NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of May 3, 2024.

Search: Author = S.Rana

Found 9 matches.

Back to query form



2024RA16      Phys.Rev. C 109, 044613 (2024)

Sh.Rana, M.Bhuyan, S.K.Patra, R.Kumar

Nuclear incompressibility and its enduring impact on fusion cross sections

doi: 10.1103/PhysRevC.109.044613
Citations: PlumX Metrics


2022BH05      Phys.Rev. C 106, 044602 (2022)

M.Bhuyan, S.Rana, N.Jain, R.Kumar, S.K.Patra, B.V.Carlson

Medium-dependent relativistic NN potential: Application to fusion dynamics

NUCLEAR REACTIONS 40Ca(16O, X), E(cm)=20-40 MeV;58Ni(40Ca, X), E(cm)=65-100 MeV;90Zr(40Ca, X), E(cm)=65-120 MeV;144Sm(16O, X), E(cm)=55-80 MeV;208Pb(16O, X), E(cm)=70-90 MeV;208Pb(48Ca, X), E(cm)=170-220 MeV; calculated positions and heights of the fusion barriers, fusion σ(E). Calculations using R3Y NN potential described in terms of density-dependent nucleonmeson couplings within the framework of the relativistic-Hartree-Bogoliubov (RHB) approach. Comparison to the available experimental data and calculations using different forms of the NN potential (R3Y, DDR3Y, M3Y, and DDM3Y).

doi: 10.1103/PhysRevC.106.044602
Citations: PlumX Metrics


2022KU11      Phys.Rev. C 105, 044606 (2022)

R.Kumar, S.Rana, M.Bhuyan, P.Mohr

Fusion cross section of α-induced reactions for heavy target nuclei

NUCLEAR REACTIONS 208Pb, 209Bi, 235,238U(α, X), E=15-30 MeV; calculated fusion σ(E), fusion barrier, astrophysical S-factor. Nonrelativistic Skryme-Hartree-Fock (SHF) and the relativistic mean-field (RMF) formalisms for the NL3* parameter set along with density-dependent M3Y and relativistic R3Y effective potentials. Comparison to available experimental data.

NUCLEAR STRUCTURE 208Pb, 209Bi, 235,238U; calculated radial distributions of total density. Skyrme-Hartree-Fock (SHF) and relativistic mean-field (RMF) formalisms.

doi: 10.1103/PhysRevC.105.044606
Citations: PlumX Metrics


2022RA10      Phys.Rev. C 105, 054613 (2022)

S.Rana, M.Bhuyan, R.Kumar

Systematic study of fusion barrier characteristics within the relativistic mean-field formalism

NUCLEAR STRUCTURE 31Al, 48Ca, 154Sm, 252Cf; calculated total density distribution. Relativistic mean-field calculations.

NUCLEAR REACTIONS 197Au(31Al, X), E=100-10 MeV; 181Ta(39K, X), E=140-180 MeV; 181Ta(46K, X), E=140-170 MeV; 238U(64Ni, X), E=250-305 MeV; 238U(48Ca, X), E=180-245 MeV; 154Sm(48Ca, X), E=135-195 MeV; 248Cm(48Ca, X), E=190-210 MeV; 248Cm(26Mg, X), E=110-150 MeV; 257Fm(40Ca, X), E=200-230 MeV; 248Cf(46Ti, X), E=220-250 MeV; 249Cf(46Ti, X), E=210-240 MeV; 254Fm(48Ca, X), E=190-230 MeV; 242Cm(50Cr, X), E=230-260 MeV; 249Cf(50Ti, X), E=210-240 MeV; 252Cf(50Ti, X), E=205-240 MeV; 248Cm(54Cr, X), E=220-260 MeV; 244Pu(58Fe, X), E=230-270 MeV; 235U(64Ni, X), E=250-280 MeV; 236U(66Ni, X), E=250-280 MeV; 254Cf(50Ti, X), E=210-250 MeV;250Cm(54Cr, X), E=235-260 MeV; 244Pu(60Fe, X), E=240-270 MeV; 232Th(72Zn, X), E=260-300 MeV; 228Ra(76Ge, X), E=270-310 MeV; calculated σ(E), total interaction potential, barrier height, barrier position. Relativistic mean-field (RMF) formalism with M3Y, relativistic R3Y and density-dependent R3Y (DDR3Y) nucleon-nucleon potentials. Comparison to available experimental data.

doi: 10.1103/PhysRevC.105.054613
Citations: PlumX Metrics


2022RA32      Eur.Phys.J. A 58, 241 (2022)

S.Rana, R.Kumar, S.K.Patra, M.Bhuyan

Fusion dynamics of astrophysical reactions using different transmission coefficients

NUCLEAR REACTIONS 12C, 16O(12C, X), 16O(16O, X), E(cm)<12 MeV; calculated fusion σ within l-summed Wong model using the Hill-Wheeler, Ahmed and Kemble transmission coefficients. Comparison with experimental data.

doi: 10.1140/epja/s10050-022-00893-6
Citations: PlumX Metrics


2021RA18      Phys.Rev. C 104, 024619 (2021)

S.Rana, R.Kumar, M.Bhuyan

Fusion cross section of the superheavy Z=120 nuclei within the relativistic mean-field formalism

NUCLEAR STRUCTURE 40,48Ca, 46,50Ti, 50,54Cr, 58,60Fe, 64,66Ni, 72Zn, 76Ge; 236,238U, 236,238U, 242,248,250Cm, 244Pu, 248,249,252,254Cf, 254,257Fm, 232Th, 228Ra; calculated proton, neutron, and total radial density distributions, surface diffusion parameters, ground-state quadrupole deformation β2 parameters for lighter projectiles and heavier targets in production of Z=120 nuclei using relativistic mean-field (RMF) formalism with the NL3* parameter set. Comparison with available experimental data.

NUCLEAR REACTIONS 257Fm(40Ca, X), 254Fm(48Ca, X), 248Cf(46Ti, X), 249Cf(46Ti, X), 249Cf(50Ti, X), 252Cf(50Ti, X), 242Cm(50Cr, X), 248Cm(54Cr, X), 244Pu(58Fe, X), 238U(64Ni, X), 235U(64Ni, X), 236U(66Ni, X), 254Cf(50Ti, X), 250Cm(54Cr, X), 244Pu(60Fe, X), 232Th(72Zn, X), 228Ra(76Ge, X)292120/294120/295120/297120/299120/302120/304120, E(cm)=200-330 MeV; calculated capture and fusion σ(E), barrier distributions for target-projectile combinations forming Z=120 superheavy nuclei. 248Cf(48Ti, X), 249Cf(46Ti, X), 249,252Cf(50Ti, X), 250Cm(54Cr, X); predicted as the most suitable target-projectile combinations for synthesis of Z=120 isotopes. Microscopic nucleon-nucleon calculations using R3Y interaction.

doi: 10.1103/PhysRevC.104.024619
Citations: PlumX Metrics


2020BH02      Phys.Rev. C 101, 044603 (2020); Errata Phys.Rev. C 104, 059901 (2021)

M.Bhuyan, R.Kumar, S.Rana, D.Jain, S.K.Patra, B.V.Carlson

Effect of density and nucleon-nucleon potential on the fusion cross section within the relativistic mean field formalism

NUCLEAR STRUCTURE 26Mg, 31Al, 39,46K, 48Ca, 64Ni, 154Sm, 181Ta, 197Au, 238U, 248Cm; calculated total radial density distributions, neutron and proton equivalent diffusiveness parameters using relativistic mean field formalism with NL3* interaction. Comparison with experimental data.

NUCLEAR REACTIONS 154Sm, 238U, 248Cm(48Ca, X), E(cm)=135-234 MeV; 238U(64Ni, X), E(cm)=245-305 MeV; 248Cm(26Mg, X), E(cm)=105-150 MeV; 181Ta(46K, X), (39K, X), E(cm)=140-176 MeV; 197Au(31Al, X), E(cm)=105-160 MeV; calculated σ(E), barrier heights, fusion barrier distributions. Comparison with experimental fusion cross section data. Relativistic mean field formalism using the double-folding procedure, and R3Y and M3Y interactions. Discussion of the role of nucleon-nucleon potential and nucleon densities in fusion cross sections.

doi: 10.1103/PhysRevC.101.044603
Citations: PlumX Metrics


2019VE04      Nucl.Phys. A989, 117 (2019)

D.S.Verma, Kushmakshi, S.Rana

Isospin influence on the decay of compound nuclei formed in 78, 82Kr + 40Ca and 78, 86Kr + 40, 48Ca reactions

NUCLEAR REACTIONS 40Ca(78Kr, x)118Ba, E=5.5 MeV/nucleon;40Ca(82Kr, x)122Ba, E=5.5 MeV/nucleon; 40,48Ca(78Kr, x), 118Ba;(86Kr, x)134Ba, E=10 MeV/nucleon; calculated scattering potential of the decay channel, fragmentation potential for compound systems 118,122,134Ba for different angular momenta, fragment preformation probability, preformation probability for light projectiles, IMFs and FFs; σ for possible reactions, fragment mass distributions; deduced separately σ values for neutron-rich and neutron-poor systems. Cross sections compared with published data.

doi: 10.1016/j.nuclphysa.2019.06.002
Citations: PlumX Metrics


2012RA17      Pramana 79, 233 (2012)

S.Rana, S.Lahiri, A.M.Jayannavar

Quantum Jarzynski equality with multiple measurement and feedback for isolated system

doi: 10.1007/s12043-012-0304-7
Citations: PlumX Metrics


Back to query form