NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 25, 2024.

Search: Author = J.M.Quesada

Found 43 matches.

Back to query form



2024AM02      Phys.Rev.Lett. 132, 122701 (2024)

S.Amaducci, N.Colonna, L.Cosentino, S.Cristallo, P.Finocchiaro, M.Krticka, C.Massimi, M.Mastromarco, A.Mazzone, E.A.Maugeri, A.Mengoni, I.U.Roederer, O.Straniero, S.Valenta, D.Vescovi, O.Aberle, V.Alcayne, J.Andrzejewski, L.Audouin, V.Babiano-Suarez, M.Bacak, M.Barbagallo, S.Bennett, E.Berthoumieux, J.Billowes, D.Bosnar, A.Brown, M.Busso, M.Caamano, L.Caballero-Ontanaya, F.Calvino, M.Calviani, D.Cano-Ott, A.Casanovas, F.Cerutti, E.Chiaveri, G.Cortes, M.A.Cortes-Giraldo, L.A.Damone, P.J.Davies, M.Diakaki, M.Dietz, C.Domingo-Pardo, R.Dressler, Q.Ducasse, E.Dupont, I.Duran, Z.Eleme, B.Fernandez-Dominguez, A.Ferrari, V.Furman, K.Gobel, R.Garg, A.Gawlik-Ramiega, S.Gilardoni, I.F.Goncalves, E.Gonzalez-Romero, C.Guerrero, F.Gunsing, H.Harada, S.Heinitz, J.Heyse, D.G.Jenkins, A.Junghans, F.Kappeler, Y.Kadi, A.Kimura, I.Knapova, M.Kokkoris, Y.Kopatch, D.Kurtulgil, I.Ladarescu, C.Lederer-Woods, H.Leeb, J.Lerendegui-Marco, S.J.Lonsdale, D.Macina, A.Manna, T.Martinez, A.Masi, P.Mastinu, E.Mendoza, V.Michalopoulou, P.M.Milazzo, F.Mingrone, J.Moreno-Soto, A.Musumarra, A.Negret, R.Nolte, F.Ogallar, A.Oprea, N.Patronis, A.Pavlik, J.Perkowski, C.Petrone, L.Piersanti, E.Pirovano, I.Porras, J.Praena, J.M.Quesada, D.Ramos-Doval, T.Rauscher, R.Reifarth, D.Rochman, C.Rubbia, M.Sabate-Gilarte, A.Saxena, P.Schillebeeckx, D.Schumann, A.Sekhar, A.G.Smith, N.V.Sosnin, P.Sprung, A.Stamatopoulos, G.Tagliente, J.L.Tain, A.Tarifeno-Saldivia, L.Tassan-Got, Th.Thomas, P.Torres-Sanchez, A.Tsinganis, J.Ulrich, S.Urlass, G.Vannini, V.Variale, P.Vaz, A.Ventura, V.Vlachoudis, R.Vlastou, A.Wallner, P.J.Woods, T.Wright, P.Zugec

Measurement of the 140Ce(n, γ) Cross Section at n_TOF and Its Astrophysical Implications for the Chemical Evolution of the Universe

NUCLEAR REACTIONS 140Ce(n, γ), E<200 keV; measured reaction products, En, In, Eγ, Iγ; deduced Maxwellian averaged σ, yields, resonance parameters, impact on galactic abundances. Comparison with ENDF/B-VIII.0, JENDL-5 libraries, R-matrix code SAMMY. The neutron beam time-of-flight facility (n_TOF) at CERN.

doi: 10.1103/PhysRevLett.132.122701
Citations: PlumX Metrics


2024TA03      Eur.Phys.J. A 60, 21 (2024)

G.Tagliente, P.M.Milazzo, C.Paradela, S.Kopecky, D.Vescovi, G.Alaerts, L.A.Damone, J.Heyse, M.Krticka, P.Schillebeeckx, A.Mengoni, R.Wynants, S.Valenta, O.Aberle, V.Alcayne, S.Amaducci, J.Andrzejewski, L.Audouin, V.Babiano-Suarez, M.Bacak, M.Barbagallo, V.Becares, F.Becvar, G.Bellia, E.Berthoumieux, J.Billowes, D.Bosnar, A.S.Brown, M.Busso, M.Caamano, L.Caballero, M.Calviani, F.Calvino, D.Cano-Ott, A.Casanovas, F.Cerutti, Y.H.Chen, E.Chiaveri, N.Colonna, G.P.Cortes, M.A.Cortes-Giraldo, L.Cosentino, S.Cristallo, M.Diakaki, M.Dietz, C.Domingo-Pardo, R.Dressler, E.Dupont, I.Duran, Z.Eleme, B.Fernandez-Domingez, A.Ferrari, I.Ferro-Goncalves, P.Finocchiaro, V.Furman, R.Garg, A.Gawlik, S.Gilardoni, T.Glodariu, K.Gobel, E.Gonzalez-Romero, C.Guerrero, F.Gunsing, S.Heinitz, D.G.Jenkins, E.Jericha, Y.Kadi, F.Kappeler, A.Kimura, N.Kivel, M.Kokkoris, Y.Kopatch, D.Kurtulgil, I.Ladarescu, A.C.Larsen, C.Lederer-Woods, J.Lerendegui-Marco, S.Lo Meo, S.J.Lonsdale, M.Lugaro, D.Macina, A.Manna, T.Martinez, A.Masi, C.Massimi, P.F.Mastinu, M.Mastromarco, F.Matteucci, E.Maugeri, A.Mazzone, E.Mendoza, V.Michalopoulou, F.Mingrone, A.Musumarra, A.Negret, R.Nolte, F.Ogallar, A.Oprea, N.Patronis, A.Pavlik, J.Perkowski, L.Piersanti, I.Porras, J.Praena, J.M.Quesada, D.Radeck, D.Ramos Doval, R.Reifarth, D.Rochman, C.Rubbia, M.Sabate-Gilarte, A.Saxena, D.Schumann, A.G.Smith, M.Spelta, N.Sosnin, A.Stamatopoulos, J.L.Tain, Z.Talip, A.E.Tarifeno-Saldivia, L.Tassan-Got, P.Torres-Sanchez, A.Tsinganis, J.Ulrich, S.Urlass, G.Vannini, V.Variale, P.Vaz, A.Ventura, V.Vlachoudis, R.Vlastou, A.Wallner, P.J.Woods, T.J.Wright, P.Zugec

High-resolution cross section measurements for neutron interactions on 89Y with incident neutron energies up to 95 keV

NUCLEAR REACTIONS 89Y(n, X), (n, γ), E<95 keV; measured reaction products, En, In, TOF; deduced yields, resonance parameters, Maxwellian-averaged σ, capture kernel. Comparison with ENDF/B-VIII.0, JENDL-5, EXFOR libraries, Atlas of Neutron Resonances, KADONIS. The CERN n_TOF facility, GELINA at JRC-Geel.

doi: 10.1140/epja/s10050-024-01243-4
Citations: PlumX Metrics


2024WR01      Eur.Phys.J. A 60, (2024)

T.Wright, A.G.Smith, N.V.Sosnin, S.A.Bennett, P.J.Davies, A.V.Popescu, J.A.Ryan, A.Sekhar, S.Warren, O.Aberle, S.Amaducci, J.Andrzejewski, L.Audouin, M.Bacak, J.Balibrea, M.Barbagallo, F.Becvar, E.Berthoumieux, J.Billowes, D.Bosnar, A.Brown, M.Caamano, F.Calvino, M.Calviani, D.Cano-Ott, R.Cardella, A.Casanovas, F.Cerutti, Y.H.Chen, E.Chiaveri, N.Colonna, G.Cortes, M.A.Cortes-Giraldo, L.Cosentino, L.A.Damone, M.Diakaki, C.Domingo-Pardo, R.Dressler, E.Dupont, I.Duran, B.Fernandez-Dominguez, A.Ferrari, P.Ferreira, P.Finocchiaro, V.Furman, K.Gobel, A.R.Garcia, A.Gawlik-Ramiega, S.Gilardoni, T.Glodariu, I.F.Goncalves, E.Gonzalez-Romero, E.Griesmayer, C.Guerrero, F.Gunsing, H.Harada, S.Heinitz, J.Heyse, D.G.Jenkins, E.Jericha, F.Kappeler, Y.Kadi, A.Kalamara, P.Kavrigin, A.Kimura, N.Kivel, M.Kokkoris, M.Krticka, D.Kurtulgil, E.Leal-Cidoncha, C.Lederer-Woods, H.Leeb, J.Lerendegui-Marco, S.L.Meo, S.J.Lonsdale, D.Macina, A.Manna, J.Marganiec, T.Martinez, A.Masi, C.Massimi, P.Mastinu, M.Mastromarco, E.A.Maugeri, A.Mazzone, E.Mendoza, A.Mengoni, P.M.Milazzo, F.Mingrone, A.Musumarra, A.Negret, R.Nolte, A.Oprea, N.Patronis, A.Pavlik, J.Perkowski, I.Porras, J.Praena, J.M.Quesada, D.Radeck, T.Rauscher, R.Reifarth, C.Rubbia, M.Sabate-Gilarte, A.Saxena, P.Schillebeeckx, D.Schumann, P.Sedyshev, A.Stamatopoulos, G.Tagliente, J.L.Tain, A.Tarifeno-Saldivia, L.Tassan-Got, S.Valenta, G.Vannini, V.Variale, P.Vaz, A.Ventura, V.Vlachoudis, R.Vlastou, A.Wallner, C.Weiss, P.J.Woods, P.Zugec

Measurement of the prompt fission γ-rays from slow neutron-induced fission of 235U with STEFF

NUCLEAR REACTIONS 235U(n, F), E; measured reaction products, Eγ, Iγ; deduced prompt-fission γ-ray energies and multiplicities. Comparison with EXFOR and ENDF/B-VIII.0 libraries. STEFF 2E2ν device installed in the second experimental area (EAR2) of the neutron time-of-flight facility n_TOF at CERN.

doi: 10.1140/epja/s10050-024-01277-8
Citations: PlumX Metrics


2023RO01      Nucl.Data Sheets 187, 579 (2023)

T.Rodriguez-Gonzalez, C.Guerrero, C.M.Backer, J.Bauer, C.Baumer, S.Brons, W.Jentzen, M.C.Jimenez-Ramos, M.A.Millan-Callado, C.Schomers, B.Timmermann, J.M.Quesada, R.Capote

Production of 11C, 13N and 15O in proton-induced nuclear reactions up to 200 MeV

NUCLEAR REACTIONS C, N, O(p, X)11C/13N/15O, E<200 MeV; measured reaction products, Eγ, Iγ; deduced σ. Comparison with available data. The clinical proton treatment centers WPE (Essen) and HIT (Heidelberg), Germany.

doi: 10.1016/j.nds.2023.01.004
Citations: PlumX Metrics


2021BA30      Eur.Phys.J. A 57, 197 (2021)

V.Babiano-Suarez, J.Lerendegui-Marco, J.Balibrea-Correa, L.Caballero, D.Calvo, I.Ladarescu, D.Real, C.Domingo-Pardo, F.Calvino, A.Casanovas, A.Tarifeno-Saldivia, V.Alcayne, C.Guerrero, M.A.Millan-Callado, T.Rodriguez-Gonzalez, M.Barbagallo, O.Aberle, S.Amaducci, J.Andrzejewski, L.Audouin, M.Bacak, S.Bennett, E.Berthoumieux, J.Billowes, D.Bosnar, A.Brown, M.Busso, M.Caamano, M.Calviani, D.Cano-Ott, F.Cerutti, E.Chiaveri, N.Colonna, G.Cortes, M.A.Cortes-Giraldo, L.Cosentino, S.Cristallo, L.A.Damone, P.J.Davies, M.Diakaki, M.Dietz, R.Dressler, Q.Ducasse, E.Dupont, I.Duran, Z.Eleme, B.Fernandez-Dominguez, A.Ferrari, P.Finocchiaro, V.Furman, K.Gobel, R.Garg, A.Gawlik, S.Gilardoni, I.F.Goncalves, E.Gonzalez-Romero, F.Gunsing, H.Harada, S.Heinitz, J.Heyse, D.G.Jenkins, A.Junghans, F.Kappeler, Y.Kadi, A.Kimura, I.Knapova, M.Kokkoris, Y.Kopatch, M.Krticka, D.Kurtulgil, C.Lederer-Woods, H.Leeb, S.J.Lonsdale, D.Macina, A.Manna, T.Martinez, A.Masi, C.Massimi, P.Mastinu, M.Mastromarco, E.A.Maugeri, A.Mazzone, E.Mendoza, A.Mengoni, V.Michalopoulou, P.M.Milazzo, F.Mingrone, J.Moreno-Soto, A.Musumarra, A.Negret, F.Ogallar, A.Oprea, N.Patronis, A.Pavlik, J.Perkowski, L.Persanti, C.Petrone, E.Pirovano, I.Porras, J.Praena, J.M.Quesada, D.Ramos Doval, T.Rauscher, R.Reifarth, D.Rochman, C.Rubbia, M.Sabate-Gilarte, A.Saxena, P.Schillebeeckx, D.Schumann, A.Sekhar, A.G.Smith, N.V.Sosnin, P.Sprung, A.Stamatopoulos, G.Tagliente, J.L.Tain, L.Tassan-Got, Th.Thomas, P.Torres-Sanchez, A.Tsinganis, J.Ulrich, S.Urlass, S.Valenta, G.Vannini, V.Variale, P.Vaz, A.Ventura, D.Vescovi, V.Vlachoudis, R.Vlastou, A.Wallner, P.J.Woods, T.Wright, P.Zugec

Imaging neutron capture cross sections: i-TED proof-of-concept and future prospects based on Machine-Learning techniques

NUCLEAR REACTIONS 197Au, 56Fe(n, γ), E<200 KeV; measured reaction products, Eγ, Iγ, En, In, TOF; deduced neutron spectra, signal-to-background ratio in (n, γ) σ measurements using Machine-Learning techniques.

doi: 10.1140/epja/s10050-021-00507-7
Citations: PlumX Metrics


2021CA17      Eur.Phys.J. A 57, 210 (2021)

R.Capote, J.M.Quesada

An impact of Jacques Raynal on nuclear data evaluation

NUCLEAR REACTIONS 27Al(n, X), E=10-250 MeV; 238U(p, n), E=26 MeV; 239,240,242Pu, 233,235,238U, 232Th(n, X), E<20 MeV; 57Fe(p, p), E not given; 238U(n, n'), E<20 MeV; analyzed available data; calculated σ, σ(θ), J, π using ECIS.

doi: 10.1140/epja/s10050-021-00486-9
Citations: PlumX Metrics


2021ZH36      J.Phys.(London) G48, 075101 (2021)

X.Zhao, W.Sun, E.Sh.Soukhovitskii, D.S.Martyanov, J.M.Quesada, R.Capote

Nucleon scattering analysis with a lane-consistent dispersive optical potential for Hf, W and Ta isotopes

NUCLEAR REACTIONS 182,184,186W, 178,180Hf, 181Ta(n, X), (n, n), (n, n'), E<200 MeV; calculated σ, σ(θ); deduced optical model parameters. Comparison with experimental data.

doi: 10.1088/1361-6471/abe280
Citations: PlumX Metrics


2020MA14      Phys.Lett. B 804, 135405 (2020)

A.Mazzone, S.Cristallo, O.Aberle, G.Alaerts, V.Alcayne, S.Amaducci, J.Andrzejewski, L.Audouin, V.Babiano-Suarez, M.Bacak, M.Barbagallo, V.Becares, F.Becvar, G.Bellia, E.Berthoumieux, J.Billowes, D.Bosnar, A.S.Brown, M.Busso, M.Caamano, L.Caballero, M.Calviani, F.Calvino, D.Cano-Ott, A.Casanovas, D.M.Castelluccio, F.Cerutti, Y.H.Chen, E.Chiaveri, G.Clai, N.Colonna, G.P.Cortes, M.A.Cortes-Giraldo, L.Cosentino, L.A.Damone, M.Diakaki, M.Dietz, C.Domingo-Pardo, R.Dressler, E.Dupont, I.Duran, Z.Eleme, B.Fernandez-Domingez, A.Ferrari, I.Ferro-Goncalves, P.Finocchiaro, V.Furman, R.Garg, A.Gawlik, S.Gilardoni, T.Glodariu, K.Gobel, E.Gonzalez-Romero, C.Guerrero, F.Gunsing, S.Heinitz, J.Heyse, D.G.Jenkins, E.Jericha, Y.Kadi, F.Kappeler, A.Kimura, N.Kivel, M.Kokkoris, Y.Kopatch, S.Kopecky, M.Krticka, D.Kurtulgil, I.Ladarescu, C.Lederer-Woods, J.Lerendegui-Marco, S.Lo Meo, S.-J.Lonsdale, D.Macina, A.Manna, T.Martinez, A.Masi, C.Massimi, P.F.Mastinu, M.Mastromarco, F.Matteucci, E.Maugeri, E.Mendoza, A.Mengoni, V.Michalopoulou, P.M.Milazzo, F.Mingrone, R.Mucciola, A.Musumarra, A.Negret, R.Nolte, F.Ogallar, A.Oprea, N.Patronis, A.Pavlik, J.Perkowski, L.Piersanti, I.Porras, J.Praena, J.M.Quesada, D.Radeck, D.Ramos Doval, R.Reifarth, D.Rochman, C.Rubbia, M.Sabate-Gilarte, A.Saxena, P.Schillebeeckx, D.Schumann, A.G.Smith, N.Sosnin, A.Stamatopoulos, G.Tagliente, J.L.Tain, Z.Talip, A.E.Tarifeno-Saldivia, L.Tassan-Got, P.Torres-Sanchez, A.Tsinganis, J.Ulrich, S.Urlass, S.Valenta, G.Vannini, V.Variale, P.Vaz, A.Ventura, D.Vescovi, V.Vlachoudis, R.Vlastou, A.Wallner, P.J.Woods, R.Wynants, T.J.Wright, P.Zugec

Measurement of the 154Gd(n, γ) cross section and its astrophysical implications

NUCLEAR REACTIONS 154Gd(n, γ), E=0.001-300 keV; measured reaction products, En, In, Eγ, Iγ; deduced capture yields, transmissions, capture σ. Comparison with ENDF/B-VIII library and KADoNiS.

doi: 10.1016/j.physletb.2020.135405
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset23459.


2020ZH21      Phys.Rev. C 101, 064618 (2020)

X.Zhao, W.Sun, R.Capote, E.Sh.Soukhovitskih, D.S.Martyanov, J.M.Quesada

Dispersive optical model description of nucleon scattering on Pb and Bi isotopes

NUCLEAR REACTIONS 208Pb(n, X), E=6-16 MeV; 206,207,208Pb, 209Bi(n, X), E=0.3-200 MeV; calculated total reactions σ(E). 206Pb(n, n), E=2.53, 4.6, 8, 11.01, 13.7, 21.6 MeV; 207Pb(n, n), E=1.47, 2.02, 2.53, 3.04, 3.56, 13.7 MeV; 209Bi(n, n), E=3.99, 5.5, 7.5, 11, 20, 24 MeV; 209Bi(p, p), E=16, 38.7, 55, 57, 65, 153 MeV; calculated elastic scattering differential σ(E, θ). 208Pb(polarized n, n), E=5.969, 6.967, 7.962, 8.958, 9.95, 13.9 MeV; 208Pb(p, p), E=16, 65, 79.8, 98, 160, 182 MeV; 209Bi(n, n), E=3, 3.5, 4, 4.5, 6, 9 MeV; 209Bi(p, p), E=10.76, 12.96, 16, 65, 78, 153 MeV; calculated analyzing power Ay(E, θ). 208Pb(p, n), E=25.8, 35, 45 MeV; 206Pb(p, n), E=25.8 MeV; 209Bi(p, n), E=27 MeV; calculated quasielastic differential σ(E, θ). Modified dispersive optical model potential (DOMP). Comparison with experimental data, and with other theoretical calculations. 208Pb; calculated neutron single-particle energies, spectroscopic factors of valence-neutron-particle states and valence-neutron-hole states. Comparison with experimental data for energies, and with other theoretical calculations.

doi: 10.1103/PhysRevC.101.064618
Citations: PlumX Metrics


2019GU06      Nucl.Instrum.Methods Phys.Res. A925, 87 (2019)

C.Guerrero, J.Lerendegui-Marco, K.Eberhardt, Ch.E.Dullmann, A.Junghans, B.Lommel, C.Mokry, J.M.Quesada, J.Runke, P.Thorle-Pospiech, for the n_TOF Collaboration

On the use of stacks of fission-like targets for neutron capture experiments

doi: 10.1016/j.nima.2019.01.063
Citations: PlumX Metrics


2019GU28      Phys.Lett. B 797, 134809 (2019); Erratum Phys.Lett. B 802, 135268 (2020)

C.Guerrero, M.Tessler, M.Paul, J.Lerendegui-Marco, S.Heinitz, E.A.Maugeri, C.Domingo-Pardo, R.Dressler, S.Halfon, N.Kivel, U.Koster, T.Palchan-Hazan, J.M.Quesada, D.Schumann, L.Weissman

The s-process in the Nd-Pm-Sm region: Neutron activation of 147Pm

NUCLEAR REACTIONS 147Pm, 197Au(n, γ), E ∼ 40 keV; measured reaction products, Eγ, Iγ; deduced Maxwellian averaged σ. Comparison with available data.

doi: 10.1016/j.physletb.2019.134809
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset31815.


2019LE04      Phys.Lett. B 790, 458 (2019); Erratum Phys.Lett. B 840, 137835 (2023)

C.Lederer-Woods, U.Battino, P.Ferreira, A.Gawlik, C.Guerrero, F.Gunsing, S.Heinitz, J.Lerendegui-Marco, A.Mengoni, R.Reifarth, A.Tattersall, S.Valenta, C.Weiss, O.Aberle, J.Andrzejewski, L.Audouin, V.Becares, M.Bacak, J.Balibrea, M.Barbagallo, S.Barros, F.Becvar, C.Beinrucker, F.Belloni, E.Berthoumieux, J.Billowes, D.Bosnar, M.Brugger, M.Caamano, F.Calvino, M.Calviani, D.Cano-Ott, F.Cerutti, E.Chiaveri, N.Colonna, G.Cortes, M.A.Cortes-Giraldo, L.Cosentino, L.A.Damone, K.Deo, M.Diakaki, M.Dietz, C.Domingo-Pardo, R.Dressler, E.Dupont, I.Duran, B.Fernandez-Dominguez, A.Ferrari, P.Finocchiaro, R.J.W.Frost, V.Furman, K.Gobel, A.R.Garcia, I.Gheorghe, T.Glodariu, I.F.Goncalves, E.Gonzalez-Romero, A.Goverdovski, E.Griesmayer, H.Harada, T.Heftrich, A.Hernandez-Prieto, J.Heyse, D.G.Jenkins, E.Jericha, F.Kappeler, Y.Kadi, T.Katabuchi, P.Kavrigin, V.Ketlerov, V.Khryachkov, A.Kimura, N.Kivel, I.Knapova, M.Kokkoris, M.Krticka, E.Leal-Cidoncha, H.Leeb, M.Licata, S.Lo Meo, R.Losito, D.Macina, J.Marganiec, T.Martinez, C.Massimi, P.Mastinu, M.Mastromarco, F.Matteucci, E.Mendoza, P.M.Milazzo, F.Mingrone, M.Mirea, S.Montesano, A.Musumarra, R.Nolte, F.R.Palomo-Pinto, C.Paradela, N.Patronis, A.Pavlik, J.Perkowski, J.I.Porras, J.Praena, J.M.Quesada, T.Rauscher, A.Riego-Perez, M.Robles, C.Rubbia, J.A.Ryan, M.Sabate-Gilarte, A.Saxena, P.Schillebeeckx, S.Schmidt, D.Schumann, P.Sedyshev, A.G.Smith, A.Stamatopoulos, S.V.Suryanarayana, G.Tagliente, J.L.Tain, A.Tarifeno-Saldivia, L.Tassan-Got, A.Tsinganis, G.Vannini, V.Variale, P.Vaz, A.Ventura, V.Vlachoudis, R.Vlastou, A.Wallner, S.Warren, M.Weigand, T.Wright, P.Zugec

Measurement of 73Ge(n, γ) cross sections and implications for stellar nucleosynthesis

NUCLEAR REACTIONS 73Ge(n, γ), E<300 keV; measured reaction products, En, In; deduced σ, resonance energies and capture kernels, astrophysical impact, Maxwellian-averaged σ for ground and excited states capture. The neutron time-of-flight facility n_TOF at CERN.

doi: 10.1016/j.physletb.2019.01.045
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset23451.


2019LE09      Eur.Phys.J. A 55, 63 (2019)

J.Lerendegui-Marco, C.Guerrero, T.Belgya, B.Maroti, K.Eberhardt, Ch.E.Dullmann, A.R.Junghans, C.Mokry, J.M.Quesada, J.Runke, P.Thorle-Pospiech

Improved 242Pu(n, γ) thermal cross section combining activation and prompt gamma analysis

NUCLEAR REACTIONS 242Pu(n, γ), E=thermal, keV; measured prompt Eγ, Iγ using BGO guarded coaxial n-type HPGe, digitized by PC-driven Multi Channel Analyser (MCA), activation Eγ, Iγ using DOME, low background chamber with HPGe inside. 197Au(n, γ), E not given; measured activation Eγ, Iγ using DOME, start and stop time after irradiation; deduced absolute intensities of 243Pu and 198Au decay lines, T1/2; compared with its evaluated value.

doi: 10.1140/epja/i2019-12730-6
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset31801.


2019ZH56      J.Phys.(London) G46, 055103 (2019)

X.Zhao, W.Sun, E.S.Soukhovitskii, D.S.Martyanov, J.M.Quesada, R.Capote

Analysis of neutron bound states of 208Pb by a dispersive optical model potential

NUCLEAR REACTIONS 208Pb(n, X), (n, n), E<100 MeV; analyzed available data. 208Pb; calculated energy levels, J, π using Bear-Hodgon(BH) and Woods-Saxon potentials, rms radii of valence neutron particle and hole states, σ, σ(θ) using the real dispersive optical model potential for nucleon scattering; deduced optical model parameters.

doi: 10.1088/1361-6471/ab0010
Citations: PlumX Metrics


2017GU12      Eur.Phys.J. A 53, 87 (2017)

C.Guerrero, C.Domingo-Pardo, F.Kappeler, J.Lerendegui-Marco, F.R.Palomo, J.M.Quesada, R.Reifarth

Prospects for direct neutron capture measurements on s-process branching point isotopes

doi: 10.1140/epja/i2017-12261-2
Citations: PlumX Metrics


2017MA15      Phys.Lett. B 768, 1 (2017)

C.Massimi, S.Altstadt, J.Andrzejewski, L.Audouin, M.Barbagallo, V.Becares, F.Becvar, F.Belloni, E.Berthoumieux, J.Billowes, S.Bisterzo, D.Bosnar, M.Brugger, M.Calviani, F.Calvino, D.Cano-Ott, C.Carrapico, D.M.Castelluccio, F.Cerutti, E.Chiaveri, L.Cosentino, M.Chin, G.Clai, N.Colonna, G.Cortes, M.A.Cortes-Giraldo, S.Cristallo, M.Diakaki, C.Domingo-Pardo, I.Duran, R.Dressler, C.Eleftheriadis, A.Ferrari, P.Finocchiaro, K.Fraval, S.Ganesan, A.R.Garcia, G.Giubrone, I.F.Goncalves, E.Gonzalez-Romero, E.Griesmayer, C.Guerrero, F.Gunsing, A.Hernandez-Prieto, D.G.Jenkins, E.Jericha, Y.Kadi, F.Kappeler, D.Karadimos, N.Kivel, P.Koehler, M.Kokkoris, S.Kopecky, M.Krticka, J.Kroll, C.Lampoudis, C.Langer, E.Leal-Cidoncha, C.Lederer, H.Leeb, L.S.Leong, S.Lo Meo, R.Losito, A.Mallick, A.Manousos, J.Marganiec, T.Martinez, P.F.Mastinu, M.Mastromarco, E.Mendoza, A.Mengoni, P.M.Milazzo, F.Mingrone, M.Mirea, W.Mondelaers, A.Musumarra, C.Paradela, A.Pavlik, J.Perkowski, M.Pignatari, L.Piersanti, A.Plompen, J.Praena, J.M.Quesada, T.Rauscher, R.Reifarth, A.Riego, M.S.Robles, C.Rubbia, M.Sabate-Gilarte, R.Sarmento, A.Saxena, P.Schillebeeckx, S.Schmidt, D.Schumann, G.Tagliente, J.L.Tain, D.Tarrio, L.Tassan-Got, A.Tsinganis, S.Valenta, G.Vannini, I.Van Rijs, V.Variale, P.Vaz, A.Ventura, M.J.Vermeulen, V.Vlachoudis, R.Vlastou, A.Wallner, T.Ware, M.Weigand, C.Weiss, R.Wynants, T.Wright, P.Zugec

Neutron spectroscopy of 26Mg states: Constraining the stellar neutron source 22Ne(α, n)25Mg

NUCLEAR REACTIONS 25Mg(n, γ), (n, X), E<300 KeV; measured reaction products, En, In, Eγ, Iγ; deduced yields, σ, resonance parameters and corresponding excitation energies of the 26Mg compound nucleus, Maxwellian-averaged cross sections, reaction rates for inverse reactions. R-matrix analysis of the experimental data.

doi: 10.1016/j.physletb.2017.02.025
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset23327. Data from this article have been entered in the XUNDL database. For more information, click here.


2017MA52      Chin.Phys.C 41, 094105 (2017)

D.S.Martyanov, E.Sh.Soukhovitskii, R.Capote, J.M.Quesada, S.Chiba

Predicting the optical observables for nucleon scattering on even-even actinides

NUCLEAR REACTIONS 228,230,232Th, 232,234,236,238U, 238,240,242,244Pu, 246,248Cm, 250Cf(n, X), E<200 MeV; analyzed available data; deduced extended Lane consistent dispersive coupled-channel optical model for nucleon scattering.

doi: 10.1088/1674-1137/41/9/094105
Citations: PlumX Metrics


2016LE07      Eur.Phys.J. A 52, 100 (2016)

J.Lerendegui-Marco, S.Lo Meo, C.Guerrero, M.A.Cortes-Giraldo, C.Massimi, J.M.Quesada, M.Barbagallo, N.Colonna, D.Mancusi, F.Mingrone, M.Sabate-Gilarte, G.Vannini, V.Vlachoudis, for the n_TOF Collaboration

Geant4 simulation of the n_TOF-EAR2 neutron beam: Characteristics and prospects

doi: 10.1140/epja/i2016-16100-8
Citations: PlumX Metrics


2016SO16      Phys.Rev. C 94, 064605 (2016); Erratum Phys.Rev. C 102, 059901 (2020)

E.Sh.Soukhovitskii, R.Capote, J.M.Quesada, S.Chiba, D.S.Martyanov

Nucleon scattering on actinides using a dispersive optical model with extended couplings

NUCLEAR REACTIONS 233,235,238U, 232Th(n, X), E=0.001-200 MeV; calculated total σ(E) using dispersive potential with multiple-band couplings, compound-nucleus formation cross section using the rigid-rotor RIPL 2408 potential and the potential derived in the present work. Dispersive isospin-dependent coupled-channels optical model analysis, and extended Tamura's coupling formalism for low-lying bands of vibrational nature in even-even and single-particle nature in odd-A actinides. Comparison with experimental data and with RIPL 2408 potential. 232Th, 233,235,238U, 239Pu; calculated average resonance parameters using derived optical model potential, and compared with experimental data and with RIPL 2408 potential and evaluated data, ground-state deformation parameters β2, β4 and β6, and interband effective coupling parameters.

doi: 10.1103/PhysRevC.94.064605
Citations: PlumX Metrics


2015LO12      Eur.Phys.J. A 51, 160 (2015)

S.Lo Meo, M.A.Cortes-Giraldo, C.Massimi, J.Lerendegui-Marco, M.Barbagallo, N.Colonna, C.Guerrero, D.Mancusi, F.Mingrone, J.M.Quesada, M.Sabate-Gilarte, G.Vannini, V.Vlachoudis, for the n_TOF Collaboration

GEANT4 simulations of the n_TOF spallation source and their benchmarking

doi: 10.1140/epja/i2015-15160-6
Citations: PlumX Metrics


2014PO06      Nucl.Data Sheets 120, 246 (2014)

I.Porras, M.Sabate-Gilarte, J.Praena, J.M.Quesada, P.L.Esquinas

33S for Neutron Capture Therapy: Nuclear Data for Monte Carlo Calculations

NUCLEAR REACTIONS 33S(n, α), E not given; analyzed available data.; deduced data discrepancies.

doi: 10.1016/j.nds.2014.07.058
Citations: PlumX Metrics


2014PR07      Nucl.Data Sheets 120, 205 (2014)

J.Praena, P.F.Mastinu, M.Pignatari, J.M.Quesada, R.Capote, Y.Morilla

Measurement of the MACS of 159Tb(n, γ) at kT=30 keV by Activation

NUCLEAR REACTIONS 159Tb(n, γ), E=30 keV; measured reaction products, Eγ, Iγ.; deduced Maxwellian-averaged σ. Comparison with available data, ENDF/B-VII.1 and KADoNiS libraries.

doi: 10.1016/j.nds.2014.07.047
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset23249.


2014QU02      Nucl.Data Sheets 118, 270 (2014)

J.M.Quesada, R.Capote, E.Sh.Soukhovitskii, S.Chiba

Rotational-vibrational Description of Nucleon Scattering on Actinide Nuclei Using a Dispersive Coupled-channel Optical Model

NUCLEAR REACTIONS 232Th, 238U(p, x), E=threshold-100 MeV; calculated total σ using DCCOMP (dispersive optical model with different types of rotational bands). Compared with data and calculations with RIPL potentials.

doi: 10.1016/j.nds.2014.04.055
Citations: PlumX Metrics


2014SU13      Nucl.Data Sheets 118, 191 (2014)

W.Sun, R.Li, E.S.Soukhovitskii, J.M.Quesada, R.Capote

A Fully Lane-consistent Dispersive Optical Model Potential for Even Fe Isotopes Based on a Soft-rotator Model

NUCLEAR REACTIONS 54,56Fe(n, n), E=0-20 MeV; calculated σ using DCCOM (Lane-consistent dispersive CC optical model); deduced optical model parameters. Cross sections compared to data. 54Fe(n, n'), E=9.9-16.9 MeV;54Fe(p, p'), E=10.0=40.0 MeV;56Fe(n, n'), E=9.993 MeV;56Fe(p, p'), E=17.2-65.0 MeV; calculated analyzing power to discrete states. Compared to data.

NUCLEAR STRUCTURE 54,58Fe; calculated collective levels, J, π using soft rotator model. Compared with data.

doi: 10.1016/j.nds.2014.04.034
Citations: PlumX Metrics


2013LI22      Phys.Rev. C 87, 054611 (2013)

R.Li, W.Sun, E.Sh.Soukhovitskih, J.M.Quesada, R.Capote

Dispersive coupled-channels optical-model potential with soft-rotator couplings for Cr, Fe, and Ni isotopes

NUCLEAR REACTIONS 52Cr, 54,56,58Fe, 59,60,62Ni(n, X), E=0.1-200 MeV; calculated total cross sections and compared with measurements. 54Fe(n, n), E=7.0, 7.96, 8.5, 9.94, 11.0, 11.93, 13.92, 14.7, 16.93, 20.0, 22.0, 24.0, 26.0 MeV; 54Fe(n, n'), E=13.92, 16.93, 20.0, 22.0, 24.0, 26.0 MeV; 56Fe(n, n), E=7.96, 9.94, 11.0, 11.93, 14.0, 14.7, 20.0, 26.0, 55.0, 65.0, 96.0 MeV; 56Fe(n, n'), E=7.96, 9.94, 11.0, 11.93, 13.92, 15.20, 21.1, 26.0 MeV; 54Fe(p, p), E=19.6, 20.4, 24.6, 28.8, 30.4, 35.2, 38.8, 39.7, 40.0, 61.5, 65.0 MeV; 54Fe(p, p'), E=17.9, 18.6, 30.4, 39.7, 40.0, 61.5, 65.0 MeV; 56Fe(p, p), E=7.74, 10.93, 17.2, 19.1, 20.4, 24.6, 30.3, 35.2, 39.8, 61.5, 65.0, 156.0 MeV; 56Fe(p, p'), E=17.2, 19.1, 61.5, 65.0 MeV; 58Fe(p, p), E=6.0, 10.93, 11.66, 22.2, 35.2 MeV; 58Fe(p, p'), E=10.93, 11.66, 17.5, 49.35 MeV; calculated differential σ(θ) and compared with experimental data. 52Cr, 54,56,58Fe, 59,60,62Ni(p, p'), E=1-200 MeV; calculated inelastic cross sections and compared with measurements. 52Cr(p, n), E=17.3, 18.0, 120.0 MeV; 54Fe(p, n), E=23.0, 35.0, 135.0 MeV; 56Fe(p, n), E=17.0, 23.0, 35.2 MeV; 58Fe(p, n), E=23.0, 120.0 MeV; 58Ni(p, n), E=23.0, 32.0, 35.0 MeV; 62Ni(p, n), E=16.0, 22.8, 35.0 MeV; calculated σ(θ) for transition exciting IAS and EAS. 54Fe(polarized p, p), E=10.0, 14.0, 18.6, 30.4, 40.0, 65.0 MeV; 56Fe(polarized p, p), E=5.77, 14.0, 18.6, 24.6, 30.3, 65.0, 179.0 MeV; 58Fe(polarized p, p), E=5.85, 6.51, 14.0, 14.5 MeV; 58Ni(polarized p, p), E=20.9, 30.3, 40.0, 65.0, 172.0 MeV; 54Fe(polarized n, n), (polarized n, n'), E=9.941, 13.9, 13.94, 16.93 MeV; 56Fe(polarized n, n), (polarized n, n'), E=9.993 MeV; 57Fe(polarized p, p), E=5.88, 6.15, 6.51, 14.0 MeV; 58Fe(polarized n, n), E=9.92, 13.91, 16.93 MeV; 54Fe(polarized p, p'), E=10.0, 18.6, 30.4, 40.0 MeV; 56Fe(polarized p, p'), E=17.2, 18.6, 20.4, 24.6, 65.0, 179.0 MeV; 58Ni(polarized p, p'), E=20.4, 24.6, 40.0, 57.5, 60.2, 178.0 MeV; calculated analyzing powers and compared with experimental data, and with TALYS calculations, including DWBA. Derived approximate Lane-consistent dispersive coupled-channels optical potential.

NUCLEAR STRUCTURE 54,56,58Fe; analyzed levels, J, π; assigned soft-rotor model (SRM) quantum numbers and Hamiltonian parameters. Coupled-channels optical model analysis using matrix elements derived by the soft-rotator model.

doi: 10.1103/PhysRevC.87.054611
Citations: PlumX Metrics


2013PR06      Nucl.Instrum.Methods Phys.Res. A727, 1 (2013)

J.Praena, P.F.Mastinu, M.Pignatari, J.M.Quesada, J.Garcia-Lopez, M.Lozano, N.Dzysiuk, R.Capote, G.Martin-Hernandez

Measurement of the MACS of 181Ta(n, γ) at kT=30 KeV as a test of a method for Maxwellian neutron spectra generation

NUCLEAR REACTIONS 181Ta, 197Au(n, γ), E<120 keV; measured reaction products, Eγ, Iγ; deduced Maxwellian-averaged σ. Comparison with experimental results, ENDF libraries.

doi: 10.1016/j.nima.2013.05.151
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset23200.


2011LE31      J.Korean Phys.Soc. 59, 1019s (2011)

J.-Y.Lee, E.Sh.Soukhovitskii, Y.Kim, R.Capote, S.Chiba, J.M.Quesada

Self-Consistent Analyses of Nuclear Level Structures, and Nucleon Interaction Data of Even-even Sn Isotopes

NUCLEAR REACTIONS 120Sn(n, n), E=0.1-200 MeV;120Sn(n, p), E=10-200 Mev; calculated σ; 120Sn(n, n), (n, n'), E=0.94, 11.0, 13.9, 16.1 MeV;120Sn(p, p), E=9.7, 16.0, 20.4, 24.6, 30.3, 40.0, 61.5, 100.4, 134.7, 156.0 MeV;120Sn(p, p'), E=20.4, 24.6, 61.5 MeV; calculated σ(θ); 116Sn(p, n), E=22.8 MeV;118Sn(p, n), E=22.8, 25 MeV;120Sn(p, n), E=22.8, 25, 35, 45 MeV; calculated σ(θ). Deduced optical potential parameters. Soft-rotator model, coupled-channels optical model with dispersive Lane-consistent potential. Comparison with data.

NUCLEAR STRUCTURE 120Sn; calculated levels, J, π, rotational band using soft-rotator model. Comparison with data.

doi: 10.3938/jkps.59.1019
Citations: PlumX Metrics


2008CA32      J.Nucl.Sci.Technol.(Tokyo) 45, 333 (2008)

R.Capote, S.Chiba, E.Sh.Soukhovitskii, J.M.Quesada, E.Bauge

A Global Dispersive Coupled-Channel Optical Model Potential for Actinides

doi: 10.1080/18811248.2008.9711442
Citations: PlumX Metrics


2007OK01      Phys.Rev. C 75, 034616 (2007)

N.T.Okumusoglu, F.Korkmaz Gorur, J.Birchall, E.Sh.Soukhovitskii, R.Capote, J.M.Quesada, S.Chiba

Angular distributions of protons scattered by 40Ar nuclei with excitation of the 2+(1.46 MeV) and 3-(3.68 MeV) collective levels for incident energies of 25.1, 32.5, and 40.7 MeV

NUCLEAR REACTIONS 40Ar(p, p), (p, p'), E=25.1, 32.5, 40.7 MeV; measured σ(E, θ), Ay(θ). 40Ar deduced deformation parameters. Isospin dependent soft-rotator coupled-channels optical model analysis.

doi: 10.1103/PhysRevC.75.034616
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetC1579.


2007QU04      Phys.Rev. C 76, 057602 (2007)

J.M.Quesada, R.Capote, E.Sh.Soukhovitskii, S.Chiba

Approximate Lane consistency of the dispersive coupled-channels potential for actinides

NUCLEAR REACTIONS 238U, 232Th(p, n), E=26 MeV; calculated angular distributions, compared with experimental data.

doi: 10.1103/PhysRevC.76.057602
Citations: PlumX Metrics


2005CA27      Phys.Rev. C 71, 064320 (2005)

R.Capote, A.Ventura, F.Cannata, J.M.Quesada

Level densities of transitional Sm nuclei

NUCLEAR STRUCTURE 148,149,150,152Sm; calculated level densities, resonance spacing. Interacting boson model, comparison with data.

doi: 10.1103/PhysRevC.71.064320
Citations: PlumX Metrics


2005CA56      Phys.Rev. C 72, 064610 (2005)

R.Capote, E.Sh.Soukhovitskii, J.M.Quesada, S.Chiba

Is a global coupled-channel dispersive optical model potential for actinides feasible?

NUCLEAR REACTIONS 232Th, 238U(n, X), (p, X), E=0.001-200 MeV; analyzed data; deduced parameters. Dispersive coupled-channels optical model.

doi: 10.1103/PhysRevC.72.064610
Citations: PlumX Metrics


2005SU16      Phys.Rev. C 72, 024604 (2005)

E.Sh.Sukhovitskii, R.Capote, J.M.Quesada, S.Chiba

Dispersive coupled-channel analysis of nucleon scattering from 232Th up to 200 MeV

NUCLEAR REACTIONS 232Th(n, X), (p, X), E=0.001-200 MeV; analyzed σ, σ(θ); deduced optical model parameters. Dispersive isospin-dependent relativistic coupled-channels optical model analysis.

doi: 10.1103/PhysRevC.72.024604
Citations: PlumX Metrics


2003QU01      Comput.Phys.Commun. 153, 97 (2003)

J.M.Quesada, R.Capote, A.Molina, M.Lozano

Dispersion relations in the nuclear optical model

doi: 10.1016/S0010-4655(03)00157-7
Citations: PlumX Metrics


2003QU02      Phys.Rev. C 67, 067601 (2003)

J.M.Quesada, R.Capote, A.Molina, M.Lozano, J.Raynal

Analytical expressions for the dispersive contributions to the nucleon-nucleus optical potential

doi: 10.1103/PhysRevC.67.067601
Citations: PlumX Metrics


2002LH01      Phys.Rev. C65, 024318 (2002)

G.Lhersonneau, B.Pfeiffer, R.Capote, J.M.Quesada, H.Gabelmann, K.-L.Kratz, and the ISOLDE Collaboration

A K = 3 Two-Quasiparticle Isomer in 98Sr

RADIOACTIVITY 98Rb, 100Y(β-) [from 238U(p, X)]; measured Eγ, Iγ, γγ-coin; deduced log ft. 100Zr(IT) [from 238U(p, X)]; measured Eγ, Iγ, γγ-coin. 98Sr deduced levels, J, π, configurations, isomeric state. 100Zr deduced levels, J, π. Mass separated source. Quantum Monte Carlo pairing calculation.

doi: 10.1103/PhysRevC.65.024318
Citations: PlumX Metrics


2002MO09      Phys.Rev. C65, 034616 (2002)

A.Molina, R.Capote, J.M.Quesada, M.Lozano

Dispersive Spherical Optical Model of Neutron Scattering from 27Al up to 250 MeV

NUCLEAR REACTIONS 27Al(n, n), E=0.1-250 MeV; calculated σ, σ(θ), Ay(θ); deduced nonlocality effects. Dispersive spherical optical model, relativistic kinematics, comparison with data.

doi: 10.1103/PhysRevC.65.034616
Citations: PlumX Metrics


2001CA41      J.Phys.(London) G27, B15 (2001)

R.Capote, A.Molina, J.M.Quesada

A General Numerical Solution of Dispersion Relations for the Nuclear Optical Model

doi: 10.1088/0954-3899/27/8/402
Citations: PlumX Metrics


1985AN16      Nucl.Phys. A443, 380 (1985)

M.V.Andres, J.M.Quesada, M.Lozano, G.Madurga

A Level-Density-Dependent Imaginary Potential for Heavy Ions

NUCLEAR REACTIONS 28Si, 40Ca(9Be, 9Be), E=14-26 MeV; 24Mg(12C, 12C), E=21, 24 MeV; 24Mg(16O, 16O), E=28-33 MeV; 40Ca(20Ne, 20Ne), E=44.1-70.4 MeV; 40Ca(32S, 32S), E=100-151.5 MeV; calculated real folding potential renormalization constants, σ(θ). Level density dependent heavy ion potential component.

NUCLEAR STRUCTURE 9Be, 12C, 16O, 20Ne, 24Mg, 28Si, 32S, 40Ca; calculated neutron, proton, charge density distributions. Woods-Saxon potential.

doi: 10.1016/0375-9474(85)90269-6
Citations: PlumX Metrics


1985BR26      Yad.Fiz. 42, 1114 (1985)

V.N.Bragin, J.M.Quesada

Anomalous Scattering of 16O Ions on 28,29,30Si Nuclei and the Shell Structure of Silicon Isotopes

NUCLEAR REACTIONS 28,29,30Si(16O, 16O), E=54.7, 60 MeV; analyzed σ(θ); deduced optical model parameters. 28,29,30Si deduced shell structure. Microscopic approach.


1985QU02      Nucl.Phys. A442, 381 (1985)

J.M.Quesada, G.Pollarolo, R.A.Broglia, A.Winther

A Simple Parametrization of One-Particle Transfer Form Factors for Heavy-Ion Reactions

NUCLEAR REACTIONS 208Pb, 40Ca(16O, 15O), 114Sn(36Ar, 35Cl), 208Pb(160Dy, 159Tb), E not given; calculated single particle form factors. 28,29,30Si(16O, 16O), E=33, 54.7 MeV; calculated absorptive potential radial separation. Simple parameterization, one particle transfer.

NUCLEAR STRUCTURE A=16-250; calculated single particle state normalizations, effective wave number vs mass.

doi: 10.1016/0375-9474(85)90151-4
Citations: PlumX Metrics


1984QU03      Nucl.Phys. A428, 305c (1984)

J.M.Quesada, R.A.Broglia, V.Bragin, G.Pollarolo

Single-Particle and Collective Aspects of the Absorptive Potential for Heavy Ion Reactions

NUCLEAR REACTIONS 28,29,30Si(16O, X), 28Si(17O, X), E=33 MeV; calculated absorptive potential parameters; deduced transfer process induced mass dependence.

doi: 10.1016/0375-9474(84)90259-8
Citations: PlumX Metrics


1983QU01      Phys.Lett. 125B, 14 (1983)

J.M.Quesada, M.Lozano, G.Madurga

A Phenomenological Imaginary Part of the Optical Potential for Heavy Ions

NUCLEAR REACTIONS 28Si(16O, 16O), E=33-81 MeV; calculated σ(θ). Optical potential, phenomenological imaginary part.

doi: 10.1016/0370-2693(83)91224-8
Citations: PlumX Metrics


Back to query form