, G.Piccitto

On Magnetic Dipole Properties in the Neutron-Proton IBA Model

NUCLEAR STRUCTURE 144,146,148,150,152,154,156,158,160,162,164,166,168,170,172,174,176Ba, 146,148,150,152,154,156,158,160,162,164,166,168,170,172,174,176,178Ce, 148,150,152,154,156,160,162,164,166,168,170,172,174,176,178,180Nd, 150,152,154,156,158,160,162,164,166,168,170,172,174,176,178,180,182Sm, 152,154,156,158,160,162,164,166,168,170,172,174,176,178,180,182,184Gd, 154,156,158,160,162,164,166,168,170,172,174,176,178,180,182,184,186Dy, 156,158,160,162,164,166,168,170,172,174,176,178,180,182,184,186,188Er, 158,160,162,164,166,168,170,172,174,176,178,180,182,184,186,188,190Yb, 160,162,164,166,168,170,172,174,176,178,180,182,184,186,188,190,192Hf, 162,164,166,168,170,172,174,176,178,180,182,184,186,188,190,192,194W, 164,166,168,170,172,174,176,178,180,182,184,186,188,190,192,194,196Os, 166,168,170,172,178,180,182,184,186,188,190,192,194W, 164,166,168,170,172,174,176,178,180,182,184,186,188,190,192,194,196,198Pt; calculated 2+ state g. 152Sm; calculated δ(E2/M1). Neutron-proton interacting boson model.

doi: 10.1016/0375-9474(84)90593-1
Citations: PlumX Metrics


1984VA14      Nucl.Phys. A422, 61 (1984)

A.M.Van Den Berg, R.Bijker, N.Blasi, M.Sambataro, R.H.Siemssen, W.A.Sterrenburg

Study of 96,98,100Mo with the Ru(d, 6Li)Mo Reaction at E(d) = 45 MeV

NUCLEAR REACTIONS 100,102,104Ru(d, 6Li), E=45 MeV; measured σ(E(6Li), θ). 96,98,100Mo levels deduced Sα, J, π. DWBA analysis, interacting boson approximation calculations, shell model wave functions. Magnetic spectrograph, enriched targets.

doi: 10.1016/0375-9474(84)90431-7
Citations: PlumX Metrics


1983MO11      Nucl.Phys. A403, 342 (1983)

G.Molnar, I.Dioszegi, A.Veres, M.Sambataro

Level and Decay Schemes of 100Mo from (n, n'γ) Reaction Spectroscopy

NUCLEAR REACTIONS 100Mo(n, n'γ), E=fast; measured Eγ, Iγ, γ(θ). 100Mo deduced levels, J, π, δ. Enriched target, Ge(Li) detector. Interacting boson model calculations.

doi: 10.1016/0375-9474(83)90231-2
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset30632.


1982HE05      Phys.Rev. C25, 3160 (1982)

K.Heyde, P.Van Isacker, M.Waroquier, G.Wenes, M.Sambataro

Description of the Low-Lying Levels in 112,114Cd

NUCLEAR STRUCTURE 112,114Cd; calculated levels, B(λ), T1/2, γ-branching. Interacting boson approximation, two-particle, two-hole excitations.

doi: 10.1103/PhysRevC.25.3160
Citations: PlumX Metrics


1982SA02      Nucl.Phys. A376, 201 (1982)

M.Sambataro, G.Molnar

Configuration Mixing in Mo Isotopes

NUCLEAR STRUCTURE 96,98,100,102,104Mo; calculated levels, B(E2), quadrupole moments. Neutron, proton interacting boson model.

doi: 10.1016/0375-9474(82)90060-4
Citations: PlumX Metrics


1982SA13      Nucl.Phys. A380, 365 (1982)

M.Sambataro

A Study of Cd and Te Isotopes in the Interacting Boson Approximation

NUCLEAR STRUCTURE 102,104,106,108,110,112,114,116,118,120,122,126Cd; 106,114,116,118,120,122,124,126,128,130,132Te; calculated levels, B(E2), quadrupole moment, two neutron separation energies, γ-branching. Interacting boson model.

doi: 10.1016/0375-9474(82)90565-6
Citations: PlumX Metrics


1981SA38      Phys.Lett. 107B, 249 (1981)

M.Sambataro, A.E.L.Dieperink

G-Factors in the Neutron-Proton Interacting Boson Approximation

NUCLEAR STRUCTURE Ru, Pd, Cd, Ba, Xe, Te; calculated 2+ state g vs neutron number. Proton-neutron interacting boson approximation.

doi: 10.1016/0370-2693(81)90822-4
Citations: PlumX Metrics


Back to query form


Note: The following list of authors and aliases matches the search parameter M.Sambataro: , M.L.SAMBATARO