NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 26, 2024.

Search: Author = H.Wibowo

Found 7 matches.

Back to query form



2022CA19      Phys.Lett. B 833, 137374 (2022)

J.Carter, L.M.Donaldson, H.Fujita, Y.Fujita, M.Jingo, C.O.Kureba, M.B.Latif, E.Litvinova, F.Nemulodi, P.von Neumann-Cosel, R.Neveling, P.Papakonstantinou, P.Papka, L.Pellegri, V.Yu.Ponomarev, A.Richter, R.Roth, E.Sideras-Haddad, F.D.Smit, J.A.Swartz, A.Tamii, R.Trippel, I.T.Usman, H.Wibowo

Damping of the isovector giant dipole resonance in 40, 48Ca

NUCLEAR REACTIONS 40,48Ca(p, p'), E=200 MeV; measured reaction products; deduced σ(θ, E), Coulomb σ, contributions from the IsoScalar Giant Monopole Resonance (ISGMR) and the ISGQR lying under the IsoVector Giant Dipole Resonance (IVGDR). Comparison with calculations in the framework of RPA and beyond-RPA in a relativistic approach based on an effective meson-exchange interaction, with the UCOM effective interaction. The Separated Sector Cyclotron (SSC) at the iThemba Laboratory for Accelerator Based Sciences (iThemba LABS), Cape Town, South Africa.

doi: 10.1016/j.physletb.2022.137374
Citations: PlumX Metrics


2022HL01      Phys.Rev. C 106, 024319 (2022)

M.Q.Hlatshwayo, Y.Zhang, H.Wibowo, R.LaRose, D.Lacroix, E.Litvinova

Simulating excited states of the Lipkin model on a quantum computer

doi: 10.1103/PhysRevC.106.024319
Citations: PlumX Metrics


2022WI03      Phys.Rev. C 106, 044304 (2022)

H.Wibowo, E.Litvinova

Nuclear shell structure in a finite-temperature relativistic framework

NUCLEAR STRUCTURE 68,70,72,74,76,78Ni; calculated single-particle states at zero and finite temperature up to 4 MeV, dominant fragments of the single-particle states and their spectroscopic factors, temperature evolution of the neutron and proton states, temperature dependence of the quadrupole and octupole phonon strength distributions, temperature-dependent nucleon effective mass, symmetry energy coefficient temperature dependence. Relativistic mean-field calculations taking into account the particle-vibration coupling (RMF+PVC).

doi: 10.1103/PhysRevC.106.044304
Citations: PlumX Metrics


2020WI10      Phys.Rev. C 102, 054321 (2020)

H.Wibowo, E.Litvinova, Y.Zhang, P.Finelli

Temperature evolution of the nuclear shell structure and the dynamical nucleon effective mass

NUCLEAR STRUCTURE 56Fe, 68Ni; calculated single-particle states, and dominant fragments of the single-particle states at zero and finite temperatures in the RMF approximation, temperature evolution of the neutron pairing gap and the neutron and proton single-quasiparticle states around the Fermi surface, neutron and proton dynamical effective masses. 56Ni; calculated temperature evolution of the nucleon dynamical effective mass. Single fermion Dyson equation with the dynamical kernel of the particle-vibration-coupling (PVC) using the grand canonical potential with the meson-nucleon covariant energy density functional. Possible relevance to astrophysical modeling of various stages of stellar evolution.

doi: 10.1103/PhysRevC.102.054321
Citations: PlumX Metrics


2019LI59      Eur.Phys.J. A 55, 223 (2019)

E.Litvinova, H.Wibowo

Nuclear response in a finite-temperature relativistic framework

doi: 10.1140/epja/i2019-12771-9
Citations: PlumX Metrics


2019WI09      Phys.Rev. C 100, 024307 (2019)

H.Wibowo, E.Litvinova

Nuclear dipole response in the finite-temperature relativistic time-blocking approximation

NUCLEAR STRUCTURE 48Ca, 68Ni, 100,120,132Sn; calculated temperature dependence of the isovector giant electric dipole (IV GDR) response, strength functions widths, contributions of neutron and proton configurations using finite-temperature relativistic time-blocking approximation method.

doi: 10.1103/PhysRevC.100.024307
Citations: PlumX Metrics


2018LI41      Phys.Rev.Lett. 121, 082501 (2018)

E.Litvinova, H.Wibowo

Finite-Temperature Relativistic Nuclear Field Theory: An Application to the Dipole Response

NUCLEAR STRUCTURE 48Ca, 100,120,132Sn; calculated temperature dependence of dipole spectra in the even-even nuclei, giant dipole resonance width, the low-energy dipole strength distribution. Thermal (imaginary-time) Green's function formalism.

doi: 10.1103/PhysRevLett.121.082501
Citations: PlumX Metrics


Back to query form