NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 27, 2024.

Search: Author = M.Lin

Found 10 matches.

Back to query form



2023GA21      J.Radioanal.Nucl.Chem. 332, 3037 (2023)

X.Gao, P.Zhang, J.Li, W.Mao, Z.Guo, J.Li, Y.Zhang, J.Chen, L.Sheng, M.Lin

Production of 99Mo via photoneutron reaction using a 50 MeV electron linear accelerator

NUCLEAR REACTIONS 100Mo(γ, n), E<50 MeV; calculated yields using FLUKA program; deduced guidance on the size of W conversion and molybdenum targets, as well as the selection of molybdenum species.

doi: 10.1007/s10967-023-09003-2
Citations: PlumX Metrics


2023LI02      Nucl.Instrum.Methods Phys.Res. A1047, 167783 (2023)

X.Li, T.Jiao, W.Li, Q.Zheng, N.Ni, S.Zhao, S.Zhao, F.Cheng, L.Yang, H.Yu, X.Qin, K.Xiao, S.Li, M.Lin, S.Wang, Y.Liu

Spectrum measurement of secondary neutron induced by 9Be (p, n) reaction in low-Earth orbit

NUCLEAR REACTIONS 9Be(p, n), E not given; measured reaction products, En, In; deduced spectrum of secondary neutron in low-Earth orbit.

doi: 10.1016/j.nima.2022.167783
Citations: PlumX Metrics


2023LI54      Appl.Radiat.Isot. 202, 111059 (2023)

M.Lin, W.Tian, J.Wang, R.Gao, F.Fan, Z.Qin, S.Cao, Z.Ran

Optimization of target system for the production of 99Mo via 100Mo(γ, n)99Mo reaction

NUCLEAR REACTIONS 100Mo(γ, n), E<50 MeV; measured reaction products, Eγ, Iγ; deduced yields. Comparison with the Geant4 simulation. The Electron Accelerator Research Center (EARC) at Institute of Modern Physics.

doi: 10.1016/j.apradiso.2023.111059
Citations: PlumX Metrics


2022LI07      Phys.Rev. C 105, L021305 (2022)

M.Q.Lin, C.Ma, Y.M.Zhao

Evolution of collectivity and neutron-proton interactions

NUCLEAR STRUCTURE Z=28-82, N=50-82; Z=50-82, N=82-126; analyzed energies of first 2+, 4+ states, integrated neutron-proton interactions Vnp; deduced correlation between the evolution of collective motions and Vnp.

doi: 10.1103/PhysRevC.105.L021305
Citations: PlumX Metrics


2022SH45      Phys.Rev. C 106, L061304 (2022)

R.Shou, X.Yin, C.Ma, M.Q.Lin, Y.M.Zhao

Simple corrections in theoretical models of atomic masses and nuclear charge radii

ATOMIC MASSES Z=29-110; N=20-160; A=49-270; analyzed systematic root mean square deviations of mass excesses, S(n), and S(p) between their experimental values from AME2020, and theoretical values from Hartree-Fock-Bogoliubov (HFB31), relativistic mean field (RMF), Duflo-Zuker (DZ), and Weizsaker-Skyrme (WS4+RBF) models using strong and specific correlations of these deviations, and deducing Pearson correlation coefficients for 3258 neutron- and proton-rich nuclei listed in the Supplemental Material of the paper.

NUCLEAR STRUCTURE Z=29-59; Z=61-64; Z=66; Z=68-76; Z=78, 79; Z=81-84; Z=86-88; Z=90, 92, 95, 96; analyzed systematic root mean square deviations of charge radii between their experimental values taken from 2021Li25 (Atomic Data and Nuclear Data Tables 140, 101440 (2021)), and theoretical values from Hartree-Fock-Bogoliubov (HFB31), relativistic mean field (RMF), relativistic continuum Hartree-Bogoliubov (RCHB), and Weizsaker-Skyrme (WS*) models using strong and specific correlations of these deviations, and deducing Pearson correlation coefficients for neutron- and proton-rich nuclei listed in the Supplemental Material of the paper.

doi: 10.1103/PhysRevC.106.L061304
Citations: PlumX Metrics


2022ZO01      Phys.Rev. C 105, 034321 (2022)

Y.Y.Zong, C.Ma, M.Q.Lin, Y.M.Zhao

Mass relations of mirror nuclei for both bound and unbound systems

ATOMIC MASSES 3He, 6,7Be, 8,9B, 8,9,10,11C, 11,12,13N, 11,12,13,14,15O, 14,15,16,17F, 14,15,16,17,18,19Ne, 17,18,19,20,21Na, 17,18,19,20,21,22,23Mg, 20,21,22,23,24,25Al, 21,22,23,24,25,26,27Si, 23,24,25,26,27,28,29P, 24,25,26,27,28,29,30,31S, 27,28,29,30,31,32,33Cl, 28,29,30,31,32,33,34,35Ar, 31,32,33,34,35,36,37K, 32,33,34,35,36,37,38,39Ca, 35,36,37,38,39,40,41Sc, 36,37,38,39,40,41,42,43Ti, 39,40,41,42,43,44,45V, 40,41,42,43,44,45,46,47Cr, 43,44,45,46,47,48,49Mn, 44,45,46,47,48,49,50,51Fe, 47,48,49,50,51,52,53Co, 48,49,50,51,52,53,54,55Ni, 50,51,52,53,54,55,56,57Cu, 52,53,54,55,56,57,58,59Zn, 54,55,56,57,58,59,60,61Ga, 56,57,58,59,60,61,62,63Ge, 60,61,62,63,64,65As, 62,63,64,65,66,67Se, 65,66,67,68,69Br, 67,68,69,70,71Kr, 70,71,72,73Rb, 71,72,73,74,75Sr, 74,75,76,77Y, 75,76,77,78,79Zr, 78,79,80,81Nb, 79,80,81,82,83Mo, 82,83,84,85Tc, 84,85,86,87Ru, 86,87,88,89Rh, 88,89,90,91Pd, 90,91,92,93Ag, 92,93,94,95Cd, 94,95,96,97In, 96,97,98,99Sn; calculated S(p), S(2p), mass excesses for proton-rich systems, both inside and outside the proton drip line, in terms of mass relations for mirror nuclei, based on Weizsacker mass formula. Comparison with available evaluated experimental data from AME2020, and deduced root-mean-square deviations (RMSD).

doi: 10.1103/PhysRevC.105.034321
Citations: PlumX Metrics


2019YU03      Phys.Rev. C 100, 014314 (2019)

H.C.Yu, M.Q.Lin, M.Bao, Y.M.Zhao, A.Arima

Empirical formulas for nuclear separation energies

NUCLEAR STRUCTURE 70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100Zn, 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137Mo, 151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186Ba, 204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239W; calculated S(n) and S(p) using empirical formulas. Comparison with AME-2016 evaluation, and with other theoretical model predictions.

doi: 10.1103/PhysRevC.100.014314
Citations: PlumX Metrics


2019ZO02      Phys.Rev. C 100, 054315 (2019)

Y.Y.Zong, M.Q.Lin, M.Bao, Y.M.Zhao, A.Arima

Mass relations of corresponding mirror nuclei

ATOMIC MASSES 21Na, 22,23Mg, 23,24,25Al, 24,25,26,27Si, 26,27,28,29P, 28,29,30,31S, 30,31,32,33Cl, 32,33,34,35Ar, 34,35,36,37K, 36,37,38,39Ca, 38,39,40,41Sc, 40,41,42,43Ti, 42,43,44,45V, 44,45,46,47Cr, 46,47,48,49Mn, 48,49,50,51Fe, 50,51,52,53Co, 52,53,54,55Ni, 54,55,56,57Cu, 56,57,58,59Zn, 58,59,60,61Ga, 60,61,62,63Ge, 62,63,64,65As, 64,65,66,67Se, 66,67,68,69Br, 68,69,70,71Kr, 70,71,72,73Rb, 72,73,74,75Sr, 74,75,76,77Y, 76,77,78,79Zr, 79,80Nb, 81,83Mo, 83,85Tc, 85,86,87Ru, 87,88Rh, 89Pd; calculated mass excesses, S(n), S(p) using mass relations for corresponding mirror nuclei, and compared with AME2016 values; deduced regularities related to neutron-proton interactions, and to separation energies for mirror nuclei.

doi: 10.1103/PhysRevC.100.054315
Citations: PlumX Metrics


2018LI05      Appl.Radiat.Isot. 133, 1 (2018)

M.Lin, G.J.Waligorski, C.Gonzalez Lepera

Production of curie quantities of 68Ga with a medical cyclotron via the 68Zn(p, n)68Ga reaction

NUCLEAR REACTIONS 68Zn(p, n), E=16.5 MeV; measured reaction products; deduced yields. Chemical separation.

doi: 10.1016/j.apradiso.2017.12.010
Citations: PlumX Metrics


1996IK02      Physica C263, 526 (1996)

S.Ikeda, K.Kumagai, J.Jiang, M.S.Lin, C.C.Lai, H.C.Ku

NMR Study of Quaternary Superconductors RT2B2C(R = Y, La, Th, and T = Ni, Pd, Pt)

NUCLEAR MOMENTS 195Pt, 139La, 11B; measured NMR; deduced Knight shift, spin-lattice relaxation characteristics. Quaternary superconductors RT2B2C(R=Y, La, Th;T=Ni, Pd, Pt).

doi: 10.1016/0921-4534(96)00081-0
Citations: PlumX Metrics


Back to query form


Note: The following list of authors and aliases matches the search parameter M.Lin: , M.Q.LIN, M.S.LIN