NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 27, 2024.

Search: Author = Y.Y.Zong

Found 8 matches.

Back to query form



2022ZO01      Phys.Rev. C 105, 034321 (2022)

Y.Y.Zong, C.Ma, M.Q.Lin, Y.M.Zhao

Mass relations of mirror nuclei for both bound and unbound systems

ATOMIC MASSES 3He, 6,7Be, 8,9B, 8,9,10,11C, 11,12,13N, 11,12,13,14,15O, 14,15,16,17F, 14,15,16,17,18,19Ne, 17,18,19,20,21Na, 17,18,19,20,21,22,23Mg, 20,21,22,23,24,25Al, 21,22,23,24,25,26,27Si, 23,24,25,26,27,28,29P, 24,25,26,27,28,29,30,31S, 27,28,29,30,31,32,33Cl, 28,29,30,31,32,33,34,35Ar, 31,32,33,34,35,36,37K, 32,33,34,35,36,37,38,39Ca, 35,36,37,38,39,40,41Sc, 36,37,38,39,40,41,42,43Ti, 39,40,41,42,43,44,45V, 40,41,42,43,44,45,46,47Cr, 43,44,45,46,47,48,49Mn, 44,45,46,47,48,49,50,51Fe, 47,48,49,50,51,52,53Co, 48,49,50,51,52,53,54,55Ni, 50,51,52,53,54,55,56,57Cu, 52,53,54,55,56,57,58,59Zn, 54,55,56,57,58,59,60,61Ga, 56,57,58,59,60,61,62,63Ge, 60,61,62,63,64,65As, 62,63,64,65,66,67Se, 65,66,67,68,69Br, 67,68,69,70,71Kr, 70,71,72,73Rb, 71,72,73,74,75Sr, 74,75,76,77Y, 75,76,77,78,79Zr, 78,79,80,81Nb, 79,80,81,82,83Mo, 82,83,84,85Tc, 84,85,86,87Ru, 86,87,88,89Rh, 88,89,90,91Pd, 90,91,92,93Ag, 92,93,94,95Cd, 94,95,96,97In, 96,97,98,99Sn; calculated S(p), S(2p), mass excesses for proton-rich systems, both inside and outside the proton drip line, in terms of mass relations for mirror nuclei, based on Weizsacker mass formula. Comparison with available evaluated experimental data from AME2020, and deduced root-mean-square deviations (RMSD).

doi: 10.1103/PhysRevC.105.034321
Citations: PlumX Metrics


2021MA33      Phys.Rev. C 103, 054326 (2021)

C.Ma, Y.Y.Zong, S.Q.Zhang, J.Li, K.Wang, Y.M.Zhao, A.Arima

Mass relations of mirror nuclei in terms of Coulomb energies based on relativistic continuum Hartree-Bogoliubov calculations

ATOMIC MASSES 18,19Ne, 19,20,21Na, 20,21,22,23Mg, 21,22,23,24,25Al, 22,23,24,25,26,27Si, 24,25,26,27,28,29P, 27,28,29,30,31S, 29,30,31,32,33Cl, 32,33,34,35Ar, 33,34,35,36,37K, 35,36,37,38,39Ca, 38,39,40,41Sc, 40,41,42,43Ti, 41,42,43,44,45V, 43,44,45,46,47Cr, 44,45,46,47,48,49Mn, 46,47,48,49,50,51Fe, 49,50,51,52,53Co, 50,51,52,53,54,55Ni, 53,54,55,56,57Cu, 56,57,58,59Zn, 59,60,61Ga, 60,61,62,63Ge, 62,63,64,65As, 65,66,67Se, 67,68,69Br, 69,70,71Kr, 71,72,73Rb, 73,74,75Sr, 75,76,77Y, 78,79Zr, 81Nb, 83Mo, 85Tc, 87Ru; calculated mass excesses, S(p), S(2p) of mirror nuclei, including masses of 61 unknown proton-rich nuclei, in terms of Coulomb energies based on relativistic continuum Hartree-Bogoliubov (RCHB) method. Numerical values listed in Supplemental material of the paper. Comparison with values in AME2016 database.

doi: 10.1103/PhysRevC.103.054326
Citations: PlumX Metrics


2021MA43      Phys.Rev. C 104, 014303 (2021)

C.Ma, Y.Y.Zong, Y.M.Zhao, A.Arima

Evaluation of nuclear charge radii based on nuclear radii changes

NUCLEAR STRUCTURE N=8-160; analyzed evaluated experimental data for nuclear charge-radii changes for two isotopes taken from 2013An02 database and later experimental results, and compared with the theoretical calculations based on HFB-31, RCHB, RMF+BCS and WS* models; deduced root-mean-square deviations (RMSD). Z=12, N=21-26, 30; Z=16, N=21-32, 34; Z=17, N=21-34; Z=18, N=20-36; Z=19, N=20-36; Z=20, N=20-38; Z=21, N=20-40; Z=22, N=20-43; Z=23, N=21-26, 27, 29-43; Z=24, N=20-43; Z=25, N=22-45; Z=26, N=21-46; Z=27, N=24-31, 33-46; Z=28, N=22-51; Z=29, N=28-51; Z=30, N=26-55; Z=31, N=30-64; Z=32, N=29-59; Z=33, N=33-41, 43-57; Z=34, N=31-63; Z=35, N=35-61; Z=36, N=33-71; Z=37, N=37-67; Z=38, N=36-72, 75-77; Z=39, N=39-78; Z=40, N=38-77; Z=41, N=41-77; Z=42, N=40-81; Z=44, N=42-75; Z=45, N=45-57, 59-73; Z=46, N=44-79; Z=47, N=47-77; Z=48, N=46-87; Z=49, N=50-93; Z=50, N=49-96; Z=51, N=57-87; Z=52, N=54-99; Z=53, N=59-89; Z=54, N=56-107; Z=55, N=61-106; Z=56, N=58-107; Z=57, N=63-97; Z=58, N=63-105; Z=59, N=67-81, 83-97; Z=60, N=63-105; Z=62, N=67-87, 90-107; Z=63, N=71-87, 90-111; Z=64, N=69-87, 90-111; Z=66, N=90-113; Z=67, N=78-87, 90-113; Z=68, N=76-117; Z=69, N=81-118; Z=70, N=78-122; Z=71, N=84-123; Z=72, N=83-125; Z=73, N=123; Z=74, N=91-127; Z=75, N=95-127; Z=76, N=93-131; Z=78, N=108-135; Z=79, N=108-135; Z=80, N=94-141; Z=81, N=103-142; Z=82, N=98-147; Z=84, N=105-149; Z=86, N=108-151; Z=87, N=115-155; Z=88, N=111-155; Z=90, N=122-155; Z=92, N=126-155; Z=94, N=132-155; Z=95, N=131-155; Z=96, N=131-155; calculated nuclear charge radii by using δRk values based on empirical formula in the present work and the WS* model for 1647 nuclei listed in the Supplemental Material of the paper.

doi: 10.1103/PhysRevC.104.014303
Citations: PlumX Metrics


2020BA34      Phys.Rev. C 102, 014306 (2020)

M.Bao, Y.Y.Zong, Y.M.Zhao, A.Arima

Local relations of nuclear charge radii

NUCLEAR STRUCTURE Z=28-96;N=28-126; calculated nuclear charge radii using three approaches: δRin-jp relations based on the independent particle shell model, δRnn relation from nonpairing interaction δVnn in nuclear binding energies, and linear dependence of nuclear charge radii in terms of valence nucleon numbers. Comparison with experimental data evaluated in CR2013 database of 944 nuclei. Z=28, A=56-81; Z=29, A=57-86; Z=30, A=58-86; Z=31, A=59-88; Z=32, A=60-89; Z=33, A=65-90; Z=34, A=65-91; Z=35, A=69-92; Z=36, A=69-96; Z=37, A=72-98; Z=38, A=72-100; Z=39, A=76-102; Z=40, A=77-102; Z=41, A=80-103; Z=42, A=80-108; Z=44, A=86-126; Z=45, A=93-130; Z=46, A=92-130; Z=47, A=94-133; Z=48, A=95-134; Z=49, A=98-135; Z=50, A=99-136; Z=51, A=111-137; Z=52, A=106-138; Z=53, A=117-139; Z=54, A=109-146; Z=55, A=115-146; Z=56, A=115-148; Z=57, A=125-143; Z=58, A=126-148; Z=59, A=131-145; Z=60, A=128-150; Z=62, A=131-154; Z=63, A=133-159; Z=64, A=135-160; Z=65, A=147-159; Z=66, A=146-173; Z=67, A=151-173; Z=68, A=150-177; Z=69, A=153-184; Z=70, A=152-188; Z=71, A=161-189; Z=72, A=163-196; Z=73, A=171-203; Z=74, A=170-204; Z=75, A=185-207; Z=76, A=175-208; Z=77, A=182-209; Z=78, A=178-210; Z=79, A=183-211; Z=80, A=181-214; Z=81, A=183-209; Z=82, A=182-216; Z=83, A=202-213; Z=84, A=192-220; Z=86, A=195-227; Z=87, A=206-228; Z=88, A=205-232; Z=90, A=226-236; Z=92, A=229-238; Z=94, A=235-244; Z=95, A=241-245; Z=96, A=242-248; calculated unknown nuclear charge radii for 830 nuclei using the same three approaches, and listed in a data file in the Supplementary material of the paper.

doi: 10.1103/PhysRevC.102.014306
Citations: PlumX Metrics


2020MA35      Phys.Rev. C 102, 024330 (2020)

C.Ma, Y.Y.Zong, Y.M.Zhao, A.Arima

Mass relations of mirror nuclei with local correlations

ATOMIC MASSES 41Ti, 43,44V, 45Cr, 47,48Mn, 49Fe, 51,52Co, 53Ni, 55,56Cu; calculated extrapolated mass excesses by analyzing correlations between deviations between theoretical results and experimental data, the latter from AME1995 and AME2016. 34Ca, 38,39Ti, 42Cr, 59Ge, 66Kr, 70,71Sr; calculated Q(2p) and Q(p) for proton-rich nuclei. Z=12-38, N=6-38; predicted proton and diproton drip lines based on predicted masses in the present work. 34Ca, 38,39Ti, 42Cr, 59Ge, 66Kr, 70,71Sr; predicted 2p emitters. 19Mg, 45Fe, 48Ni, 54Zn, 67Kr; experimentally suggested to be 2p emitters, consistent with predictions in the present work. Z=10-44, N=8-37, A=18-81; calculated mass excesses of 292 proton-rich nuclei and compared with available mass excesses in AME2016. Examined mass relations of mirror nuclei with local correlations, with odd-even staggering of Coulomb energy.

doi: 10.1103/PhysRevC.102.024330
Citations: PlumX Metrics


2020ZO03      Phys.Rev. C 102, 024302 (2020)

Y.Y.Zong, C.Ma, Y.M.Zhao, A.Arima

Mass relations of mirror nuclei

ATOMIC MASSES Z=11-47, N=10-43, A=21-90; analyzed mass relations of mirror nuclei by comparing theoretical values and AME2016 evaluated data through root-mean squared deviations (RMSD); predicted mass excesses of experimentally inaccessible proton-rich nuclei.

doi: 10.1103/PhysRevC.102.024302
Citations: PlumX Metrics


2019ZO02      Phys.Rev. C 100, 054315 (2019)

Y.Y.Zong, M.Q.Lin, M.Bao, Y.M.Zhao, A.Arima

Mass relations of corresponding mirror nuclei

ATOMIC MASSES 21Na, 22,23Mg, 23,24,25Al, 24,25,26,27Si, 26,27,28,29P, 28,29,30,31S, 30,31,32,33Cl, 32,33,34,35Ar, 34,35,36,37K, 36,37,38,39Ca, 38,39,40,41Sc, 40,41,42,43Ti, 42,43,44,45V, 44,45,46,47Cr, 46,47,48,49Mn, 48,49,50,51Fe, 50,51,52,53Co, 52,53,54,55Ni, 54,55,56,57Cu, 56,57,58,59Zn, 58,59,60,61Ga, 60,61,62,63Ge, 62,63,64,65As, 64,65,66,67Se, 66,67,68,69Br, 68,69,70,71Kr, 70,71,72,73Rb, 72,73,74,75Sr, 74,75,76,77Y, 76,77,78,79Zr, 79,80Nb, 81,83Mo, 83,85Tc, 85,86,87Ru, 87,88Rh, 89Pd; calculated mass excesses, S(n), S(p) using mass relations for corresponding mirror nuclei, and compared with AME2016 values; deduced regularities related to neutron-proton interactions, and to separation energies for mirror nuclei.

doi: 10.1103/PhysRevC.100.054315
Citations: PlumX Metrics


2018ZO01      Chin.Phys.C 42, 024101 (2018)

Y.Y.Zong, B.Y.Sun

Relativistic interpretation of the nature of the nuclear tensor force

NUCLEAR STRUCTURE 48Ca, 90Zr, 208Pb; calculated radial wave functions of the spin and pseudo-spin partner states, interaction matrix elements.

doi: 10.1088/1674-1137/42/2/024101
Citations: PlumX Metrics


Back to query form