NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 27, 2024.

Search: Author = K.Bennaceur

Found 42 matches.

Back to query form



2024DA05      Phys.Rev. C 109, 034316 (2024)

Ph.Da Costa, K.Bennaceur, J.Meyer, W.Ryssens, M.Bender

Impact of choices for center-of-mass correction energy on the surface energy of Skyrme energy density functionals

doi: 10.1103/PhysRevC.109.034316
Citations: PlumX Metrics


2020BE25      J.Phys.(London) G47, 105101 (2020)

K.Bennaceur, J.Dobaczewski, T.Haverinen, M.Kortelainen

Properties of spherical and deformed nuclei using regularized pseudopotentials in nuclear DFT

NUCLEAR STRUCTURE 100,120,132Sn; analyzed available data; deduced eigenvalues of the Hessian matrices parameters, infinite-nuclear-matter isoscalar effective mass and energies per particle in symmetric, neutron, polarized, and polarized neutron matter as functions of the nuclear density.

doi: 10.1088/1361-6471/ab9493
Citations: PlumX Metrics


2019HA39      Acta Phys.Pol. B50, 269 (2019)

T.Haverinen, M.Kortelainen, J.Dobaczewski, K.Bennaceur

Towards a Novel Energy Density Functional for Beyond-mean-field Calculations with Pairing and Deformation

NUCLEAR STRUCTURE Z=8-36; 20,22,24,26,28,30,32,34,36Mg, 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134Sn; calculated binding energies. HFB calculations with optimization procedure of local finite-range pseudopotential up to next-to-leading order by using 10, 12, and 14 harmonic oscilator shells. Comparison to experimental data.

doi: 10.5506/aphyspolb.50.269
Citations: PlumX Metrics


2019MA67      Eur.Phys.J. A 55, 150 (2019)

M.Martini, A.De Pace, K.Bennaceur

Spurious finite-size instabilities with Gogny-type interactions

NUCLEAR STRUCTURE 4He, 48Ca, 120Sn, 208Pb; calculated proton and neutron critical densities vs radius using D1M, D1N and DIM* interactions using fully antisymmetrized RPA; deduced no convergence for 48Ca beyond number of shells Nsh=24 using HFBTHO code.

doi: 10.1140/epja/i2019-12838-7
Citations: PlumX Metrics


2019RY02      Phys.Rev. C 99, 044315 (2019)

W.Ryssens, M.Bender, K.Bennaceur, P.-H.Heenen, J.Meyer

Impact of the surface energy coefficient on the deformation properties of atomic nuclei as predicted by Skyrme energy density functionals

NUCLEAR STRUCTURE 74Kr, 180,186,188,190,192,194,196,198,200Hg, 186Pb, 226Ra, 240Pu; calculated deformation energy surfaces as function of β20 parameter. 110Zr, 282Cn, 294Og; calculated deformation energy surface contours in (β, γ) plane. 180Hg, 226Ra, 240Pu; calculated heights of first, second and third barrier heights, and energies of fission isomers. Z=90-120, N=140-186; calculated binding energies and other gross properties. 188Hg; calculated Nilsson diagrams for single-particle neutron and proton states. 186,188,190,192,194,196,198,200Hg, 188,190,192,194,196,198,200,202Pb; calculated excitation energies and multipole deformations βp, l0 of the proton distribution of the superdeformed minima, S(2n), and charge quadrupole deformations β2, p for 190,192,194Hg, 192,194,196Pb. 194Hg; calculated dynamical moment of inertia of the superdeformed band as a function of cranking frequency. Z=50, N=46-74; calculated S(2n) for even-even nuclei. Z=44-74, N=82; calculated S(2p) for even-even nuclei. 144Ba; calculated deformation energy surface as a function of octupole deformation parameter β30. 218,220,222,224,226,228,230,232Th; calculated deformation energy surfaces as function of β20 and β30 parameters. 110Zr; calculated deformation energy surface as a function of non-axial octupole deformation parameter β32. Energy density functional (EDF) methods with SLy5sX parametrizations of the Skyrme EDF. Comparison with available experimental data.

doi: 10.1103/PhysRevC.99.044315
Citations: PlumX Metrics


2018DA05      Phys.Rev. C 97, 044304 (2018)

D.Davesne, J.Navarro, J.Meyer, K.Bennaceur, A.Pastore

Two-body contributions to the effective mass in nuclear effective interactions

doi: 10.1103/PhysRevC.97.044304
Citations: PlumX Metrics


2017BE06      J.Phys.(London) G44, 045106 (2017)

K.Bennaceur, A.Idini, J.Dobaczewski, P.Dobaczewski, M.Kortelainen, F.Raimon

Nonlocal energy density functionals for pairing and beyond-mean-field calculations

NUCLEAR STRUCTURE 40,48Ca, 56,78Ni, 100,120,132Sn, 208Pb; calculated partial penalty functions, infinite-nuclear-matter, eigenvalues of the Hessian matrices, propagated errors of the total binding energies, average neutron pairing gaps, and proton rms radii, ground-state energies.

doi: 10.1088/1361-6471/aa5fd7
Citations: PlumX Metrics


2017ID04      J.Phys.(London) G44, 064004 (2017)

A.Idini, K.Bennaceur, J.Dobaczewski

Landau parameters for energy density functionals generated by local finite-range pseudopotentials

doi: 10.1088/1361-6471/aa691e
Citations: PlumX Metrics


2016JO08      Phys.Rev. C 94, 024335 (2016)

R.Jodon, M.Bender, K.Bennaceur, J.Meyer

Constraining the surface properties of effective Skyrme interactions

NUCLEAR STRUCTURE 240Pu; calculated surface energy coefficients, deformation energy curves as a function of the dimensionless mass quadrupole moment, correlation between the excitation energy of the fission isomer and the height of the inner and outer fission barriers, nuclear-matter properties. Calculations involved 76 parametrizations of the Skyrme energy density functionals (EDF) using Hartree-Fock (HF) with quantal shell effects, extended Thomas-Fermi (ETF) or modified Thomas-Fermi (MTF) approximations; discussed differences between different methods.

doi: 10.1103/PhysRevC.94.024335
Citations: PlumX Metrics


2015LA03      Phys.Rev. C 91, 011302 (2015)

D.Lacroix, K.Bennaceur

Semicontact three-body interaction for nuclear density functional theory

doi: 10.1103/PhysRevC.91.011302
Citations: PlumX Metrics


2014RA08      J.Phys.(London) G41, 055112 (2014)

F.Raimondi, K.Bennaceur, J.Dobaczewski

Nonlocal energy density functionals for low-energy nuclear structure

doi: 10.1088/0954-3899/41/5/055112
Citations: PlumX Metrics


2013HE26      Phys.Rev. C 88, 064323 (2013)

V.Hellemans, A.Pastore, T.Duguet, K.Bennaceur, D.Davesne, J.Meyer, M.Bender, P.-H.Heenen

Spurious finite-size instabilities in nuclear energy density functionals

NUCLEAR STRUCTURE 16O, 40,48Ca, 78Ni, 176Sn, 208Pb; calculated binding energies; investigated instabilities in energy density functional (EDF) calculations to finite-wavelength instabilities of homogeneous symmetric computed at the RPA level. Nine parameterizations based on traditional form of the Skyrme EDF.Systematic calculations with both HOSPHE and LENTEUR formalisms.

doi: 10.1103/PhysRevC.88.064323
Citations: PlumX Metrics


2013PA17      Phys.Scr. T154, 014014 (2013)

A.Pastore, D.Davesne, K.Bennaceur, J.Meyer, V.Hellemans

Fitting Skyrme functionals using linear response theory

NUCLEAR STRUCTURE Z=20, 28, 50, 82; analyzed available data and fitted binding energies, charge radii. Linear response theory in symmetric nuclear matter.

doi: 10.1088/0031-8949/2013/T154/014014
Citations: PlumX Metrics


2013SA23      Phys.Scr. T154, 014013 (2013)

J.Sadoudi, M.Bender, K.Bennaceur, D.Davesne, R.Jodon, T.Duguet

Skyrme pseudo-potential-based EDF parametrization for spuriousity-free MR EDF calculations

NUCLEAR STRUCTURE Z=20, 28, 50, 82; calculated binding energy residuals as a function of A for singly magic nuclei, neutron spectral gaps of singly magic even-even nuclei in the isotopic chains. General Skyrme EDFs at the SR level.

doi: 10.1088/0031-8949/2013/T154/014013
Citations: PlumX Metrics


2012PA11      Phys.Rev. C 85, 054317 (2012)

A.Pastore, D.Davesne, Y.Lallouet, M.Martini, K.Bennaceur, J.Meyer

Nuclear response for the Skyrme effective interaction with zero-range tensor terms. II. Sum rules and instabilities

doi: 10.1103/PhysRevC.85.054317
Citations: PlumX Metrics


2012PA13      Int.J.Mod.Phys. E21, 1250040 (2012)

A.Pastore, K.Bennaceur, D.Davesne, J.Meyer

Linear response in infinite nuclear matter as a tool to reveal finite size instabilities

doi: 10.1142/S0218301312500401
Citations: PlumX Metrics


2012PA32      Phys.Rev. C 86, 044308 (2012)

A.Pastore, M.Martini, V.Buridon, D.Davesne, K.Bennaceur, J.Meyer

Nuclear response for the Skyrme effective interaction with zero-range tensor terms. III. Neutron matter and neutrino propagation

doi: 10.1103/PhysRevC.86.044308
Citations: PlumX Metrics


2012WA32      Phys.Rev. C 86, 054309 (2012)

K.Washiyama, K.Bennaceur, B.Avez, M.Bender, P.-H.Heenen, V.Hellemans

New parametrization of Skyrme's interaction for regularized multireference energy density functional calculations

NUCLEAR STRUCTURE 40,48Ca, 56Ni, 100,132Sn, 208Pb; calculated binding energy, charge radii. 24Mg, 74Kr, 80,100Zr, 186Pb; calculated potential energy curves versus β2. 240Pu; calculated fission barrier versus β2. 194Hg; calculated dynamical moment of inertia of superdeformed band. 249Bk, 251Cf; calculated one-quasiparticle levels. Z=20, A=36-52; Z=28, A=54-72; Z=50, A=100-134; Z=82, A=180-214; N=20, Z=10-22; N=50, Z=30-50; N=82, Z=48-70; N=126, Z=80-92; calculated binding energies, charge radii for even-even nuclei. Energy density functional calculations for spherical and deformed nuclei with new Skyrme parametrization with integer powers of the density. Comparison with experimental data.

doi: 10.1103/PhysRevC.86.054309
Citations: PlumX Metrics


2009BE45      Phys.Rev. C 80, 064302 (2009)

M.Bender, K.Bennaceur, T.Duguet, P.-H.Heenen, T.Lesinski, J.Meyer

Tensor part of the Skyrme energy density functional. II. Deformation properties of magic and semi-magic nuclei

NUCLEAR STRUCTURE 40,48Ca, 56,68,78Ni, 80,90,96,100,110Zr, 100,120,132Sn, 186,208Pb; calculated proton and neutron Nilsson diagrams, single-particle energy spectra, deformation energy curves, isoscalar tensor energies using nuclear energy density functionals (EDF) and T22, T26, T44, T62, SLy5, SLy5+T, SLy4, SLy4T, SLy4T(min), SLy4T(self) and TZA parametrizations. Investigated impact of tensor terms in the Skyrme energy density functional on deformation properties of magic and semi-magic nuclei.

doi: 10.1103/PhysRevC.80.064302
Citations: PlumX Metrics


2009DA15      Phys.Rev. C 80, 024314 (2009); Erratum Phys.Rev. C 84, 059904 (2011)

D.Davesne, M.Martini, K.Bennaceur, J.Meyer

Nuclear response for the Skyrme effective interaction with zero-range tensor terms

doi: 10.1103/PhysRevC.80.024314
Citations: PlumX Metrics


2009DU02      Phys.Rev. C 79, 044320 (2009)

T.Duguet, M.Bender, K.Bennaceur, D.Lacroix, T.Lesinski

Particle-number restoration within the energy density functional formalism: Nonviability of terms depending on noninteger powers of the density matrices

NUCLEAR STRUCTURE 18O; calculated particle-number restoration energy in the framework of single- and multi-reference nuclear energy density functionals.

doi: 10.1103/PhysRevC.79.044320
Citations: PlumX Metrics


2009DU13      Int.J.Mod.Phys. E18, 2007 (2009)

T.Duguet, T.Lesinski, K.Hebeler, K.Bennaceur, A.Schwenk, J.Meyer

Non-empirical energy density functional for nuclei: The pairing part

doi: 10.1142/S0218301309014172
Citations: PlumX Metrics


2009LE24      Eur.Phys.J. A 40, 121 (2009)

T.Lesinski, T.Duguet, K.Bennaceur, J.Meyer

Non-empirical pairing energy density functional; First order in the nuclear plus Coulomb two-body interaction

NUCLEAR STRUCTURE Ca, Ni, Sn, Pb; calculated pair gap energies for semi-magic isotonic and isotopic chains using the energy density functional method.

doi: 10.1140/epja/i2009-10780-y
Citations: PlumX Metrics


2009RO07      Phys.Rev. C 79, 054309 (2009)

V.Rotival, K.Bennaceur, T.Duguet

Halo phenomenon in finite many-fermion systems: Atom-positron complexes and large-scale study of atomic nuclei

NUCLEAR STRUCTURE 72,74,76,78,80,82,84Cr, 84Fe, 86,88Ni, 136Ru, 140Pd; calculated halo parameters and neutron canonical gaps using Hartree-Fock-Bogoliubov calculations with Skyrme plus pairing functionals. Li+e+, Be+e+, Mg+e+, Cu+e+, He++e+, Li++e+; calculated halo parameters in atom-positron and ion-positronium complexes using energy-density functional calculations.

doi: 10.1103/PhysRevC.79.054309
Citations: PlumX Metrics


2007LE22      Phys.Rev. C 76, 014312 (2007)

T.Lesinski, M.Bender, K.Bennaceur, T.Duguet, J.Meyer

Tensor part of the Skyrme energy density functional: Spherical nuclei

NUCLEAR STRUCTURE Ca, Ni, Sn, Pb; calculated single particle energies using the Skyrme interaction with Tensor terms.

doi: 10.1103/PhysRevC.76.014312
Citations: PlumX Metrics


2006LE36      Phys.Rev. C 74, 044315 (2006)

T.Lesinski, K.Bennaceur, T.Duguet, J.Meyer

Isovector splitting of nucleon effective masses, ab initio benchmarks and extended stability criteria for Skyrme energy functionals

NUCLEAR STRUCTURE 78Ni, 132,156Sn, 208Pb; calculated single-particle energy levels. Sn, Pb; calculated binding energies, pair gap energies vs neutron number. 40Ca, 56Ni; calculated nucleon density distributions.

doi: 10.1103/PhysRevC.74.044315
Citations: PlumX Metrics


2005BE32      Comput.Phys.Commun. 168, 96 (2005)

K.Bennaceur, J.Dobaczewski

Coordinate-space solution of the Skyrme-Hartree-Fock-Bogolyubov equations within spherical symmetry. The program HFBRAD (v1.00)

NUCLEAR STRUCTURE 174Sn; calculated quasiparticle wave functions. 120,150Sn; calculated total energies, neutron particle and pairing densities. Z=50; A=100-174; calculated binding energies, pairing gaps for tin isotopes. Skyrme-Hartree-Fock-Bogolyubov equations.

doi: 10.1016/j.cpc.2005.02.002
Citations: PlumX Metrics


2004CO05      Nucl.Phys. A731, 34 (2004)

B.Cochet, K.Bennaceur, P.Bonche, T.Duguet, J.Meyer

Compressibility, effective mass and density dependence in Skyrme forces

doi: 10.1016/j.nuclphysa.2003.11.015
Citations: PlumX Metrics


2004CO06      Int.J.Mod.Phys. E13, 187 (2004)

B.Cochet, K.Bennaceur, J.Meyer, P.Bonche, T.Duguet

Skyrme forces with extended density dependence

doi: 10.1142/S021830130400193X
Citations: PlumX Metrics


2004CO13      Phys.Rev. C 70, 024307 (2004)

G.Colo, N.Van Giai, J.Meyer, K.Bennaceur, P.Bonche

Microscopic determination of the nuclear incompressibility within the nonrelativistic framework

NUCLEAR STRUCTURE 16O, 40,48Ca, 56,78Ni, 100,132Sn, 208Pb; analyzed binding energies, radii; deduced parameters. 208Pb; calculated giant monopole resonance energy; deduced nuclear incompressibility.

doi: 10.1103/PhysRevC.70.024307
Citations: PlumX Metrics


2003BE78      C.R.Physique 4, 555 (2003)

K.Bennaceur, P.Bonche, J.Meyer

Mean field theories and exotic nuclei

doi: 10.1016/S1631-0705(03)00060-4
Citations: PlumX Metrics


2002BE63      Nucl.Phys. A708, 205 (2002)

K.Bennaceur, J.F.Berger, B.Ducomet

Coupling to the Continuous Spectrum and HFB Approximation

doi: 10.1016/S0375-9474(02)01012-6
Citations: PlumX Metrics


2002MI27      Phys.Rev.Lett. 89, 042502 (2002)

N.Michel, W.Nazarewicz, M.Ploszajczak, K.Bennaceur

Gamow Shell Model Description of Neutron-Rich Nuclei

NUCLEAR STRUCTURE 6He, 18O; calculated levels, J, π, resonances. Continuum shell model, multiconfiguration mixing, Berggren ensemble.

doi: 10.1103/PhysRevLett.89.042502
Citations: PlumX Metrics


2000BE18      Nucl.Phys. A671, 203 (2000)

K.Bennaceur, F.Nowacki, J.Okolowicz, M.Ploszajczak

Analysis of the 16O(p, γ)17F Capture Reaction using the Shell Model Embedded in the Continuum

NUCLEAR STRUCTURE 17O, 17F; calculated levels, J, π. Shell model embedded in the continuum, comparison with other models.

NUCLEAR REACTIONS 16O(p, γ), E(cm) < 3.5 MeV; calculated astrophysical S factor, multipole contributions. 16O(p, p), E=2-6 MeV; calculated σ(θ). Shell model embedded in the continuum.

doi: 10.1016/S0375-9474(99)00851-9
Citations: PlumX Metrics


2000BE21      Acta Phys.Pol. B31, 311 (2000)

K.Bennaceur, F.Nowacki, J.Okolowicz, M.Ploszajczak

Capture Reactions of Astrophysical Interest in the Shell Model Embedded in the Continuum

NUCLEAR REACTIONS 7Li(n, γ), E(cm) < 100 keV; calculated σ. 208Pb(8B, p7Be), E=250 MeV/nucleon; calculated σ(E). Shell model embedded in the continuum, comparisons with data.


2000BE40      Phys.Lett. 488B, 75 (2000)

K.Bennaceur, N.Michel, F.Nowacki, J.Okolowicz, M.Ploszajczak

Shell Model Description of 16O(p, γ)17F and 16O(p, p)16O Reactions

NUCLEAR REACTIONS 16O(p, γ), E(cm) < 3.6 MeV; calculated astrophysical S-factors. 16O(p, p), E=2-6 MeV; calculated phase shifts, σ(θ=166°). Shell model. Comparisons with data.

NUCLEAR STRUCTURE 17F; calculated levels, J, π. Shell model.

doi: 10.1016/S0370-2693(00)00843-1
Citations: PlumX Metrics


2000BE58      Phys.Lett. 496B, 154 (2000)

K.Bennaceur, J.Dobaczewski, M.Ploszajczak

Pairing Anti-Halo Effect

NUCLEAR STRUCTURE 14,15,16,17,18,19,20,21,22C; calculated one-neutron separation energies, single-particle levels, radii; deduced role of pairing.

doi: 10.1016/S0370-2693(00)01292-2
Citations: PlumX Metrics


2000DA07      Phys.Lett. 476B, 213 (2000)

J.M.Daugas, R.Grzywacz, M.Lewitowicz, L.Achouri, J.C.Angelique, D.Baiborodin, K.Bennaceur, R.Bentida, R.Beraud, C.Borcea, C.Bingham, W.N.Catford, A.Emsallem, G.de France, H.Grawe, K.L.Jones, R.C.Lemmon, M.J.Lopez-Jimenez, F.Nowacki, F.de Oliveira Santos, M.Pfutzner, P.H.Regan, K.Rykaczewski, J.E.Sauvestre, M.Sawicka, G.Sletten, M.Stanoiu

The 8+ Isomer in 78Zn and the Doubly Magic Character of 78Ni

NUCLEAR REACTIONS Ni(86Kr, X), E=60.5 MeV/nucleon; measured Eγ, Iγ(t), (fragment)γ-coin. 78Zn deduced levels, J, π, configurations, isomer T1/2. Mass separator. Comparison with neighboring nuclides, shell model predictions.

RADIOACTIVITY 78Zn(IT) [from 86Kr fragmentation]; measured Eγ, Iγ, isomer T1/2.

doi: 10.1016/S0370-2693(00)00177-5
Citations: PlumX Metrics


2000SH09      Nucl.Phys. A669, 65 (2000)

R.Shyam, K.Bennaceur, J.Okolowicz, M.Ploszajczak

Structure Effects on the Coulomb Dissociation of 8B at Relativistic Energies

NUCLEAR REACTIONS 208Pb(8B, p7Be), E=250 MeV/nucleon; calculated σ(E(cm)), multipole contributions; deduced structure effects. Shell model embedded in the continuum. Comparisons with data.

doi: 10.1016/S0375-9474(99)00689-2
Citations: PlumX Metrics


1999BE25      Nucl.Phys. A651, 289 (1999)

K.Bennaceur, F.Nowacki, J.Okolowicz, M.Ploszajczak

Study of the 7Be(p, γ)8B and 7Li(n, γ)8Li Capture Reactions using the Shell Model Embedded in the Continuum

NUCLEAR REACTIONS 7Be(p, γ), 7Li(n, γ), E=low; calculated σ, astrophysical S-factors. Shell model, continuum coupling.

doi: 10.1016/S0375-9474(99)00133-5
Citations: PlumX Metrics


1999BE39      Phys.Rev. C60, 034308 (1999)

K.Bennaceur, J.Dobaczewski, M.Ploszajczak

Continuum Effects for the Mean-Field and Pairing Properties of Weakly Bound Nuclei

doi: 10.1103/PhysRevC.60.034308
Citations: PlumX Metrics


1998BE44      J.Phys.(London) G24, 1631 (1998)

K.Bennaceur, F.Nowacki, J.Okolowicz, M.Ploszajczak

A Study of Nuclei of Astrophysical Interest in the Continuum Shell Model

NUCLEAR STRUCTURE 8B; calculated levels, J, π. Shell model embedded in the continuum.

NUCLEAR REACTIONS 7Be(p, γ), E(cm) < 2.5 MeV; calculated radiative capture σ multipole contributions.

doi: 10.1088/0954-3899/24/8/043
Citations: PlumX Metrics


Back to query form