NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 27, 2024.

Search: Author = D.Jain

Found 11 matches.

Back to query form



2023MA25      Nucl.Phys. A1034, 122652 (2023)

J.T.Majekodunmi, T.Y.T.Alsultan, K.Anwar, M.Nujud Badawi, D.Jain, R.Kumar, M.Bhuyan

The α-particle clustering and half-lives of the newly discovered 207, 208Th decay chains within relativistic-Hartree-Bogoliubov approach

NUCLEAR STRUCTURE 207,208Th; analyzed available data; deduced structural and decay properties of the ground state using the Relativistic-Hartree-Bogoliubov (RHB) formalism using the DD-ME2 parameter set within the preformed cluster-decay model (PCM).

doi: 10.1016/j.nuclphysa.2023.122652
Citations: PlumX Metrics


2022MA21      Phys.Rev. C 105, 044617 (2022)

J.T.Majekodunmi, M.Bhuyan, D.Jain, K.Anwar, N.Abdullah, R.Kumar

Cluster decay half-lives of 112-122Ba isotopes from the ground state and intrinsic excited state using the relativistic mean-field formalism within the preformed-cluster-decay model

RADIOACTIVITY 112Ba(9C), (12C), (14N), (17Ne), (36Ar); 114Ba(9C), (12C), (18Ne), (35Cl); 116Ba (12C), (13O), (12N), (35Cl); 118Ba(12C), (42Ca); 120Ba(12C), (43Ca); 122Ba(12C), (43Ca); calculated Q-values, penetrability parameters, cluster preformation probability, T1/2, neck-length parameters. The preformed-cluster-decay model used with the microscopic relativistic mean-field formalism (RMF) employing R3Y and M3Y potentials. Comparison with available experimental data.

doi: 10.1103/PhysRevC.105.044617
Citations: PlumX Metrics


2020BH02      Phys.Rev. C 101, 044603 (2020); Errata Phys.Rev. C 104, 059901 (2021)

M.Bhuyan, R.Kumar, S.Rana, D.Jain, S.K.Patra, B.V.Carlson

Effect of density and nucleon-nucleon potential on the fusion cross section within the relativistic mean field formalism

NUCLEAR STRUCTURE 26Mg, 31Al, 39,46K, 48Ca, 64Ni, 154Sm, 181Ta, 197Au, 238U, 248Cm; calculated total radial density distributions, neutron and proton equivalent diffusiveness parameters using relativistic mean field formalism with NL3* interaction. Comparison with experimental data.

NUCLEAR REACTIONS 154Sm, 238U, 248Cm(48Ca, X), E(cm)=135-234 MeV; 238U(64Ni, X), E(cm)=245-305 MeV; 248Cm(26Mg, X), E(cm)=105-150 MeV; 181Ta(46K, X), (39K, X), E(cm)=140-176 MeV; 197Au(31Al, X), E(cm)=105-160 MeV; calculated σ(E), barrier heights, fusion barrier distributions. Comparison with experimental fusion cross section data. Relativistic mean field formalism using the double-folding procedure, and R3Y and M3Y interactions. Discussion of the role of nucleon-nucleon potential and nucleon densities in fusion cross sections.

doi: 10.1103/PhysRevC.101.044603
Citations: PlumX Metrics


2017MI20      Nucl.Phys. A968, 436 (2017)

R.Mittal, D.Jain, M.K.Sharma

Influence of sticking vs non-sticking limits of moment of inertia and higher order deformations in the decay of 214, 216Rn* compound systems

NUCLEAR REACTIONS 198Pt(16O, x)214Rn, 198Pt(18O, x)216Rn; calculated deformation, moment of inertia vs intranuclear distance for both sticking and non-sticking case, preformation probability for decay of Rn into two fragments vs fragment mass, deformation, moment of inertia, fusion-evaporation σ, fusion-fission σ using DCM (Dynamical Cluster Decay Model). Compared with available data.

doi: 10.1016/j.nuclphysa.2017.09.001
Citations: PlumX Metrics


2017RA26      Eur.Phys.J. A 53, 208 (2017)

Rajni, D.Jain, Is.Sharma, M.K.Sharma

Impact of spin-orbit density dependent potential in heavy ion reactions forming Se nuclei

NUCLEAR REACTIONS 45Sc(27Al, x), E(cm)=31.74-50.05 MeV; calculated ER σ and IMF σ within DCM (Dynamical Cluster-decay Model) using SEDF (Skyrme energy density formalism) with different forces; deduced effect of quadrupole deformation on spin-orbit density dependent and independent parts.

doi: 10.1140/epja/i2017-12407-2
Citations: PlumX Metrics


2014JA17      Eur.Phys.J. A 50, 155 (2014)

D.Jain, M.K.Sharma, Rajni, R.Kumar, R.K.Gupta

Systematic analysis of hot Yb* isotopes using the energy density formalism

NUCLEAR REACTIONS 100Mo(60Ni, x), (64Ni, x), E(cm)=120-160 MeV;144,148Sm(16O, x), E(cm)=55-80 MeV;100Mo(Ni, x)Yb*, E(cm)=123.0, 149.6 MeV; calculated fusion σ using l-summed extended Wong model with different interactions. Compared to data.

doi: 10.1140/epja/i2014-14155-1
Citations: PlumX Metrics


2014KU17      Nucl.Phys. A929, 169 (2014)

R.Kumar, D.Jain

Entrance channel effect with stable and radioactive beams using dynamical cluster decay model

NUCLEAR REACTIONS 40Ca(132Sn, x), E(cm)=108.59-156.28 MeV;40Ca(134Te, x), E(cm)=108.0-156.0 MeV;48Ca(124Sn, x), E(cm)=109.90-163.29 MeV; calculated interaction potential, neck-length parameter, evaporation residue σ, fragmentation 174Hf potential for deformed nuclei and preformation probability using DCM (dynamical cluster-decay model). Compared to data.

doi: 10.1016/j.nuclphysa.2014.06.014
Citations: PlumX Metrics


2013JA04      Phys.Rev. C 87, 044612 (2013)

D.Jain, R.Kumar, M.K.Sharma

Reaction dynamics of Pt* isotopes formed using stable and radioactive Sn beams

NUCLEAR REACTIONS 58Ni(132Sn, X)190Pt*, E(cm)=166.4-197.1 MeV; 64Ni(126Sn, X)190Pt*, E(cm)=181.7-215.5 MeV; calculated fragmentation potential, fragment mass distribution, preformation probability, evaporation residue σ(E), fusion σ(E) using extended Wong model, barrier height. 64Ni(124Sn, X)188Pt*, 64Ni(127Sn, X)191Pt*, 64Ni(128Sn, X)192Pt*, 64Ni(132Sn, X)196Pt*, E(cm)=180-218 MeV; calculated evaporation residue σ(E), fragmentation potentials, barrier-lowering parameter. Dynamical cluster-decay model calculations. Comparison with available experimental data.

doi: 10.1103/PhysRevC.87.044612
Citations: PlumX Metrics


2013JA14      Nucl.Phys. A915, 106 (2013)

D.Jain, R.Kumar, M.K.Sharma

Effect of deformation and orientation on interaction barrier and fusion cross-sections using various proximity potentials

NUCLEAR REACTIONS 64Ni(46Ti, X), E(cm)=75-105 MeV;64Ni(64Ni, X), E(cm)=90-120 MeV;132Sn(64Ni, X), E(cm)=145-205 MeV; 74Ge(64Ni, X), E(cm)=100-125 MeV;92Zr(16O, X), E(cm)=40-80 MeV;96Zr(48Ca, X), E(cm)=90-120 MeV;100Mo(64Ni, X), E(cm)=125-170 MeV;112Sn(16O, X), E(cm)=48-70 MeV;154Sm(48Ca, X), E(cm)=125-200 MeV;186W(16O, X), E(cm)=65-85 MeV; calculated fusion σ. 92Zr(16O, X), E(cm)=69.76 MeV;96Zr(48Ca, X), E(cm)=112.1 MeV;64Ni(46Ti, X), E(cm)=92.3 MeV; calculated σ(θ). Different types of proximity potentials considering deformation and orientation. Compared to data. More reactions calculated, but the cross sections not presented.

doi: 10.1016/j.nuclphysa.2013.07.002
Citations: PlumX Metrics


2013KA43      Nucl.Phys. A916, 260 (2013)

G.Kaur, D.Jain, R.Kumar, M.K.Sharma

Formation and decay cross sections of 66AS* formed in an exotic proton-halo 8B induced reaction

NUCLEAR REACTIONS 58Ni(8Be, γ), (8Be, p), (8Be, X), E(cm)=15.2, 25.5 MeV; calculated halo nucleus fusion σ, mass distributions, fragmentation probability.

doi: 10.1016/j.nuclphysa.2013.07.013
Citations: PlumX Metrics


2012JA07      Phys.Rev. C 85, 024615 (2012)

D.Jain, R.Kumar, M.K.Sharma, R.K.Gupta

Skyrme forces and the fusion-fission dynamics of the 132Sn +64Ni → 196Pt* reaction

NUCLEAR REACTIONS 132Sn(64Ni, X)196Pt*, E(cm)=148.1-195.2 MeV; calculated fragmentation potential, evaporation residue and compound nucleus fission cross sections, quasifission contribution, preformation probability, neck length parameters, interaction potential, barrier height, fusion cross sections. Dependence of the fusion-fission process on Skyrme forces. 112Sn(64Ni, X)176Pt*, E(cm)=162.9 MeV; calculated fragmentation potential. Dynamical cluster-decay model (DCM), and l-summed extended-Wong model. Comparison with previous studies and experimental data.

doi: 10.1103/PhysRevC.85.024615
Citations: PlumX Metrics


Back to query form