NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 11, 2024.

Search: Author = P.Papakonstantinou

Found 49 matches.

Back to query form



2024KR01      Phys.Rev. C 109, 015803 (2024)

E.Krotscheck, P.Papakonstantinou, J.Wang

Variational and parquet-diagram calculations for neutron matter. V. Triplet pairing

doi: 10.1103/PhysRevC.109.015803
Citations: PlumX Metrics


2024LE03      Phys.Rev. C 109, 024313 (2024)

N.Le Anh, B.Minh Loc, P.Papakonstantinou, N.Auerbach

Landscape of nuclear deformation softness with spherical quasiparticle random-phase approximation

doi: 10.1103/PhysRevC.109.024313
Citations: PlumX Metrics


2023KN01      Phys.Rev. C 107, 014305 (2023)

F.Knapp, P.Papakonstantinou, P.Vesely, G.De Gregorio, J.Herko, N.Lo Iudice

Comparative analysis of formalisms and performances of three different beyond-mean-field approaches

NUCLEAR STRUCTURE 40Ca; calculated E1 and E2 responses, B(E1) and B(E2) distributions. 16O, 40,48Ca; calculated isovector and isoscalar E1 (dipole) strength functions, E2 (quadrupole) strength functions, E3 (octupole) strength functions, monopole strength function, energy weighted running sums of strength functions. Calculations using equation of motion phonon method (EMPM), second Tamm-Dancoff and random-phase approximations (STDA and SRPA).

doi: 10.1103/PhysRevC.107.014305
Citations: PlumX Metrics


2023LO07      Phys.Rev. C 108, 024303 (2023)

B.M.Loc, N.L.Anh, P.Papakonstantinou, N.Auerbach

Origin of octupole deformation softness in atomic nuclei

NUCLEAR STRUCTURE 32S, 64Zn, 72Se, 96Zr, 96Ru, 98Zr, 146Ba, 152Sm, 226Ra, 240Pu; calculated levels, J, π, energy of first 3- state, B(E3), octupole polarizability. Calculations based on fully self-consistent random-phase approximation (RPA) approach and quasiparticle RPA to diagnose octupole softness in nuclei.

doi: 10.1103/PhysRevC.108.024303
Citations: PlumX Metrics


2023ZH15      Phys.Rev. C 107, L041303 (2023)

K.Y.Zhang, P.Papakonstantinou, M.-H.Mun, Y.Kim, H.Yan, X.-X.Sun

Collapse of the N=28 shell closure in the newly discovered 39Na nucleus and the development of deformed halos towards the neutron dripline

NUCLEAR STRUCTURE 39Na; calculated S(n), single-neutron levels, J, π, quadrupole deformation, rms radius. 31,33,35,37,39,41Na; calculated neutron density distributions. Pointed that 39Na could be single nucleus with the coexistence of several exotic structures, including the quenched N=28 shell closure, Borromean structure, deformed halo, and between the core and the halo. Discussed the microscopic mechanisms behind the shape decoupling phenomenon and the development of halos towards dripline. Deformed relativistic Hartree-Bogoliubov theory in continuum.

doi: 10.1103/PhysRevC.107.L041303
Citations: PlumX Metrics


2023ZH21      Phys.Rev. C 107, 055803 (2023)

J.Zhou, J.Xu, P.Papakonstantinou

Bayesian inference of neutron-star observables based on effective nuclear interactions

doi: 10.1103/PhysRevC.107.055803
Citations: PlumX Metrics


2023ZH35      Phys.Lett. B 844, 138112 (2023)

K.Y.Zhang, S.Q.Yang, J.L.An, S.S.Zhang, P.Papakonstantinou, M.-H.Mun, Y.Kim, H.Yan

Missed prediction of the neutron halo in 37Mg

NUCLEAR STRUCTURE 35,36,37Mg; calculated neutron density distributions, single-neutron energies, occupation probabilities using a microscopic and self-consistent way using the deformed relativistic Hartree-Bogoliubov theory in continuum; deduced the deformed p-wave halo characteristics of 37Mg.

doi: 10.1016/j.physletb.2023.138112
Citations: PlumX Metrics


2022CA19      Phys.Lett. B 833, 137374 (2022)

J.Carter, L.M.Donaldson, H.Fujita, Y.Fujita, M.Jingo, C.O.Kureba, M.B.Latif, E.Litvinova, F.Nemulodi, P.von Neumann-Cosel, R.Neveling, P.Papakonstantinou, P.Papka, L.Pellegri, V.Yu.Ponomarev, A.Richter, R.Roth, E.Sideras-Haddad, F.D.Smit, J.A.Swartz, A.Tamii, R.Trippel, I.T.Usman, H.Wibowo

Damping of the isovector giant dipole resonance in 40, 48Ca

NUCLEAR REACTIONS 40,48Ca(p, p'), E=200 MeV; measured reaction products; deduced σ(θ, E), Coulomb σ, contributions from the IsoScalar Giant Monopole Resonance (ISGMR) and the ISGQR lying under the IsoVector Giant Dipole Resonance (IVGDR). Comparison with calculations in the framework of RPA and beyond-RPA in a relativistic approach based on an effective meson-exchange interaction, with the UCOM effective interaction. The Separated Sector Cyclotron (SSC) at the iThemba Laboratory for Accelerator Based Sciences (iThemba LABS), Cape Town, South Africa.

doi: 10.1016/j.physletb.2022.137374
Citations: PlumX Metrics


2022GI02      Int.J.Mod.Phys. E31, 2250013 (2022)

H.Gil, P.Papakonstantinou, C.H.Hyun

Constraints on the curvature of nuclear symmetry energy from recent astronomical data within the KIDS framework

NUCLEAR STRUCTURE 208Pb; calculated neutron skin thickness; deduced no correlation at all with the neutron star radii. The KIDS (Korea-IBS-Daegu-SKKU) framework for the nuclear equation of state (EoS) and energy-density functional (EDF).

doi: 10.1142/S0218301322500136
Citations: PlumX Metrics


2022XU05      Phys.Rev. C 105, 044305 (2022)

J.Xu, P.Papakonstantinou

Bayesian inference of finite-nuclei observables based on the KIDS model

NUCLEAR STRUCTURE 120Sn, 208Pb; calculated correlated posterior probability distribution functions (PDFs) between slope parameter, curvature parameter, symmetry energy, neutron thickness, electric polarizability, centroid energy of isovector giant dipole resonance (IVGDR), and isoscalar giant monopole resonance (ISGMR) using Bayesian analyses on the isoscalar and the isovector nuclear interaction parameters based on Korea-IBS-Daegu-SKKU (KIDS)-EDF model and the standard Skyrme-Hartree-Fock (SHF) model, under the constraint of experimentally known parameters for neutron-skin thickness, centroid energy of IVGDR, electric polarizability, excitation energy of ISGMR, average energies per nucleon, and the charge radii for 120Sn and 208Pb; deduced nuclear matter incompressibility, higher-order parameters of equation of state (EOS), and robust constraints of slope parameter; obtained compatibility between the ISGMR data for 208Pb and 120Sn, but not the isovector observables, especially for neutron-skin thickness. 120Sn, 208Pb; calculated excitation energy of isoscalar giant quadrupole resonances (ISGQR) using SHF-RPA and compared with experimental data. 48Ca, 120Sn, 208Pb; deduced neutron-skin thicknesses for 48Ca and 120Sn, and energy of IVGDR and electric polarizability for 208Pb from the posterior PDFs of physics quantities under the constraint of the skin thickness in 208Pb based on the standard SHF and KIDS model. Compared with experimental data.

doi: 10.1103/PhysRevC.105.044305
Citations: PlumX Metrics


2021GI05      Phys.Rev. C 103, 034330 (2021)

H.Gil, Y.-M.Kim, P.Papakonstantinou, C.H.Hyun

Constraining the density dependence of the symmetry energy with nuclear data and astronomical observations in the Korea-IBS-Daegu-SKKU framework

NUCLEAR STRUCTURE 16O, 40,48Ca, 90Zr, 132Sn, 208Pb, 218U; calculated binding energies, S(2n). Z=20, N=20-48; Z=50, N=52-116; calculated S(2n). O, Ca, Ni, Zr, Sn, Pb; calculated position of the neutron drip line and for the neutron skin thickness of selected nuclei based on the six equations of state (EoSs). 26O, 70Ca; nuclei predicted as close to the neutron drip line. Korea-IBS-Daegu-SKKU (KIDS) framework for the nuclear equation of state (EoS) and energy density functional (EDF).

doi: 10.1103/PhysRevC.103.034330
Citations: PlumX Metrics


2021IN02      Int.J.Mod.Phys. E30, 2150009 (2021)

E.J.In, P.Papakonstantinou, Y.Kim, S.-W.Hong

Neutron drip line in the deformed relativistic Hartree-Bogoliubov theory in continuum: Oxygen to Calcium

NUCLEAR STRUCTURE 22,23,24,25,26,27,28,29,30,31,32,33,34Ne, 26,27,28,29,30,31,32,33,34,35,36,37,38Mg, 30,31,32,33,34,35,36,37,38,39,40Si, 34,35,36,37,38,39,40,41,42S, 38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54Ar; calculated deformation parameters.

doi: 10.1142/S0218301321500099
Citations: PlumX Metrics


2021PA26      J.Phys.(London) G48, 085105 (2021)

P.Papakonstantinou, J.P.Vary, Y.Kim

Daejeon 16 interaction with contact-term corrections for heavy nuclear systems

NUCLEAR STRUCTURE 16,28O, 40,48,60Ca, 90Zr, 100,132Sn, 208Pb; calculated ground-state energy and point-proton rms radii, electric dipole polarizability in many-body approaches based on the mean-field approximation.

doi: 10.1088/1361-6471/ac0b30
Citations: PlumX Metrics


2019GI12      Phys.Rev. C 99, 064319 (2019)

H.Gil, P.Papakonstantinou, C.H.Hyun, Y.Oh

From homogeneous matter to finite nuclei: Role of the effective mass

NUCLEAR STRUCTURE 16,28O, 40,42,44,46,48,50,52,54,56,58,60Ca, 90Zr, 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132Sn, 208Pb, 218U; calculated binding energy per nucleon, charge radii and neutron-skin thickness for 16,28O, 40,48,60Ca, 90Zr, 132Sn, 208Pb, 218U, and energies of occupied proton levels in 208Pb using microscopic Skyrme type energy density functional (EDF) generated from a immutable equation of state (EoS). Comparison with experimental values, and with other theoretical predictions.

doi: 10.1103/PhysRevC.99.064319
Citations: PlumX Metrics


2019GI13      Phys.Rev. C 100, 014312 (2019)

H.Gil, Y.-M.Kim, C.H.Hyun, P.Papakonstantinou, Y.Oh

Analysis of nuclear structure in a converging power expansion scheme

NUCLEAR STRUCTURE 16,28O, 40,48,60Ca, 90Zr, 132Sn, 208Pb; calculated binding energies per nucleon, charge radii, and neutron skin thickness using generalized energy density functional model (KIDS EDF) to parametrized nuclear equation of state (EoS). Comparison with experimental values.

doi: 10.1103/PhysRevC.100.014312
Citations: PlumX Metrics


2019LA24      Acta Phys.Pol. B50, 461 (2019)

M.B.Latif, I.T.Usman, J.Carter, E.Sideras-Haddad, L.M.Donaldson, M.Jingo, C.O.Kureba, L.Pellegri, R.Neveling, F.D.Smit, F.Nemulodi, P.von Neumann-Cosel, Y.Yu.Ponomarev, P.Papka, J.A.Swartz, G.R.J.Cooper, H.Fujita, P.Papakonstantinou, E.Litvinova

Evolution of the IVGDR and Its Fine Structure from Doubly-magic 40Ca to Neutron-rich 48Ca Probed Using (p, p') Scattering

NUCLEAR REACTIONS 40,42,44,48Ca(p, p'), E=200 MeV; measured reaction products, Ep, Ip; deduced σ(θ), photoabsorption σ, structure of Isovector Giant Dipole Resonance; calculated photoabsorpion σ using RQTBA, RQRPA and QRPA approaches. Wavelet analysis of the data.

doi: 10.5506/aphyspolb.50.461
Citations: PlumX Metrics


2018PA03      Phys.Rev. C 97, 014312 (2018)

P.Papakonstantinou, T.-S.Park, Y.Lim, C.H.Hyun

Density dependence of the nuclear energy-density functional

doi: 10.1103/PhysRevC.97.014312
Citations: PlumX Metrics


2017GI05      Acta Phys.Pol. B48, 305 (2017)

H.Gil, P.Papakonstantinou, C.H.Hyun, T.-S.Park, Y.Oh

Nuclear Energy Density Functional for KIDS

NUCLEAR STRUCTURE 16,28O, 40,60Ca; calculated energy per p article, mass excess, charge radius vs k-parameter of the radius using density functional theory. Masses compared with AME-2012 values.

doi: 10.5506/APhysPolB.48.305
Citations: PlumX Metrics


2017PA06      Acta Phys.Pol. B48, 537 (2017)

P.Papakonstantinou, R.Trippel, R.Roth

From Chiral NN(N) Interactions to Giant and Pygmy Resonances via Extended RPA

NUCLEAR STRUCTURE 40,48Ca; calculated giant and pygmy resonances strength distributions, B(E1) using RPA-based methods with AV18 b(Argonne) plus UCOM interactions or chiral EFT plus SRG interaction. Compared with available data.

doi: 10.5506/APhysPolB.48.537
Citations: PlumX Metrics


2016KI09      Eur.Phys.J. A 52, 176 (2016)

Y.Kim, P.Papakonstantinou

Proton pygmy resonances: Predictions for N = 20 isotones

NUCLEAR STRUCTURE 40,46,48Ca, 42Ti, 44Cr, 46Fe, 48Ni; calculated single particle unit (single proton for N=20 isotones, single neutron for 46,48Ca), B(E1), proton (neutron) skin thickness, pygmy resonances, isovector, isoscalar dipole γ transition strength distribution using QRPA plus Gogny D1S force and CRPA. Compared with available data.

doi: 10.1140/epja/i2016-16176-0
Citations: PlumX Metrics


2016US03      Phys.Rev. C 94, 024308 (2016)

I.T.Usman, Z.Buthelezi, J.Carter, G.R.J.Cooper, R.W.Fearick, S.V.Fortsch, H.Fujita, Y.Fujita, P.von Neumann-Cosel, R.Neveling, P.Papakonstantinou, I.Pysmenetska, A.Richter, R.Roth, E.Sideras-Haddad, F.D.Smit

Fine structure of the isoscalar giant quadrupole resonance in 28Si and 27Al

NUCLEAR REACTIONS 27Al, Si(p, p'), E=200 MeV; measured scattered proton spectra, angular distributions using K600 magnetic spectrometer of iThemba LABS. 27Al, 28Si; deduced levels and resonances between 6-30 MeV excitation, isoscalar giant quadrupole resonance (ISGQR), E2 strength distributions, continuous wavelet transform (CWT) power spectra. Wavelet analysis. Comparison with random phase approximation (RPA), and second-RPA (SRPA) calculations with realistic interaction from unitary correlation operator method (UCOM). Comparison with (α, α') and (e, e') data.

doi: 10.1103/PhysRevC.94.024308
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2015PA40      Phys.Rev. C 92, 034311 (2015)

P.Papakonstantinou, H.Hergert, R.Roth

Isoscalar and neutron modes in the E1 spectra of Ni isotopes and the relevance of shell effects and the continuum

NUCLEAR REACTIONS 48,56,58,68,78Ni(γ, X), E<40 MeV; calculated photoabsorption σ(E), isoscalar strength distributions. 48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78,80,82,84Ni; calculated isoscalar (IS) and E1 transition strengths as function of excitation energy, proton and neutron transition densities of isoscalar low-energy mode, neutron occupation probabilities, contributions of two-quasiparticle configurations to transition matrix element, electric dipole polarizability. QRPA+D1S Gogny model and CRPA+SLy4 Skyrme model for dipole response. Comparison with available experimental data.

doi: 10.1103/PhysRevC.92.034311
Citations: PlumX Metrics


2014DE04      Phys.Lett. B 730, 288 (2014)

V.Derya, D.Savran, J.Endres, M.N.Harakeh, H.Hergert, J.H.Kelley, P.Papakonstantinou, N.Pietralla, V.Yu.Ponomarev, R.Roth, G.Rusev, A.P.Tonchev, W.Tornow, H.J.Wortche, A.Zilges

Isospin properties of electric dipole excitations in 48Ca

NUCLEAR REACTIONS 48Ca(polarized γ, γ'), E=6.6-9.51 MeV; 40,48Ca, 16O(α, α'γ), E=136 MeV; measured reaction products, Eγ, Iγ; deduced B(E1), J, π. Comparison with RPA calculations, available data.

doi: 10.1016/j.physletb.2014.01.050
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetO2175. Data from this article have been entered in the XUNDL database. For more information, click here.


2014GU20      J.Phys.(London) G41, 115107 (2014)

A.Gunther, P.Papakonstantinou, R.Roth

Giant resonances based on unitarily transformed two-nucleon plus phenomenological three-nucleon interactions

NUCLEAR STRUCTURE 4He, 16,24O, 40,48Ca, 48,56,60,78Ni, 88Sr, 90Zr, 100,114,132Sn, 146Gd, 208Pb; calculated ground-state energies, charge radii, giant resonance. Comparison with available data.

doi: 10.1088/0954-3899/41/11/115107
Citations: PlumX Metrics


2014PA10      Phys.Rev. C 89, 034306 (2014), Erratum Phys.Rev. C 91, 029903 (2015)

P.Papakonstantinou, H.Hergert, V.Yu.Ponomarev, R.Roth

Low-energy electric dipole response of Sn isotopes

NUCLEAR REACTIONS 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140Sn(γ, xn), E<50 MeV; calculated point-proton and neutron root rms radii, fraction of Thomas-Reiche-Kuhn (TRK) sum rule, photoabsorption σ(E), isoscalar low-energy states, resonances and dipole strengths, B(E1), summed E1 strength, longitudinal electroexcitation form factor for 116Sn. Self-consistent quasi-particle random-phase approximation (QRPA) and Gogny D1S force. Phenomenological Realistic two-body interaction supplemented by a three-body contact term. Comparison with experimental data.

doi: 10.1103/PhysRevC.89.034306
Citations: PlumX Metrics


2014PA40      Phys.Rev. C 90, 024305 (2014)

P.Papakonstantinou

Second random-phase approximation, Thouless' theorem, and the stability condition reexamined and clarified

NUCLEAR STRUCTURE 16O, 48Ca; calculated isovector and isoscalar dipole response for 1- channel in 16O, and quadrupole response for 2+ channel in 48Ca, energy-weighted sums and spurious state-only contributions; deduced deviations from the RPA energy-weighted sums. Second random phase approximation (SRPA).

doi: 10.1103/PhysRevC.90.024305
Citations: PlumX Metrics


2013PA31      Phys.Rev. C 88, 045805 (2013)

P.Papakonstantinou, J.Margueron, F.Gulminelli, Ad.R.Raduta

Densities and energies of nuclei in dilute matter at zero temperature

NUCLEAR STRUCTURE Z=20, N=15-3000; Z=28, N=40-3000; Z=40, N=40-4000; Z=50, N=40-4000; Z=82, N=80-4000; calculated ground-state density profiles, energies of medium-mass and heavy clusters in a dilute nucleon gas such as in stellar matter in the cores of supernovae and in the crust of neutron stars.

doi: 10.1103/PhysRevC.88.045805
Citations: PlumX Metrics


2012PA05      Phys.Lett. B 709, 270 (2012)

P.Papakonstantinou, H.Hergert, V.Yu.Ponomarev, R.Roth

Low-energy dipole strength and the critical case of 48Ca

NUCLEAR STRUCTURE 36,40,44,48,52Ca; calculated isoscalar dipole, E1 and electric dipole strengths. QRPA calculations.

doi: 10.1016/j.physletb.2012.02.024
Citations: PlumX Metrics


2011HE11      Phys.Rev. C 83, 064317 (2011)

H.Hergert, P.Papakonstantinou, R.Roth

Quasiparticle random-phase approximation with interactions from the Similarity Renormalization Group

NUCLEAR STRUCTURE 56Ca; calculated number operator response for nonspurious monopole states, isoscalar and isovector dipole strengths. 4He, 16,24O, 34Si, 40,48Ca, 56,68,78Ni, 88Sr, 90Zr, 100,114,132Sn, 146Gd, 208Pb; calculated ground-state energy per nucleon and charge radii. 16O, 40,48Ca, 100,132Sn; calculated proton and neutron spin-orbit splittings. 36,38,40,42,44,46,48,50,52,54,56,58,60Ca; calculated ground-state energies per nucleon, charge radii, odd-even mass differences, and pairing energies, isoscalar and isovector monopole, dipole and quadrupole responses, isoscalar monopole centroids and energies of the first excited 0+ states, centroids of isovector dipole response, isoscalar quadrupole centroids and energies of the first 2+ states. 40,48Ca; calculated single particle energies. 120Sn; calculated canonical single-neutron energies, isoscalar monopole response, running energy-weighted sums, centroid energies of the isoscalar monopole strength distribution. 50Ca; calculated proton and neutron transition densities for monopole peaks. 36,44Ca; calculated proton and neutron dipole transition densities. 54Ca; calculated proton and neutron quadrupole transition densities for a pygmy and a GQR mode. Quasiparticle random phase approximation built on the HFB ground states. Comparison with experimental data.

doi: 10.1103/PhysRevC.83.064317
Citations: PlumX Metrics


2011PA12      Eur.Phys.J. A 47, 14 (2011)

P.Papakonstantinou, V.Yu.Ponomarev, R.Roth, J.Wambach

Isoscalar dipole coherence at low energies and forbidden E1 strength

NUCLEAR STRUCTURE 16O, 40Ca, 56Ni, 100Sn; calculated ISD, E1 response, GDR peak energy, B(E1), γ transition strengths, transition densities using RPA with finite-range forces.

doi: 10.1140/epja/i2011-11014-7
Citations: PlumX Metrics


2011US01      Phys.Lett. B 698, 191 (2011)

I.Usman, Z.Buthelezi, J.Carter, G.R.J.Cooper, R.W.Fearick, S.V.Fortsch, H.Fujita, Y.Fujita, Y.Kalmykov, P.von Neumann-Cosel, R.Neveling, P.Papakonstantinou, A.Richter, R.Roth, A.Shevchenko, E.Sideras-Haddad, F.D.Smit

Fine structure of the isoscalar giant quadrupole resonance in 40Ca due to Landau damping?

NUCLEAR REACTIONS 40Ca(p, p'), E=200 MeV; measured proton spectra. 40Ca; deduced energy scale for isoscalar giant quadrupole resonance, fine structure. Comparison with RPA and SRPA calculations.

doi: 10.1016/j.physletb.2011.03.015
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetD0687.


2010PA03      Phys.Rev. C 81, 024317 (2010)

P.Papakonstantinou, R.Roth

Large-scale second random-phase approximation calculations with finite-range interactions

NUCLEAR STRUCTURE 16O; calculated isoscalar monopole response, isovector dipole response, number of 0+ states, 0+ component of the double dipole resonance, fragmentation and shift of particle-hole 0+ states and isoscalar 3- response. 48Ca; isoscalar quadrupole (GQR) response. Large-scale second random phase approximation (SRPA) calculations for giant resonances and low-lying collective excitations.

doi: 10.1103/PhysRevC.81.024317
Citations: PlumX Metrics


2007PA08      Phys.Rev. C 75, 014310 (2007)

P.Papakonstantinou, R.Roth, N.Paar

Nuclear collective excitations using correlated realistic interactions: The role of explicit random-phase approximation correlations

NUCLEAR STRUCTURE 16O, 40Ca, 90Zr, 100Sn, 208Pb; calculated giant resonance energies, strength distributions.

doi: 10.1103/PhysRevC.75.014310
Citations: PlumX Metrics


2007PA11      Europhys.Lett. 78, 12001 (2007)

P.Papakonstantinou

Reduction of the RPA eigenvalue problem and generalized Cholesky decomposition for real-symmetric matrices

doi: 10.1209/0295-5075/78/12001
Citations: PlumX Metrics


2007RO22      Nucl.Phys. A788, 12c (2007)

R.Roth, H.Hergert, N.Paar, P.Papakonstantinou

Nuclear Structure in the UCOM Framework: From Realistic Interactions to Collective Excitations

NUCLEAR STRUCTURE 4He, 16,24O, 34Si, 40,48Ca, 48,56,78Ni, 88Sr, 90Zr, 100,114,132Sn, 146Gd, 208Pb; calculated ground-state energies. 40Ca, 90Zr, 208Pb; calculated giant resonance strength distributions. Unitary correlation operator method, no-core shell model, Hartree-Fock, RPA, many-body perturbation theory. Comparison with data.

doi: 10.1016/j.nuclphysa.2007.01.008
Citations: PlumX Metrics


2006PA11      Int.J.Mod.Phys. E15, 346 (2006)

N.Paar, P.Papakonstantinou, R.Roth, H.Hergert

Self-consistent description of collective excitations in the unitary correlation operator method

NUCLEAR STRUCTURE 16O, 40,48Ca, 90Zr, 132Sn, 208Pb; calculated giant resonance strength distributions. Unitary correlation operator method, RPA.

doi: 10.1142/S0218301306004193
Citations: PlumX Metrics


2006PA13      Phys.Rev. C 73, 035502 (2006)

P.Papakonstantinou, T.S.Kosmas, J.Wambach, A.Faessler

Continuum random-phase approximation study of the incoherent μ- - e- conversion rate and its spurious 1- admixture

NUCLEAR REACTIONS 208Pb(μ-, e-), E at rest; calculated transition strength distribution, incoherent rate; deduced spurious contribution from 1- state. Continuum RPA.

doi: 10.1103/PhysRevC.73.035502
Citations: PlumX Metrics


2006PA22      Czech.J.Phys. 56, 481 (2006)

P.Papakonstantinou, J.Wambach, O.Civitarese, T.S.Kosmas

The role of the continuum and the spurious 1- transitions in incoherent μ--e- conversion rate calculations

NUCLEAR REACTIONS 40Ca, 208Pb(μ-, e), E at rest; calculated conversion rates, strength distributions. Self-consistent continuum RPA, Skyrme interactions.

doi: 10.1007/s10582-006-0112-8
Citations: PlumX Metrics


2006PA24      Phys.Rev. C 74, 014318 (2006)

N.Paar, P.Papakonstantinou, H.Hergert, R.Roth

Collective multipole excitations based on correlated realistic nucleon-nucleon interactions

NUCLEAR STRUCTURE 16O, 40Ca; calculated single-particle level energies. 16O, 40,48Ca, 90Zr, 132Sn, 208Pb; calculated transition strength distributions, giant resonance features. Unitary correlation operator method.

doi: 10.1103/PhysRevC.74.014318
Citations: PlumX Metrics


2006PA30      Phys.Atomic Nuclei 69, 1345 (2006)

N.Paar, P.Papakonstantinou, H.Hergert, R.Roth

Collective Excitations in the Unitary Correlation Operator Method and Relativistic QRPA Studies of Exotic Nuclei

NUCLEAR STRUCTURE 40Ca; calculated single-particle level energies. 4He, 16,24O, 34Si, 40,48Ca, 48,56,68,78Ni, 88Sr, 90Zr, 100,114,132Sn, 146Gd, 208Pb; calculated binding energies. 16O, 40,48Ca, 42Ti, 44Cr, 46Fe, 90Zr, 132Sn, 208Pb; calculated transition strength distributions. Self-consistent RPA approach, unitary correlation operator method.

doi: 10.1134/S1063778806080114
Citations: PlumX Metrics


2006RO15      Phys.Rev. C 73, 044312 (2006)

R.Roth, P.Papakonstantinou, N.Paar, H.Hergert, T.Neff, H.Feldmeier

Hartree-Fock and many body perturbation theory with correlated realistic NN interactions

NUCLEAR STRUCTURE 4He, 16,24O, 34Si, 40,48Ca, 48,56,78Ni, 88Sr, 90Zr, 100,114,132Sn, 146Gd, 208Pb; calculated ground-state energies, radii. 16O, 40Ca, 100,132Sn, 208Pb; calculated single-particle energies. O, Ca, Ni, Sn; calculated ground-state energies for even-A isotopes. Correlated realistic nucleon-nucleon interactions.

doi: 10.1103/PhysRevC.73.044312
Citations: PlumX Metrics


2006SH11      Eur.Phys.J. A 27, 143 (2006)

A.Shebeko, P.Papakonstantinou, E.Mavrommatis

The one-body and two-body density matrices of finite nuclei with an appropriate treatment of the center-of-mass motion

NUCLEAR STRUCTURE 4He; calculated two-body momentum distribution, centre-of-mass correction.

doi: 10.1140/epja/i2005-10247-3
Citations: PlumX Metrics


2005PA12      J.Phys.(London) G31, 185 (2005)

P.Papakonstantinou, E.Mavrommatis, J.Wambach, V.Yu.Ponomarev

A microscopic investigation of the transition form factor in the region of collective multipole excitations of stable and unstable nuclei

NUCLEAR STRUCTURE 56,78,110Ni, 100,120,132Sn; calculated isoscalar and isovector response functions, transition form factor. Self-consistent Skyrme-Hartree-Fock plus continuum RPA model.

doi: 10.1088/0954-3899/31/3/003
Citations: PlumX Metrics


2005PA54      Phys.Lett. B 624, 195 (2005)

N.Paar, P.Papakonstantinou, V.Yu.Ponomarev, J.Wambach

Low-energy dipole excitations towards the proton drip-line: Doubly magic 48Ni

NUCLEAR STRUCTURE 48,56Ni; calculated dipole strength distributions, transition densities. Dirac-Hartree with self consistent relativistic RPA model, Skyrme-Hartree-Fock with continuum RPA model.

doi: 10.1016/j.physletb.2005.08.043
Citations: PlumX Metrics


2005RO32      Phys.Rev. C 72, 034002 (2005)

R.Roth, H.Hergert, P.Papakonstantinou, T.Neff, H.Feldmeier

Matrix elements and few-body calculations within the unitary correlation operator method

NUCLEAR STRUCTURE 3H, 4He; calculated ground-state energies vs oscillator parameter. Unitary correlation operator method.

doi: 10.1103/PhysRevC.72.034002
Citations: PlumX Metrics


2004PA36      Phys.Lett. B 604, 157 (2004)

P.Papakonstantinou, J.Wambach, E.Mavrommatis, V.Yu.Ponomarev

Nuclear vorticity and the low-energy nuclear response: towards the neutron drip line

NUCLEAR STRUCTURE 56,78,110Ni; calculated quadrupole, octupole, and hexadecapole strength distributions, vorticity. Self-consistent continuum RPA.

doi: 10.1016/j.physletb.2004.10.053
Citations: PlumX Metrics


2003PA01      Nucl.Phys. A713, 81 (2003)

P.Papakonstantinou, E.Mavrommatis, T.S.Kosmas

The two-body momentum distribution in finite nuclei

NUCLEAR STRUCTURE 4He, 16O; calculated two-body momentum distributions. Analytical expression, independent-particle shell model.

doi: 10.1016/S0375-9474(02)01295-2
Citations: PlumX Metrics


2000PA32      Nucl.Phys. A673, 171 (2000)

P.Papakonstantinou, E.Mavrommatis, T.S.Kosmas

Generalized Momentum Distribution in Finite Nuclei

NUCLEAR STRUCTURE 16O, 40Ca; calculated generalized momentum distributions; deduced finite-size effects.

doi: 10.1016/S0375-9474(00)00135-4
Citations: PlumX Metrics


2000PA35      Prog.Part.Nucl.Phys. 44, 87 (2000)

P.Papakonstantinou, E.Mavrommatis, T.S.Kosmas

Beyond the One-Body Momentum Distribution in Finite Nuclei

NUCLEAR STRUCTURE 16O; calculated generalized momentum distribution; deduced finite-size effects.

doi: 10.1016/S0146-6410(00)00061-2
Citations: PlumX Metrics


Back to query form