NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 26, 2024.

Search: Author = B.B.Singh

Found 17 matches.

Back to query form



2023KA03      Phys.Rev. C 107, 014613 (2023)

S.Kaur, N.Kaur, R.Kaur, B.B.Singh, S.K.Patra

Fusion enhancement within a collective clusterization approach applied to the isotopic chain of neutron-rich light-mass compound nuclei

NUCLEAR REACTIONS 12C(12C, X)24Mg, 12C(13C, X)25Mg, 12C(14C, X)26Mg, 12C(15C, X)27Mg, E(cm)=10-15 MeV; calculated fusion σ, fragment mass distribution from Mg compound nucleus fragmentation, fragmentation potential, cluster preformation probability, scattering potential, variation of neck length parameter. Calculations in the framework of dynamical cluster decay model (DCM). Comparison to experimental data.

doi: 10.1103/PhysRevC.107.014613
Citations: PlumX Metrics


2023KA25      Phys.Rev. C 108, 034611 (2023)

R.Kaur, B.B.Singh, M.Kaur, M.K.Sharma, P.P.Singh

Investigating 6, 7Li-induced reactions on 235, 238U through a collective clusterization approach

doi: 10.1103/PhysRevC.108.034611
Citations: PlumX Metrics


2022KA06      Nucl.Phys. A1018, 122361 (2022)

S.Kaur, R.Kaur, B.B.Singh, S.K.Patra

Decay analysis of 24, 25Mg* compound nuclei

NUCLEAR REACTIONS 12C(12C, X)24Mg, 12C(13C, X)25Mg, E not given; analyzed available data; deduced preformation probabilities, σ, level density parameters.

doi: 10.1016/j.nuclphysa.2021.122361
Citations: PlumX Metrics


2021KA24      Phys.Rev. C 103, 054608 (2021)

M.Kaur, B.B.Singh, S.K.Patra

Role of microscopic temperature-dependent binding energies in the decay of 32Si* formed in the 20O + 12C reaction

NUCLEAR REACTIONS 12C(20O, X)32Si*, E(cm)=7.35, 9.29 MeV; calculated fragmentation potential, mass dependence of fragmentation potential, macroscopic and microscopic binding energies for some isobars of A=10, 14, 18, 22, 26 and 30 at T=0 and 3.09 MeV, preformation probability potentials for the emission of 3H, 4He and 5He, fusion cross-sections for light-charged particles. Relativistic mean-field (RMF) calculations using quantum mechanical fragmentation-based dynamical cluster-decay model (DCM), and Davidson mass formula.

doi: 10.1103/PhysRevC.103.054608
Citations: PlumX Metrics


2020KA20      Phys.Rev. C 101, 034614 (2020)

R.Kaur, S.Kaur, B.B.Singh, B.S.Sandhu, S.K.Patra

Clustering effects in the exit channels of 13, 12C + 12C reactions within the collective clusterization mechanism of the dynamical cluster decay model

NUCLEAR REACTIONS 12C(12C, X)24Mg*, (12C, 6Li), (12C, 7Li), (12C, 7Be), (12C, 8Be), (12C, 9Be), (12C, X)25Mg*, (13C, 6Li), (13C, 7Li), (13C, 7Be), (13C, 8Be), (13C, 9Be), E*=53.9 MeV; calculated fragmentation potential, fragment preformation probability, l-summed preformation probability, scattering potential, barrier potential, penetration probability, and σ(25Mg*)/σ(24Mg*). Dynamical cluster decay model (DCM). Comparison with experimental data, and with other theoretical predictions. Discussed role of α-clustering in heavy-ion reactions.

doi: 10.1103/PhysRevC.101.034614
Citations: PlumX Metrics


2020KA26      Phys.Rev. C 101, 044605 (2020)

R.Kaur, M.Kaur, V.Singh, M.Kaur, B.B.Singh, B.S.Sandhu

Dynamical aspects od 48Ti + 58Fe, 58Ni → 106Cd*, 106Sn reactions at energies near the Coulomb barrier

NUCLEAR REACTIONS 58Fe(48Ti, X)106Cd*,58Ni(48Ti, X)106Sn*, E=118.06-165.8 MeV; calculated fragmentation and scattering potentials, barrier lowering and neck-length parameters, preformation probabilities, σ(E) as function of light and heavy fragments of the compound nuclei. Dynamical cluster decay model (DCM).

doi: 10.1103/PhysRevC.101.044605
Citations: PlumX Metrics


2019KA05      Phys.Rev. C 99, 014614 (2019)

M.Kaur, B.B.Singh, S.Kaur, R.K.Gupta

N/Z dependence of decay channels in A=80 compound nuclei

NUCLEAR REACTIONS 40Ca(40Ca, X)80Zr*, E(cm)=62.14 MeV; 64Zn(16O, X)80Sr*, E(cm)=48.0 MeV; 48Ca(32S, X)80Kr*, E(cm)=39.8 MeV; calculated radial scattering potential profiles, fragmentation potential, preformation and penetration probability probabilities as function of fragment mass and angular momentum, fusion σ for emission of light particles, intermediate mass fragments, and symmetric mass fragments. Dynamical cluster-decay model. Comparison with experimental values of fusion σ.

doi: 10.1103/PhysRevC.99.014614
Citations: PlumX Metrics


2018KA02      Nucl.Phys. A969, 14 (2018)

M.Kaur, B.B.Singh, M.K.Sharma, R.K.Gupta

Analysis of intermediate and light mass fragments from composite systems 26-29Al* formed in 16, 18O + 10, 11B reactions

NUCLEAR REACTIONS 10,11B(16O, x), (18O, x), E=1-4 MeV/nucleon; calculated fragmentation potential for the composite system, fragment mass distribution, fragment preformation probability using DCM (Dynamical Cluster decay Model) for both spherical and deformed nucleus. Light particle emission σ compared to data.

doi: 10.1016/j.nuclphysa.2017.09.014
Citations: PlumX Metrics


2018KA43      Nucl.Phys. A980, 67 (2018)

M.Kaur, B.B.Singh, M.K.Sharma, R.K.Gupta

Study of α-induced reactions forming A=60 compound systems within dynamical cluster-decay model

doi: 10.1016/j.nuclphysa.2018.09.079
Citations: PlumX Metrics


2018KA53      Phys.Rev. C 98, 064612 (2018)

R.Kaur, M.Kaur, V.Singh, S.Kaur, B.B.Singh, B.S.Sandhu

Investigating the fusion enhancement for neutron-rich mid-mass nuclei using the dynamical cluster-decay model

NUCLEAR REACTIONS 28Si(39K, X)67As*,28Si(40K, X)68As*,28Si(41K, X)69As*,28Si(45K, X)73As*,28Si(46K, X)74As*,28Si(47K, X)75As*, E(cm)=36.8-42.6 MeV; calculated fragment potentials and l-summed preformation probability as a function of fragment mass number, scattering potentials for the compound nuclei decaying through one-proton and one-neutron channels, barrier lowering as function of incident energy, summed penetration probabilities, fusion σ(E), -summed fragment cross sections using dynamical cluster-decay model (DCM). Comparison with available experimental data.

doi: 10.1103/PhysRevC.98.064612
Citations: PlumX Metrics


2017KA05      Phys.Rev. C 95, 014611 (2017)

M.Kaur, B.B.Singh, S.K.Patra, R.K.Gupta

Clustering effects and decay analysis of the light-mass N=Z and N ≠ Z composite systems formed in heavy ion collisions

NUCLEAR REACTIONS 10B(10B, X)20Ne*, E(cm)=12-25 MeV; 16O(12C, X)28Si*, E(cm)=50.14-68.57 MeV; 28Si(12C, X)40Ca*, E(cm)=53.90 MeV; 10B(11B, X)21Ne*, E(cm)=13.09-26.19 MeV; 11B(11B, X)22Ne*, E(cm)=12-25 MeV; 11B(28Si, X)39K*, E(cm)=45.94 MeV; 12C(27Al, X)39K*, E(cm)=50.53 MeV; calculated preformation and penetration probabilities as function of fragment or cluster mass, scattering and fragment potentials for the decay of α- and non-α conjugate systems, fission-fusion σ(E). Dynamical cluster-decay model (DCM) based on quantum-mechanical fragmentation theory (QMFT). Comparison with experimental data.

doi: 10.1103/PhysRevC.95.014611
Citations: PlumX Metrics


2015KA30      Phys.Rev. C 92, 024623 (2015)

M.Kaur, B.B.Singh, M.K.Sharma, R.K.Gupta

Decay analysis of compound nuclei with masses A ≈ 30-200 formed in reactions involving loosely bound projectiles

NUCLEAR REACTIONS 27Al(7Li, X), E(cm)=7.94 MeV; 28Si(7Li, X), E(cm)=7.79 MeV; 32S(7Li, X), E(cm)=8.21 MeV; 40Ca(7Li, X), E(cm)=8.51 MeV; 48Ti(7Li, X), E(cm)=8.72 MeV; 59Co(7Li, X), E(cm)=9.88 MeV; 27Al(7Be, X), E(cm)=13.50 MeV; 32S(7Be, X), E(cm)=13.99 MeV; 40Ca(7Be, X), E(cm)=14.47 MeV; 48Ti(7Be, X), E(cm)=14.84 MeV; 58Ni(7Be, X), E(cm)=14.99 MeV; 65Cu(7Be, X), E(cm)=15.35 MeV; 27Al(9Be, X), E(cm)=21.00 MeV; 28Si(9Be, X), E(cm)=21.19 MeV; 124Sn(9Be, X), E(cm)=26.18 MeV; 144Sm(9Be, X), E(cm)=26.54 MeV; 169Tm(9Be, X), E(cm)=26.58 MeV; 187Re(9Be, X), E(cm)=26.71 MeV; calculated barrier modification factors, fragmentation potentials for A=1-18 fragments for 7Li projectile, A=30-70 for 7Be projectile, preformation and penetration probabilities, fusion cross sections. Dynamical cluster-decay model (DCM) for heavy-ion reactions at low energies. Comparison with available experimental data.

doi: 10.1103/PhysRevC.92.024623
Citations: PlumX Metrics


2012SI01      J.Phys.(London) G39, 025101 (2012)

B.B.Singh, M.Bhuyan, S.K.Patra, R.K.Gupta

Optical potential obtained from relativistic-mean-field theory-based microscopic nucleon-nucleon interaction: applied to cluster radioactive decays

RADIOACTIVITY 222Ra(14C), 230U(22Ne), 231Pa(23F), 232U(24Ne), 236Pu(28Mg), 238Pu(30Mg); calculated WKB penetration probabilities for the M3Y+EX interaction optical model potentials. Comparison with the M3Y+EX NN-interaction potential.

doi: 10.1088/0954-3899/39/2/025101
Citations: PlumX Metrics


2011SI14      Phys.Rev. C 83, 064601 (2011)

B.B.Singh, B.B.Sahu, S.K.Patra

α-decay and fusion phenomena in heavy ion collisions using nucleon-nucleon interactions derived from relativistic mean-field theory

NUCLEAR REACTIONS 208Pb(12C, X), E(cm)=55-90 MeV; 208Pb(16O, X), E(cm)=70-110 meV; calculated barrier energies, fusion cross sections, fusion barrier distribution. Double-folding model for relativistic mean field-3-Yukawa (R3Y) interaction, comparison with Michigan-3-Yukawa (M3Y) effective NN interactions, and with experimental data.

RADIOACTIVITY 221Fr, 221,222,223,224,226Ra, 223,225Ac, 226,228,230Th, 230,232,233,234,236,238U, 231Pa, 237Np, 236,238Pu, 241Am, 242Cm(α); calculated penetrability. Comparison with experimental data.

doi: 10.1103/PhysRevC.83.064601
Citations: PlumX Metrics


2008SI17      Phys.Rev. C 77, 054613 (2008)

B.B.Singh, M.K.Sharma, R.K.Gupta

Decay of 246Bk* formed in similar entrance channel reactions of 11B+235U and 14N+232Th at low energies using the dynamical cluster-decay model

RADIOACTIVITY 246Bk(SF) [from 235U(11B, X); 232Th(14N, X), E=70.6 MeV]; calculated fission σ, scattering potentials, fragmentation potentials, preformation probabilities, angular momenta. Dynamical cluster decay model.

doi: 10.1103/PhysRevC.77.054613
Citations: PlumX Metrics


2006DH01      Eur.Phys.J. A 27, 33 (2006)

A.Dhal, R.K.Sinha, P.Agarwal, S.Kumar, Monika, B.B.Singh, R.Kumar, P.Bringel, A.Neusser, R.Kumar, K.S.Golda, R.P.Singh, S.Muralithar, N.Madhavan, J.J.Das, A.Shukla, P.K.Raina, K.S.Thind, A.K.Sinha, I.M.Govil, P.K.Joshi, R.K.Bhowmik, A.K.Jain, S.C.Pancholi, L.Chaturvedi

Shape changes at high spin in 78Kr

NUCLEAR REACTIONS 63Cu(19F, 2p2n), E=60 MeV; measured Eγ, Iγ, γγ-coin, DSA. 78Kr deduced high spin levels, T1/2, transition quadrupole moments. Comparison with Hartree-Fock-Bogoliubov model. INGA array.

doi: 10.1140/epja/i2005-10230-0
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2006SI26      Eur.Phys.J. A 28, 277 (2006); Erratum Eur.Phys.J. A 29, 253 (2006)

R.K.Sinha, A.Dhal, P.Agarwal, S.Kumar, Monika, B.B.Singh, R.Kumar, P.Bringel, A.Neusser, R.Kumar, K.S.Golda, R.P.Singh, S.Muralithar, N.Madhavan, J.J.Das, K.S.Thind, A.K.Sinha, I.M.Govil, R.K.Bhowmik, J.B.Gupta, P.K.Joshi, A.K.Jain, S.C.Pancholi, L.Chaturvedi

Loss of collectivity in 79Rb

NUCLEAR REACTIONS 63Cu(19F, 2np), E=60 MeV; measured Eγ, Iγ, γγ-coin, DSA. 79Rb deduced high-spin levels, T1/2, transition quadrupole moments. Comparison with Total Routhian Surface calculations. INGA array.

doi: 10.1140/epja/i2005-10286-8
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


Back to query form