NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 27, 2024.

Search: Author = J.T.Majekodunmi

Found 7 matches.

Back to query form



2024AL02      Nucl.Phys. A1041, 122784 (2024)

T.Y.T.Alsultan, J.T.Majekodunmi, R.Kumar, B.T.Goh, M.Bhuyan

Impact of nuclear rotation corrections on alpha decay half-lives of superheavy nuclei within 98 ≤ Z ≤ 120

RADIOACTIVITY 228,230,232,234,236,238,240,242,244,246,248,250,252,254,256,258,260,262,264,266,268,270,272,274,276,278,280,282,284,286,288,290,292,294,296Cf, 232,234,236,238,240,242,244,246,248,250,252,254,256,258,260,262,264,266,268,270,272,274,276,278,280,282,284,286,288,290,292,294,296,298,300,302,304Fm, 238,240,242,244,246,248,250,252,254,256,258,260,262,264,266,268,270,272,274,276,278,280,282,284,286,288,290,292,294,296,298,300,302,304,306,308,310,312,314No, 244,246,248,250,252,254,256,258,260,262,264,266,268,270,272,274,276,278,280,282,284,286,288,290,292,294,296,298,300,302,304,306,308,310,312,314,316,318,320Rf, 250,252,254,256,258,260,262,264,266,268,270,272,274,276,278,280,282,284,286,288,290,292,294,296,298,300,302,304,306,308,310,312,314,316,318,320,322,324,326,328,330,332Sg, 336Sg, 258,260,262,264,266,268,270,272,274,276,278,280,282,284,286,288,290,292,294,296,298,300,302,304,306,308,310,312,314,316,318,320,322,324,326,328,330,332,334,336,338,340,342,344Hs, 262,264,266,268,270,272,274,276,278,280,282,284,286,288,290,292,294,296,298,300,302,304,306,308,310,312,314,316,318,320,322,324,326,328,330,332,334,336,338,340,342,344,346,348,350Ds, 270,272,274,276,278,280,282,284,286,288,290,292,294,296,298,300,302,304,306,308,310,312,314,316,318,320,322,324,326,328,330,332,334,336,338,340,342,344,346,348,350,352,354,356,358,360,362Cn, 274,276,278,280,282,284,286,288,290,292,294,296,298,300,302,304,306,308,310,312,314,316,318,320,322,324,326,328,330,332,334,336,338,340,342,344,346,348,350,352,354,356,358,360,362,364,366Fl, 374Fl, 282,284,286,288,290,292,294,296,298,300,302,304,306,308,310,312,314,316,318,320,322,324,326,328,330,332,334,336,338,340,342,344,346,348,350,352,354,356,358,360,362,364,366,368,370,372,374,376,378,380Lv, 288,290,292,294,296,298,300,302,304,306,308,310,312,314,316,318,320,322,324,326,328,330,332,334,336,338,340,342,344,346,348,350,352,354,356,358,360,362,364,366,368,370,372,374,376,378,380,382,384,386,388,390Og, 292,294,296,298,300,302,304,306,308,310,312,314,316,318,320,322,324,326,328,330,332,334,336,338,340,342,344,346,348,350,352,354,356,358,360,362,364,366,368,370,372,374,376,378,380,382,384,386,388,390,392,394,396,398120(α); calculated T1/2 using the axially deformed relativistic Hartree-Bogoliubov theory in the continuum (DRHBc) with the PC-PK1 parameter set. Comparison with available data.

doi: 10.1016/j.nuclphysa.2023.122784
Citations: PlumX Metrics


2023AL23      Phys.Part. and Nucl.Lett. 20, 969 (2023)

Th.Y.T.Alsultan, J.T.Majekodunmi, R.Kumar, B.T.Goh, M.Bhuyan

Study of Rotational Effect on Even-Even 254, 256Rf Isotopes of α-Particle Radioactivity Using Various Semi-Empirical Formulae

RADIOACTIVITY 254,256Rf, 250,252No, 246,248Fm, 242,244Cf(α); calculated T1/2 using deformed relativistic Hartree-Bogoliubov theory in the continuum (DRHBc) formalism with the PC-PK1 parameter set.

doi: 10.1134/S1547477123050059
Citations: PlumX Metrics


2023DA12      Nucl.Phys. A1037, 122703 (2023)

M.Das, J.T.Majekodunmi, N.Biswal, R.N.Panda, M.Bhuyan

Correlation between the nuclear structure and reaction dynamics of Ar-isotopes as projectile using the relativistic mean-field approach

NUCLEAR STRUCTURE 30,32,34,36,38,40,42,44,46,48,50,52,54,56,58,60Ar; analyzed available data; deduced nuclear properties, σ using the relativistic mean-field with the NL3* parameter set, several bulk properties such as binding energies, charge radii, quadrupole deformation parameter, two neutron separation energy, and differential two neutron separation energy with the shell closure parameter are probed for the mentioned isotopic chain.

doi: 10.1016/j.nuclphysa.2023.122703
Citations: PlumX Metrics


2023MA25      Nucl.Phys. A1034, 122652 (2023)

J.T.Majekodunmi, T.Y.T.Alsultan, K.Anwar, M.Nujud Badawi, D.Jain, R.Kumar, M.Bhuyan

The α-particle clustering and half-lives of the newly discovered 207, 208Th decay chains within relativistic-Hartree-Bogoliubov approach

NUCLEAR STRUCTURE 207,208Th; analyzed available data; deduced structural and decay properties of the ground state using the Relativistic-Hartree-Bogoliubov (RHB) formalism using the DD-ME2 parameter set within the preformed cluster-decay model (PCM).

doi: 10.1016/j.nuclphysa.2023.122652
Citations: PlumX Metrics


2023MA31      Europhys.Lett. 143, 24001 (2023)

J.T.Majekodunmi, R.Kumar, M.Bhuyan

Quest for a universal cluster preformation formula: A new paradigm for estimating the cluster formation energy

RADIOACTIVITY 208Pb(14C), (20O), (22Ne), (24Ne), (26Ne), (28Mg), (30Mg), (34Si), 210Pb(55Ti), 206Hg(61Cr), (65Fe), 205Hg(64Fe), (68Ni), 204Hg(48Ca), 206Hg(72Ni), 208Pb(74Ni), (76Zn); analyzed available data; deduced new formula the nonlinear least-square fitting parameters, T1/2. Comparison with available data.

doi: 10.1209/0295-5075/ace475
Citations: PlumX Metrics


2022MA21      Phys.Rev. C 105, 044617 (2022)

J.T.Majekodunmi, M.Bhuyan, D.Jain, K.Anwar, N.Abdullah, R.Kumar

Cluster decay half-lives of 112-122Ba isotopes from the ground state and intrinsic excited state using the relativistic mean-field formalism within the preformed-cluster-decay model

RADIOACTIVITY 112Ba(9C), (12C), (14N), (17Ne), (36Ar); 114Ba(9C), (12C), (18Ne), (35Cl); 116Ba (12C), (13O), (12N), (35Cl); 118Ba(12C), (42Ca); 120Ba(12C), (43Ca); 122Ba(12C), (43Ca); calculated Q-values, penetrability parameters, cluster preformation probability, T1/2, neck-length parameters. The preformed-cluster-decay model used with the microscopic relativistic mean-field formalism (RMF) employing R3Y and M3Y potentials. Comparison with available experimental data.

doi: 10.1103/PhysRevC.105.044617
Citations: PlumX Metrics


2022PA04      Phys.Rev. C 105, 014318 (2022)

J.A.Pattnaik, J.T.Majekodunmi, A.Kumar, M.Bhuyan, S.K.Patra

Appearance of a peak in the symmetry energy at N=126 for the Pb isotopic chain within the relativistic energy density functional approach

NUCLEAR STRUCTURE 180,190,208,236,266Pb; calculated relativistic mean field densities and weight functions using the NL3 and G3 parameter sets. 180,182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214,216,218,220,222,224,226,228,230,232,234,236,238,240,242,244,246,248,250,252,254,256,258,260,262,264,266Pb; calculated nuclear symmetry energies using the relativistic energy density and Bruckner energy density functionals, with G3 and NL3 parameter sets, surface and volume symmetry using Danielewicz's liquid drop prescription with G3 and NL3 parameter sets. Coherent density fluctuation model parametrization procedure based on newly derived relativistic energy density functional by 2021Ku07: Phys. Rev. C 103, 024305 from the effective field theory.

doi: 10.1103/PhysRevC.105.014318
Citations: PlumX Metrics


Back to query form