NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 26, 2024.

Search: Author = J.Kostensalo

Found 34 matches.

Back to query form



2023GE04      Phys.Rev. C 108, 045502 (2023)

Z.Ge, T.Eronen, A.de Roubin, M.Ramalho, J.Kostensalo, J.Kotila, J.Suhonen, D.A.Nesterenko, A.Kankainen, P.Ascher, O.Beliuskina, M.Flayol, M.Gerbaux, S.Grevy, M.Hukkanen, A.Husson, A.Jaries, A.Jokinen, I.D.Moore, P.Pirinen, J.Romero, M.Stryjczyk, V.Virtanen, A.Zadvornaya

β- decay Q-value measurement of 136Cs and its implications for neutrino studies

doi: 10.1103/PhysRevC.108.045502
Citations: PlumX Metrics


2023HA25      Phys.Rev. C 108, 014327 (2023)

L.Hariasz, M.Stukel, P.C.F.Di Stefano, B.C.Rasco, K.P.Rykaczewski, N.T.Brewer, D.W.Stracener, Y.Liu, Z.Gai, C.Rouleau, J.Carter, J.Kostensalo, J.Suhonen, H.Davis, E.D.Lukosi, K.C.Goetz, R.K.Grzywacz, M.Mancuso, F.Petricca, A.Fijalkowska, M.Wolinska-Cichocka, J.Ninkovic, P.Lechner, R.B.Ickert, L.E.Morgan, P.R.Renne, I.Yavin, for the KDK Collaboration

Evidence for ground-state electron capture of 40K

RADIOACTIVITY 40K(EC); measured decay products, X-rays, Eγ, Iγ; deduced EC0/EC* relative branching ratios to the ground state and excited state of 40Ar, T1/2, decay scheme. First experimental verification of a third-forbidden unique transition. Discussed the impact of found evidence of the 40K decay to the ground-sate on the geochronology and nuclear theory. Comparison to theoretical estimations. Sensitive x-ray silicon drift detector (SDD) and Modular Total Absorption Spectrometer (MTAS).

doi: 10.1103/PhysRevC.108.014327
Citations: PlumX Metrics


2023KO06      Phys.Lett. B 840, 137894 (2023)

J.Kostensalo, J.Kotila, J.Suhonen

Microscopic calculation of the β- decays of 151Sm, 171Tm, and 210Pb with implications to detection of the cosmic neutrino background

RADIOACTIVITY 151Sm, 171Tm, 210Pb(β-); calculated electron spectral shapes corresponding to the low-Q β--decay transitions using beta-decay theory with several refinements for these first-forbidden nonunique (ff-nu) transitions with transition nuclear matrix elements (NMEs) computed by using the microscopic Interacting Boson-Fermion Model (IBFM-2) and the nuclear shell model (NSM).

doi: 10.1016/j.physletb.2023.137894
Citations: PlumX Metrics


2023KO08      Phys.Rev. C 107, 055502 (2023)

J.Kostensalo, E.Lisi, A.Marrone, J.Suhonen

113Cd β-decay spectrum and gAquenching using spectral moments

RADIOACTIVITY 113Cd(β-); calculated shape of β-spectrum, single-particle matrix elements, ratio of axial-vector to vector couplings, small vectorlike relativistic nuclear matrix element (NME). Spectral moment method (SMM), based on a truncated set of spectral moments. NNME calculated with microscopic interacting boson-fermion model (IBFM-2), the microscopic quasiparticle-phonon model (MQPM), and the interacting shell model (ISM). Comparison to experimental data.

doi: 10.1103/PhysRevC.107.055502
Citations: PlumX Metrics


2022ER01      Phys.Lett. B 830, 137135 (2022)

T.Eronen, Z.Ge, A.de Roubin, M.Ramalho, J.Kostensalo, J.Kotila, O.Beliushkina, C.Delafosse, S.Geldhof, W.Gins, M.Hukkanen, A.Jokinen, A.Kankainen, I.D.Moore, D.A.Nesterenko, M.Stryjczyk, J.Suhonen

High-precision measurement of a low Q value for allowed β-decay of 131I related to neutrino mass determination

RADIOACTIVITY 131I(β-) [from U(p, X), E=30 MeV]; measured cyclotron frequency ratios; deduced Q-value, partial T1/2 for the transition. Comparison with the Atomic Mass Evaluation 2020, theoretical calculations. The double Penning trap mass spectrometer JYFLTRAP at the IGISOL facility, the K-130 cyclotron.

doi: 10.1016/j.physletb.2022.137135
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2022GE07      Phys.Rev. C 106, 015502 (2022)

Z.Ge, T.Eronen, A.de Roubin, J.Kostensalo, J.Suhonen, D.A.Nesterenko, O.Beliuskina, R.de Groote, C.Delafosse, S.Geldhof, W.Gins, M.Hukkanen, A.Jokinen, A.Kankainen, J.Kotila, A.Koszorus, I.D.Moore, A.Raggio, S.Rinta-Antila, V.Virtanen, A.P.Weaver, A.Zadvornaya

Direct determination of the atomic mass difference of the pairs 76As-76Se and 155Tb-155Gd rules out 76As and 155Tb as possible candidates for electron (anti)neutrino mass measurements

ATOMIC MASSES 76As, 76Se; 155Tb, 155Gd; measured cyclotron frequency ratios using phase-imaging ion-cyclotron-resonance technique (PI-ICR) and high-precision Penning-trap mass spectrometry (PTMS) with a double Penning trap mass spectrometer (JYFLTRAP) at the IGISOL facility of the University of Jyvaskyla; deduced precise Q(β) values for 76As β- decay to 76Se and 155Tb ϵ decay to 155Gd. Comparison with evaluated data in AME2020.

RADIOACTIVITY 76As(β-); 155Tb(EC); deduced precise Q(β) values from measurements of difference in mass excesses of 76As, 76Se, and 155Tb, 155Gd pairs; excluded these two cases as potential candidates for the search of ultra-low Q values for determination of electron-(anti)neutrino mass. Comparison with evaluated data in AME2020.

doi: 10.1103/PhysRevC.106.015502
Citations: PlumX Metrics


2022GE11      Phys.Lett. B 832, 137226 (2022)

Z.Ge, T.Eronen, A.de Roubin, K.S.Tyrin, L.Canete, S.Geldhof, A.Jokinen, A.Kankainen, J.Kostensalo, J.Kotila, M.I.Krivoruchenko, I.D.Moore, D.A.Nesterenko, J.Suhonen, M.Vilen

High-precision electron-capture Q value measurement of 111In for electron-neutrino mass determination

RADIOACTIVITY 111In(EC) [from In(p, X), E=130 MeV]; measured Ramsey time-of-flight ion-cyclotron resonance (TOF-ICR), cyclotron frequency ratios; deduced Q-values to the ground and excited states. Comparison with AME2020 and the microscopic interacting boson-fermion model (IBFM-2) calculations. Ion Guide Isotope Separator On-Line facility (IGISOL) utilizing the JYFLTRAP double Penning trap mass spectrometer.

doi: 10.1016/j.physletb.2022.137226
Citations: PlumX Metrics


2022KO17      Phys.Lett. B 831, 137170 (2022)

J.Kostensalo, J.Suhonen, K.Zuber

The first large-scale shell-model calculation of the two-neutrino double beta decay of 76Ge to the excited states in 76Se

RADIOACTIVITY 76Ge(2β-); calculated T1/2 and branching ratios, nuclear matrix elements. Comparison with available data.

doi: 10.1016/j.physletb.2022.137170
Citations: PlumX Metrics


2022LE14      Phys.Rev.Lett. 129, 232502 (2022)

A.F.Leder, D.Mayer, J.L.Ouellet, F.A.Danevich, L.Dumoulin, A.Giuliani, J.Kostensalo, J.Kotila, P.de Marcillac, C.Nones, V.Novati, E.Olivieri, D.Poda, J.Suhonen, V.I.Tretyak, L.Winslow, A.Zolotarova

Determining gA/gV with High-Resolution Spectral Measurements Using a LiInSe2 Bolometer

RADIOACTIVITY 115In(β-); measured decay products, Eβ, Iβ; deduced the axial vector coupling constant, T1/2. Comparison with theoretical calculations, available data.

doi: 10.1103/PhysRevLett.129.232502
Citations: PlumX Metrics


2022RA20      Phys.Rev. C 106, 015501 (2022)

M.Ramalho, Z.Ge, T.Eronen, D.A.Nesterenko, J.Jaatinen, A.Jokinen, A.Kankainen, J.Kostensalo, J.Kotila, M.I.Krivoruchenko, J.Suhonen, K.S.Tyrin, V.Virtanen

Observation of an ultralow-Q-value electron-capture channel decaying to 75As via a high-precision mass measurement

ATOMIC MASSES 75As, 76Ge; 77Se, 76Se; 94Mo, 95Mo; measured cyclotron frequency ratios using phase-imaging ion-cyclotron-resonance technique (PI-ICR) and high-precision Penning-trap mass spectrometry (PTMS) with a double Penning trap mass spectrometer (JYFLTRAP) at the IGISOL facility of the University of Jyvaskyla; deduced precise Q(β) values for decays of 75Se and 75Ge to 75As, with three ultra-low Q-value energetically valid β transitions, one of which as a possible candidate for antineutrino mass determination. Comparison with evaluated data in AME2020.

RADIOACTIVITY 75Se(EC); 75Ge(β-); deduced precise Q(β) values from measurements of difference in mass excesses of 75As and 76Ge, and three ultra-low Q-value energetically valid β transitions, with one as a possible candidate for antineutrino mass determination. Comparison with evaluated data in AME2020.

NUCLEAR STRUCTURE 75As; calculated levels, J, π using shell-model code NUSHELLX in a single-particle model space consisting of 1f5/2, 2p3/2, 2p1/2, and 1g9/2 neutron and proton orbitals, with jun45pn and jj44bpn interactions, and compared results with experimental data.

doi: 10.1103/PhysRevC.106.015501
Citations: PlumX Metrics


2022RA21      Phys.Rev. C 106, 024315 (2022)

M.Ramalho, J.Suhonen, J.Kostensalo, G.A.Alcala, A.Algora, M.Fallot, A.Porta, A.-A.Zakari-Issoufou

Analysis of the total β-electron spectrum of 92Rb: Implications for the reactor flux anomalies

RADIOACTIVITY 92Rb(β-); calculated shape of a total electron spectrum from β--decay transitions, including all the relevant allowed and first-forbidden β- transitions, with guidelines from data on measured excitation energies of the final states, and using β- branching ratios from total absorption γ-ray spectrum (TAGS) in 2015Za10: Phys. Rev. Lett. 115, 102503. Microscopic nuclear-structure calculation of β- spectrum from 92Rb fission product using large-scale shell-model with NUSHELLX@MSU code. Relevance to spectral bump in the reactor-antineutrino flux profile, and decays of fission products in reactor applications.

doi: 10.1103/PhysRevC.106.024315
Citations: PlumX Metrics


2021GE04      Phys.Rev. C 103, 065502 (2021)

Z.Ge, T.Eronen, A.de Roubin, D.A.Nesterenko, M.Hukkanen, O.Beliuskina, R.de Groote, S.Geldhof, W.Gins, A.Kankainen, A.Koszorus, J.Kotila, J.Kostensalo, I.D.Moore, A.Raggio, S.Rinta-Antila, J.Suhonen, V.Virtanen, A.P.Weaver, A.Zadvornaya, A.Jokinen

Direct measurement of the mass difference of 72As - 72Ge rules out 72As as a promising β-decay candidate to determine the neutrino mass

ATOMIC MASSES 72As; measured cyclotron frequency and mass excess by phase-imaging ion-cyclotron-resonance (PI-ICR) technique using IGISOL facility and JYFLTRAP double Penning trap mass spectrometer at the K-130 cyclotron of the University of Jyvaskyla, with the production of 72As in Ge(d, X), E=9 MeV reaction. 72As, 72Ge; deduced precise Q values for ϵ decay between the ground state of 72As and ground as well as excited states of 72Ge. Relevance to electron neutrino mass determination through precise mass measurements.

doi: 10.1103/PhysRevC.103.065502
Citations: PlumX Metrics


2021GE11      Phys.Rev.Lett. 127, 272301 (2021)

Z.Ge, T.Eronen, K.S.Tyrin, J.Kotila, J.Kostensalo, D.A.Nesterenko, O.Beliuskina, R.de Groote, A.de Roubin, S.Geldhof, W.Gins, M.Hukkanen, A.Jokinen, A.Kankainen, A.Koszorus, M.I.Krivoruchenko, S.Kujanpaa, I.D.Moore, A.Raggio, S.Rinta-Antila, J.Suhonen, V.Virtanen, A.P.Weaver, A.Zadvornaya

159Dy Electron-Capture: A New Candidate for Neutrino Mass Determination

RADIOACTIVITY 159Dy(EC); measured frequencies; deduced Q-values for allowed Gamow-Teller transition, J, π, total decay constant. The Ion Guide Isotope Separator On-Line facility (IGISOL) using the double Penning trap mass spectrometer JYFLTRAP in the accelerator laboratory of the University of Jyvaskyla.

doi: 10.1103/physrevlett.127.272301
Citations: PlumX Metrics


2021KO28      J.Phys.(London) G48, 045102 (2021)

J.Kostensalo, J.Suhonen, K.Zuber

Estimated solar-neutrino capture rates of 131Xe: implications for multi-tonne Xe-based experiments

NUCLEAR REACTIONS 131Xe(ν, e+)131Cs, E<20 MeV; calculated σ, capture rates.

doi: 10.1088/1361-6471/abdfdf
Citations: PlumX Metrics


2021KO36      Phys.Lett. B 822, 136652 (2021)

J.Kostensalo, J.Suhonen, J.Volkmer, S.Zatschler, K.Zuber

Confirmation of gA quenching using the revised spectrum-shape method for the analysis of the 113Cd β-decay as measured with the COBRA demonstrator

RADIOACTIVITY 113Cd(β-); analyzed available data; deduced evaluated β-spectrum, significantly quenched values of the axial-vector coupling for all three nuclear models.

doi: 10.1016/j.physletb.2021.136652
Citations: PlumX Metrics


2021ST14      Nucl.Instrum.Methods Phys.Res. A1012, 165593 (2021)

M.Stukel, B.C.Rasco, N.T.Brewer, P.C.F.Di Stefano, K.P.Rykaczewski, H.Davis, E.D.Lukosi, L.Hariasz, M.Constable, P.Davis, K.Dering, A.Fijalkowska, Z.Gai, K.C.Goetz, R.K.Grzywacz, J.Kostensalo, J.Ninkovic, P.Lechner, Y.Liu, M.Mancuso, C.L.Melcher, F.Petricca, C.Rouleau, P.Squillari, L.Stand, D.W.Stracener, J.Suhonen, M.Wolinska-Cichocka, I.Yavin

A novel experimental system for the KDK measurement of the 40K decay scheme relevant for rare event searches

RADIOACTIVITY 40K(EC), (β-); measured decay products, Eγ, Iγ, X-rays; deduced preliminary results for the branching ratio of the electron capture directly to the ground state of 40Ar. The KDK (Potassium (K) Decay (DK)) collaboration.

doi: 10.1016/j.nima.2021.165593
Citations: PlumX Metrics


2020BO01      Phys.Lett. B 800, 135092 (2020)

L.Bodenstein-Dresler, Y.Chu, D.Gehre, C.Gossling, A.Heimbold, C.Herrmann, R.Hodak, J.Kostensalo, K.Kroninger, J.Kuttler, C.Nitsch, T.Quante, E.Rukhadze, I.Stekl, J.Suhonen, J.Tebrugge, R.Temminghoff, J.Volkmer, S.Zatschler, K.Zuber

Quenching of gA deduced from the β-spectrum shape of 113Cd measured with the COBRA experiment

RADIOACTIVITY 113Cd(β-); measured decay products, Eβ, Iβ; deduced β-spectrum shape, quenching of the weak axial-vector coupling strength.

doi: 10.1016/j.physletb.2019.135092
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2020DE20      Phys.Rev.Lett. 124, 222503 (2020)

A.de Roubin, J.Kostensalo, T.Eronen, L.Canete, R.P.de Groote, A.Jokinen, A.Kankainen, D.A.Nesterenko, I.D.Moore, S.Rinta-Antila, J.Suhonen, M.Vilen

High-Precision Q-Value Measurement Confirms the Potential of 135Cs for Absolute Antineutrino Mass Scale Determination

RADIOACTIVITY 135Cs(β-); measured decay products, frequencies; deduced ground-state-to-ground-state β-decay Q-value. Comparison with AME 2016 data.

doi: 10.1103/PhysRevLett.124.222503
Citations: PlumX Metrics


2020HA37      Phys.Rev. C 102, 065501 (2020)

S.J.Haselschwardt, J.Kostensalo, X.Mougeot, J.Suhonen

Improved calculations of β decay backgrounds to new physics in liquid xenon detectors

RADIOACTIVITY 85Kr, 212,214Pb(β-); calculated energy spectra for the ground-state to ground-state β decays using nuclear shell-model formalism with NUSHELL@MSU code for the relevant nuclear matrix elements (NMEs), including corrections for the atomic exchange effect. Relevance to the β-decay background in dark matter experiments using liquid xenon (LXe) detectors, such as LUX-ZEPLIN, XENONnT and XENON1T collaborations.

doi: 10.1103/PhysRevC.102.065501
Citations: PlumX Metrics


2020KO08      Phys.Lett. B 802, 135192 (2020)

J.Kostensalo, J.Suhonen

Consistent large-scale shell-model analysis of the two-neutrino ββ and single β branchings in 48Ca and 96Zr

RADIOACTIVITY 48Ca, 96Zr(β-), (2β-); calculated two-neutrino double-beta-decay matrix elements, beta-decay branching ratios in the interacting nuclear shell model using large single-particle valence spaces with well-tested two-body Hamiltonians.

doi: 10.1016/j.physletb.2019.135192
Citations: PlumX Metrics


2020KO11      Phys.Rev. C 101, 031302 (2020)

J.Kostensalo, J.Suhonen, K.Zuber

Calculated solar-neutrino capture rate for a radiochemical 205Tl-based solar-neutrino detector

NUCLEAR STRUCTURE 205Tl, 205Pb; calculated levels, J, π using shell model, and compared with experimental data.

NUCLEAR REACTIONS 205Tl(ν, ν), E<18 MeV; calculated σ(E) for charged-current solar-neutrino, solar electron-neutrino reaction rates, contributions of the individual states to the 8B neutrino cross section using large scale shell model. Relevance to radiochemical experiments for low-energy solar-neutrino detection.

doi: 10.1103/PhysRevC.101.031302
Citations: PlumX Metrics


2020KU14      Phys.Rev. C 101, 064304 (2020)

A.Kumar, P.C.Srivastava, J.Kostensalo, J.Suhonen

Second-forbidden nonunique β- decays of 24Na and 36Cl assessed by the nuclear shell model

NUCLEAR STRUCTURE 24Na, 24Mg, 36Cl, 36Ar; calculated low-lying levels, J, π using microscopic and USDB interactions. Comparison with experimental data.

RADIOACTIVITY 24Na, 36Cl(β-); calculated shape factors, Eβ-, Iβ-, logft, nuclear matrix elements of second-forbidden nonunique β--decay using nuclear shell model framework in the sd model space, using microscopic effective interactions Daejeon16, chiral N3LO, and JISP16. Comparison with experimental data.

doi: 10.1103/PhysRevC.101.064304
Citations: PlumX Metrics


2020NE06      Phys.Lett. B 808, 135642 (2020)

D.A.Nesterenko, A.Kankainen, J.Kostensalo, C.R.Nobs, A.M.Bruce, O.Beliuskina, L.Canete, T.Eronen, E.R.Gamba, S.Geldhof, R.de Groote, A.Jokinen, J.Kurpeta, I.D.Moore, L.Morrison, Zs.Podolyak, I.Pohjalainen, S.Rinta-Antila, A.de Roubin, M.Rudigier, J.Suhonen, M.Vilen, V.Virtanen, J.Aysto

Three beta-decaying states in 128In and 130In resolved for the first time using Penning-trap techniques

ATOMIC MASSES 128,128m,130,130mIn; measured time-of-flight ion cyclotron resonance (TOF-ICR) frequencies for the ground states and two isomers each in 128In and 128In using the JYFLTRAP Penning trap at the IGISOL facility at the University of Jyvaskyla; deduced mass excesses of three beta-decaying states each in 128In and 130In, and energies of respective isomers, configurations. Activities of 128,130In produced as fission products in U(p, F), E=30 MeV at the Ion Guide Isotope Separator On-Line (IGISOL) facility. Comparison with literature values. 128Sn, 128In, 130In; calculated levels, J, π, configurations using shell-model with the effective interaction jj45pna, and compared with experimental data.

RADIOACTIVITY 128mIn(β-)[from U(p, F), E=30 MeV at the IGISOL facility]; measured Eγ, Iγ, βγ-coin, half-life of the new (16+) isomer of 128In. 128Sn; deduced levels, J, π.

COMPILATION 130,131,132,133,134Te, 129,130,131,132,133Sb, 128,129,130,131,132Sn, 127,128,129,130,131In, 126,127,128,129,130Cd; compiled ground and isomeric states using data from the ENSDF and XUNDL databases, together with results for In isomers in the present work.

doi: 10.1016/j.physletb.2020.135642
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2019HA13      Phys.Rev. C 99, 031301 (2019)

L.Hayen, J.Kostensalo, N.Severijns, J.Suhonen

First-forbidden transitions in reactor antineutrino spectra

RADIOACTIVITY 87Se, 86,89Br, 88,90,92,93,95Rb, 91Kr, 94,96,97,98Y, 95Sr, 133Sn, 135Te, 136m,137,138I, 140,142Cs, 87Se, 134mSb, 139Xe(β-)[from 235U(n, F), E=thermal]; calculated shape factors versus electron kinetic energy of dominant first-forbidden transitions above 4 MeV in the electron and antineutrino spectra of fission actinides, changes in the predicted electron and antineutrino spectra of the considered transitions compared to the allowed approximation with an optional weak magnetism correction, summed 235U electron spectrum using the fission yields from the ENDF database, and normalized spectral ratios for three experiments (Daya Bay, Reno and Double Chooz) relative to the Huber-Mueller predictions using the ENDF and ENSDF databases. Microscopic calculations using shell model approach.

doi: 10.1103/PhysRevC.99.031301
Citations: PlumX Metrics


2019HA30      Phys.Rev. C 100, 054323 (2019)

L.Hayen, J.Kostensalo, N.Severijns, J.Suhonen

First-forbidden transitions in the reactor anomaly

RADIOACTIVITY 86,89Br, 87Se, 88,90,92,93,95Rb, 91Kr, 94,96,97,98Y, 95Sr, 133Sn, 135,136Te, 134m,135Sb, 136m,137,138I, 140,142,143Cs, 139,140Xe(β-); calculated shape factors for first-forbidden non-unique β transitions using shell model, and compared with those for allowed shapes, and with data in literature, β spectra and comparison to the measured cumulative spectra measured at ILL-Grenoble for 235U; deduced uncertainty in the relative change in the prediction of the electron (antineutrino) spectra when using forbidden spectral shapes instead of simple allowed shapes, forbidden flux coverage; parametrized forbidden shape factors using Monte Carlo simulations. 235,238U, 239,241Pu; updated summation calculations, relative change in the cumulative electron and antineutrino spectra when treating the β transitions for listed isotopes as allowed and forbidden, integrated flux and inverse β decay (IBD) rate change due to the inclusion of forbidden transition shape factors, comparison of the expected spectrum change due to forbidden transitions for the different reactors: Daya Bay, RENO and Double Chooz.

doi: 10.1103/PhysRevC.100.054323
Citations: PlumX Metrics


2019KI08      Phys.Rev.Lett. 123, 262701 (2019)

O.S.Kirsebom, S.Jones, D.F.Stromberg, G.Martinez-Pinedo, K.Langanke, F.K.Ropke, B.A.Brown, T.Eronen, H.O.U.Fynbo, M.Hukkanen, A.Idini, A.Jokinen, A.Kankainen, J.Kostensalo, I.Moore, H.Moller, S.T.Ohlmann, H.Penttila, K.Riisager, S.Rinta-Antila, P.C.Srivastava, J.Suhonen, W.H.Trzaska, J.Aysto

Discovery of an Exceptionally Strong β-Decay Transition of 20F and Implications for the Fate of Intermediate-Mass Stars

RADIOACTIVITY 20F(β-) [from 19F(d, X), E=6 MeV]; measured decay products, Eβ, Iβ; deduced transition strength.

doi: 10.1103/PhysRevLett.123.262701
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2019KO11      Phys.Lett. B 795, 542 (2019)

J.Kostensalo, J.Suhonen, C.Giunti, P.C.Srivastava

The gallium anomaly revisited

NUCLEAR REACTIONS 69,71Ga(ν, ν'), E ∼ 1 MeV; calculated σ. Comparison with available data.

doi: 10.1016/j.physletb.2019.06.057
Citations: PlumX Metrics


2019VI05      Phys.Rev. C 100, 054333 (2019)

M.Vilen, A.Kankainen, P.Baczyk, L.Canete, J.Dobaczewski, T.Eronen, S.Geldhof, A.Jokinen, M.Konieczka, J.Kostensalo, I.D.Moore, D.A.Nesterenko, H.Penttila, I.Pohjalainen, M.Reponen, S.Rinta-Antila, A.de Roubin, W.Satula, J.Suhonen

High-precision mass measurements and production of neutron-deficient isotopes using heavy-ion beams at IGISOL

ATOMIC MASSES 82Zr, 84Nb, 86Mo, 88Tc, 88mTc, 89Ru; measured cyclotron frequencies, time-of-flight, and mass excesses using time-of-flight ion-cyclotron resonance (TOF-ICR), and phase-imaging ion-cyclotron resonance (PI-ICR) techniques at the University of Jyvaskyla accelerator laboratory; deduced S(2n), S(2p) and neutron-pairing gap energies. 82Mo, 86Ru; predicted mass excesses using the measured masses of their mirror partners and theoretical mirror displacement energies. Comparison with AME-2016 values, and with other recent measurements. 88Tc; deduced levels, J, π of the ground state and isomer, and compared with shell-model predictions.

NUCLEAR REACTIONS Ni(36Ar, X)82Zr/84Nb/86Mo/88Tc/88mTc/89Ru, E=222 MeV; measured reaction products and yields using the HIGISOL system, mass separated using a radio-frequency sextupole ion guide (SPIG), and injected into the double-Penning-trap mass spectrometer JYFLTRAP at Jyvaskyla.

doi: 10.1103/PhysRevC.100.054333
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2018KO02      J.Phys.(London) G45, 025202 (2018)

J.Kostensalo, J.Suhonen, K.Zuber

Spectral shapes of forbidden argon β decays as background component for rare-event searches

RADIOACTIVITY 39,42Ar(β-); analyzed available data; calculated energy levels, J, π, β-spectra using the shell and the microscopic quasiparticle-phonon models.

doi: 10.1088/1361-6471/aa958e
Citations: PlumX Metrics


2018KO07      Phys.Rev. C 97, 034309 (2018)

J.Kostensalo, J.Suhonen, K.Zuber

Shell-model computed cross sections for charged-current scattering of astrophysical neutrinos off 40Ar

NUCLEAR STRUCTURE 40K, 40Cl; calculated levels, J, π using shell model, and compared with experimental data from ENSDF database.

NUCLEAR REACTIONS 40Ar(ν, e-)40K, 40Ar(ν-bar, e+)40K, E=5-60 MeV; calculated unfolded σ(E) for charged-current (CC) scattering, differential cross sections for the CC supernova-neutrino scattering to final nuclear states considering only the Gamow-Teller and Fermi types of transitions, folded solar-neutrino σ. Comparison with RPA-based calculation.

doi: 10.1103/PhysRevC.97.034309
Citations: PlumX Metrics


2018KO29      Phys.Rev. C 98, 065504 (2018)

J.Kostensalo, J.Suhonen, O.Civitarese

Muon-electron lepton-flavor-violating transitions: Shell-model calculations of transitions in 27Al

NUCLEAR STRUCTURE 27Al; calculated levels, J, π, single-particle occupation factors for active proton and neutron orbitals, vector and axial matrix elements of muon-to-electron conversion. Large-scale shell-model calculations of muon-to-electron lepton-flavor violating transitions in 27Al target. Comparison with experimental level structure of 27Al.

doi: 10.1103/PhysRevC.98.065504
Citations: PlumX Metrics


2017KO05      Phys.Rev. C 95, 014322 (2017)

J.Kostensalo, J.Suhonen

Spin-multipole nuclear matrix elements in the pn quasiparticle random-phase approximation: Implications for β and ββ half-lives

RADIOACTIVITY 52V, 52Ti, 52Sc, 54V, 54,56Mn, 56Cr, 94mNb, 104Mo, 104Tc, 120Pd, 120Ag, 132Sn(β-); 54Mn, 94mNb, 96Pd, 96mRh, 110,112,114,116Te, 110,112,114,116Sb, 130Ce, 130La(EC), (β+); calculated nuclear matrix elements and phase-space factors for the second-forbidden unique (between 0+ and 3+ states) β-, β+, EC and EC/β+ decays. 74Kr, 74mBr, 86Zr, 86,88Y, 88,90Mo, 88,90mNb, 88Zr, 146Gd, 146Eu(EC), (β+); calculated nuclear matrix elements and phase-space factors for the third-forbidden unique (between 0+ and 4- states) β+, EC and EC/β+ decays. 50Sc, 50Ca, 58,60,62Co, 60,62Fe, 98,100Zr, 98,100Nb, 104mRh, 114m,116m,118m,120m,122mIn, 118,120,122Cd, 124m,126m,128mSb, 126,128Sn, 130I, 136Cs, 138La(β-); 50mMn, 58mCo, 98,100Pd, 98m,100m,104mRh, 100,102,104Cd, 100,102,104Ag, 114m,116mIn, 124mSb, 130I, 136Cs, 138La(EC), (β+); calculated nuclear matrix elements and phase-space factors for the fourth-forbidden unique (between 0+ and 5+ states) β-, β+, EC and EC/β+ decays. 84Se, 84mBr, 84m,86mRb, 120Pd, 120mAg, 136Te, 136mI, 138Xe, 138mCs(β-); 84m,86mRb, 132Ce, 132mLa, 134Nd, 134Pr(EC), (β+); calculated nuclear matrix elements and phase-space factors for the fifth-forbidden unique (between 0+ and 6- states) β-, β+, EC and EC/β+ decays. 92Nb, 96Tc(β-); 54mCo, 54Ni, 92Nb, 94Ru, 94,96Tc, 106,108,110Sn, 106,108,110In(EC), (β+); calculated nuclear matrix elements and phase-space factors for the sixth-forbidden unique (between 0+ and 7+ states) β-, β+, EC and EC/β+ decays. 116m,118m,120m,122m,124mIn, 118,120,122,124Cd, 120m,122m,124m,126,128,130,132Sb, 126,128,130,132Sn, 134Te, 134mI, 134m,136mCs(β-); 116Te, 116m,120m,122m,124mSb, 116mIn, 134m,136mCs(EC), (β+); calculated nuclear matrix elements and phase-space factors for the seventh-forbidden unique (between 0+ and 8- states) β-, β+, EC and EC/β+ decays. Two-quasiparticle (two-qp) and quasiparticle random-phase approximation (pnQRPA) models, using Woods-Saxon single-particle energies and a G matrix based effective two-body interaction. In all six cases, expected "experimental" half-lives deduced from scaled pnQRPA half-lives.

doi: 10.1103/PhysRevC.95.014322
Citations: PlumX Metrics


2017KO12      Phys.Rev. C 95, 044313 (2017)

J.Kostensalo, M.Haaranen, J.Suhonen

Electron spectra in forbidden β decays and the quenching of the weak axial-vector coupling constant gA

RADIOACTIVITY 125Te, 141Ce, 159Gd, 161Tb, 169Er, 79Se, 85Kr, 89Sr, 107Pd, 125Sb, 135,137Cs, 129I, 93,97Zr, 99Tc, 85Br, 87Rb, 113,115,117Cd, 115,119In, 101Mo, 123Sn(β-); calculated shapes of β spectra, integrated shape functions and their vector CV, axial-vector CA, and mixed components VVA for 26 first to fifth non-unique, and first- and second-unique β- decays using the nuclear matrix elements (NMEs) derived from the microscopic quasiparticle-phonon model (MQPM) and by varying the value of the axial-vector coupling constant gA and including next-to-leading-order terms. Spectrum shape method (SSM). Effective values of the weak coupling constants. Step towards solving the gA problem of neutrinoless double beta decay.

NUCLEAR STRUCTURE 87Sr; calculated levels, J, π using microscopic quasiparticle-phonon model (MQPM), and compared with experimental spectrum.

doi: 10.1103/PhysRevC.95.044313
Citations: PlumX Metrics


2017KO29      Phys.Rev. C 96, 024317 (2017)

J.Kostensalo, J.Suhonen

gA-driven shapes of electron spectra of forbidden β decays in the nuclear shell model

RADIOACTIVITY 36Cl, 48Ca, 50V, 60Fe, 87Rb, 94Nb, 96Zr, 98Tc, 99Tc, 126Sn, 137Ba(β-); calculated unitless integrated shape functions, and their vector, axial-vector, and mixed components, normalized electron spectra for first to sixth forbidden β- decays, driven by the value of the axial-vector coupling constant gA using nuclear matrix elements derived from the nuclear shell model.

doi: 10.1103/PhysRevC.96.024317
Citations: PlumX Metrics


Back to query form