NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 27, 2024.

Search: Author = A.Adel

Found 38 matches.

Back to query form



2024IS01      Phys.Rev. C 109, 014606 (2024)

M.Ismail, S.G.Abd-Elnasser, A.Adel, I.A.M.Abdul-Magead, H.M.Elsharkawy

Systematic investigation of α- and cluster-decay modes in superheavy nuclei

doi: 10.1103/PhysRevC.109.014606
Citations: PlumX Metrics


2023FA13      J.Phys.(London) G50, 125102 (2023)

F.A.Fareed, W.M.Seif, A.Adel, I.A.M.Abdul-Magead

Signatures of elongated and compact configurations in the fusion barrier distribution of deformed nuclei

NUCLEAR REACTIONS 89Y(34S, X), 40Ca(32S, X), 120Sn(28Si, X), 96Zr(40Ca, X), 192Os(40Ca, X), 194Pt(40Ca, X), E(cm)<200 MeV; calculated fusion σ using the coupled-channel method, starting from orientation-dependent folding potentials based on M3Y-Reid nucleon–nucleon interaction, with coupling to the anticipated vibrational and rotational excitations in projectile and target nuclei; deduce the signature of the hot fusion process within the compact configuration of the participating deformed nuclei is always evident in the extracted fusion barrier distribution. Comparison with available data.

doi: 10.1088/1361-6471/acff10
Citations: PlumX Metrics


2023SE06      Phys.Rev. C 107, 044601 (2023)

W.M.Seif, A.Adel, N.V.Antonenko, G.G.Adamian

Enhanced α decays to negative-parity states in even-even nuclei with octupole deformation

RADIOACTIVITY 222,224,226,228,230,232Th, 222,224,226Ra, 228,232U, 230Pu(α); calculated branching ratios with and without the inclusion of the hindrance factor to the ground and excited states in daughter nuclei. Described the correlation of static octupole deformation with enhancement of decay to low lying asymmetry states of negative parity. Comparison to experimental data.

doi: 10.1103/PhysRevC.107.044601
Citations: PlumX Metrics


2022IS03      J.Phys.(London) G49, 075102 (2022)

M.Ismail, A.Adel

Cluster radioactivity around shell closures: correlation of half-lives with the energy levels of daughter nuclei

RADIOACTIVITY 221Fr, 221,222,223,224,225,226Ra, 225Ac(14C), 228Th(20O), 231Pa(23F), 230U(22Ne), 230Th, 231Pa, 232,233,234U(24Ne), 234U(26Ne), 234U, 235U, 236,238Pu(28Mg), 238Pu(30Mg), (32Si), 242Cm(34Si); calculated T1/2 using the universal decay law (UDL) formula, as well as the double-folding model derived from the Michigan three-range Yukawa-Paris NN interaction with zero- and finite-range exchange components.

doi: 10.1088/1361-6471/ac6273
Citations: PlumX Metrics


2022IS07      Phys.Scr. 97, 0753032 (2022)

M.Ismail, A.Y.Ellithi, A.Adel, M.A.Abbas

Improved empirical formulas for α-decay half-lives of heavy and superheavy nuclei

RADIOACTIVITY 295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339,340,341,342,343,344,345,346,347,348,349,350120, 304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339121, 301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339,340,341,342,343,344,345122, 348122, 350122, 310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339123, 307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339,340124, 342,344,346,348,350124, 316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339125, 313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339,340126, 324,326,328,330,332,334,336,338,340,342,344,346,348,350126(α); calculated T1/2.

doi: 10.1088/1402-4896/ac758c
Citations: PlumX Metrics


2022IS09      Eur.Phys.J. A 58, 225 (2022)

M.Ismail, A.Y.Ellithi, A.Adel, M.A.Abbas

An improved unified formula for α-decay and cluster radioactivity of heavy and superheavy nuclei

RADIOACTIVITY 221Fr, 221,222,223,224Ra, 226Ra, 225Ac(14C), 228Th(20O), 230U(22Ne), 230Th, 231Pa, 232,233,234U(24Ne), 234U(26Ne), 234,235U, 236,238Pu(28Mg), 238Pu(30Mg), 238Pu(32Si), 242Cm(34Si), 220Ra(12C), 222Ra(18O), 226Ra(20O), 224,226,228Th(24Ne), 230U(32S), 230U(24Ne), 230U(20O), 232U(28Mg), 236Pu(24Ne), 238Cm(32Si), 240Cm(34Si), 242Cm(32Si), 220Ra(16O), 224Ra(20O), 224Th(14C), 224Th(16O), 226Th(14C), 226Th(18O), 228Th, 230U(14C), 230U(28Mg), 232U(32Si), 234Pu(24Ne), 234Pu(28Mg), 234,236Pu(32Si), 238Cm(28Mg), 240Cm(32Si), 242Cm(34Si), 242Cf(32Si), 244Cf(34Si), 246Cf(38S), 244Cm(34Si), 242Cf(35S), 223Ra, 225Ac(18O), 229Th(24Ne), 225Np(12C), 225,227Np(16O), 227Np(18O), 231Np(20O), 233Np(22Ne), 237Np, 237Pu(32Si), 237Am(28Mg), 237,239Am(32Si), 239,241Am(34Si), 229Th(14C), 231Pa(22O), 231Pa(28Si), 233U(28Mg), 225,227Np(14C), 229Np(18O), 231Np(22Ne), 233Np(24Ne), 235Np(28Mg), 237Pu(30Al), 239Am(30Mg), 239,241Cm(32Si), 243Cm(34Si), 249Cf(50Ca), 249Cf(42S), 249Cf(48Ca), 251Cf(46Ar), 232Pa, 236Np(28Mg), 236Np(30Mg), 238Am(28Mg), 238Am(32Si); calculated T1/2. Comparison with available data.

doi: 10.1140/epja/s10050-022-00882-9
Citations: PlumX Metrics


2021AD17      Phys.Scr. 96, 125314 (2021)

A.Adel, A.R.Abdulghany

Proton radioactivity and α-decay of neutron-deficient nuclei

RADIOACTIVITY 109I, 112Cs, 157Ta, 160,161Re, 165,166,167Ir, 170,171Au, 177Tl, 185Bi, 113Cs, 117La, 121Pr, 130,131Eu, 135Tb, 140,141Ho, 145,147Tm, 150,151Lu, 155,156Ta, 159Re, 176Tl(p), 109I, 112Cs, 157Ta, 160,161Re, 165,166,167Ir, 170,171Au, 177Tl, 185Bi, 105,106,107Te, 108I, 110,111,112Xe, 154Yb, 155Lu, 156,157Hf, 158,159Ta, 158,159,160,161W, 162,163Re, 161,162,163,164,165,166Os, 167,168Ir, 166,167,168,169,170Pt, 172Au, 171,172,173,174,175Hg, 177Tl, 178,179Pb(α); calculated T1/2. Comparison with available data.

doi: 10.1088/1402-4896/ac33f6
Citations: PlumX Metrics


2020IS03      Phys.Rev. C 101, 024607 (2020)

M.Ismail, A.Adel

Prediction of α-decay chains and cluster radioactivity of 300-304121 and 302-306122 isotopes using the double-folding potential

RADIOACTIVITY 300,301,302,303,304121, 296,297,298,299,300119, 292,293,294,295,296Ts, 288,289,290,291,292Mc, 284,285,286,287,288Nh, 280,281,282,283,284Rg, 276,277,278,279,280Mt, 272,273,274,275,276Bh, 268,269,270,271,272Db, 264,265,266,267,268Lr(α); 302,303,304,305,306122, 298,299,300,301,302120, 294,295,296,297,298Og, 290,291,292,293,294Lv, 286,287,288,289,290Fl, 282,283,284,285,286Cn, 278,279,280,281,282Ds, 274,275,276,277,278Hs, 270,271,272,273,274Sg, 266,267,268,269,270Rf(α); calculated α-decay half-lives using the density-dependent cluster model, with the α-nucleus potential from the double-folding model with a realistic NN interaction. Comparison with three semiempirical formulas: the Viola-Seaborg-Sobiczewski formula, the modified Brown formula, and the one based on fission theory. N=165-177; compared theoretical and experimental α-decay half-lives. N=288-342, Z=121; N=292-342, Z=122; calculated correlation between the logarithm of the α-preformation factor, Sα, and the fragmentation potential for odd-odd Z=121 and even-even Z=122 nuclei. 300121, 302122(α), (16O), (28Mg), (32Si), (68Ni), (76Zn), (79Ga), (80Ge), (83As), (84Se), (85Br), (86Kr), (89Rb), (90Sr), (91Sr), (92Sr), (93Sr), (94Sr), (96Y), (96Zr), (99Nb), (102Mo); calculated Q values, α-decay and cluster decay half-lives within the double-folding model based on M3Y-Paris NN interaction, unified formula (UF), Horai's scaling law, and the universal decay law (UDL).

doi: 10.1103/PhysRevC.101.024607
Citations: PlumX Metrics


2020IS07      Int.J.Mod.Phys. E29, 2050065 (2020)

M.Ismail, A.Adel

Sequences of single-particle energy levels of even-even SHN with Z = 116 - 132 based on α-decay systematics

NUCLEAR STRUCTURE Z=116-132; calculated Q-values, T1/2 within the density-dependent cluster model; deduced systematics.

doi: 10.1142/S0218301320500652
Citations: PlumX Metrics


2020SE10      Phys.Rev. C 101, 064305 (2020)

W.M.Seif, A.M.H.Abdelhady, A.Adel

Ambiguity of applying the Wildermuth-Tang rule to estimate the quasibound states of α particles in α emitters

RADIOACTIVITY 105,106,107,108,109Te, 186,190,191,194,195,196,197,198,199,200,201,202,204,205,206,207,208,210,212,213,214,215,216,218,219Po, 204,207,209,211,213,214,215,216,217,218,219At; calculated internal and external real part of the quasibound wave function, and spectroscopic α-preformation factors using the Bohr-Sommerfeld quantization condition along with the Wildermuth-Tang prescription in α-decay microscopic calculations. Comparison with other theoretical predictions.

doi: 10.1103/PhysRevC.101.064305
Citations: PlumX Metrics


2019IS06      J.Phys.(London) G46, 075105 (2019)

M.Ismail, A.Adel

α-decay chains and cluster radioactivity of 295-299119 and 298-302120 isotopes using zero- and finite-range NN interactions

RADIOACTIVITY 295119, 291Ts, 287Mc, 283Nh, 279Rg, 275Mt, 271Bh, 267Db, 263Lr, 259Md, 296119, 292Ts, 288Mc, 284Nh, 280Rg, 276Mt, 272Bh, 268Db, 264Lr, 260Md, 297119, 293Ts, 289Mc, 285Nh, 281Rg, 277Mt, 273Bh, 269Db, 265Lr, 261Md, 298119, 294Ts, 290Mc, 286Nh, 281Rg, 278Mt, 274Bh, 270Db, 266Lr, 262Md, 299119, 295Ts, 291Mc, 287Nh, 283Rg, 279Mt, 275Bh, 271Db, 267Lr, 263Md, 298120, 294Og, 290Lv, 286Fl, 282Cn, 278Ds, 274Hs, 270Sg, 266Rf, 262No, 299120, 295Og, 291Lv, 287Fl, 283Cn, 279Ds, 275Hs, 271Sg, 267Rf, 263No, 300120, 296Og, 292Lv, 288Fl, 284Cn, 280Ds, 276Hs, 272Sg, 268Rf, 264No, 301120, 297Og, 293Lv, 289Fl, 285Cn, 281Ds, 277Hs, 273Sg, 269Rf, 265No, 302120, 298Og, 294Lv, 290Fl, 286Cn, 282Ds, 278Hs, 274Sg, 270Rf, 266No(α); calculated T1/2. Comparison with available data.

doi: 10.1088/1361-6471/ab1c28
Citations: PlumX Metrics


2019SE05      Phys.Rev. C 99, 044311 (2019)

W.M.Seif, A.Adel

Additional hindrance of unfavored α decay between states of different parity

RADIOACTIVITY 228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,244Pu, 233,234,236,238,239,240,241,242,243,244,245,246,247,248,250Cm, 237,238,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,256Cf, 241,243,244,246,247,248,249,250,251,252,253,254,255,256,257Fm(α); analyzed experimental values of half-lives for ground state to ground state α decays. 225,226,228,230Th, 251Cf, 255Fm, 235U, 241Am, 247Cm(α); calculated decay widths, and α-preformation factors for favoured and unfavored decay modes of ground states to ground and excited states in daughter nuclides; deduced influence of parity configuration of the parent and daughter nuclei on the α-decay process. realistic M3Y-Paris and Skyrme-SLy4 effective nucleon-nucleon interactions, within the Wentzel-Kramers-Brillouin approximation.

doi: 10.1103/PhysRevC.99.044311
Citations: PlumX Metrics


2018AD08      Nucl.Phys. A975, 1 (2018)

A.Adel, T.Alharbi

Systematics of α-decay fine structure in odd-mass nuclei based on a finite-range nucleon-nucleon interaction

RADIOACTIVITY Z=83-92(α); calculated odd-mass nuclei α-decay to discrete states T1/2, branching ratio, hinderance factor, α-preformation factor using WKB approximation within Bohr-Sommerfeld quantization condition and α-daughter potential from double-folding model with M3Y Paris potential; deduced fine structure. Compared with available data.

doi: 10.1016/j.nuclphysa.2018.04.003
Citations: PlumX Metrics


2018IS02      Phys.Rev. C 97, 044301 (2018)

M.Ismail, A.Adel

Theoretical predictions for α decay chains of 290-298118Og isotopes using a finite-range nucleon-nucleon interaction

RADIOACTIVITY 294Og, 293,294Ts, 290,291,292,293Lv, 287,288,289,290Mc, 286,287,288,289Fl, 282,283,284,285,286Nh, 281,283,285Cn, 278,279,280,281,282Rg, 277,279,281Ds, 274,275,276,278Mt, 275Hs(α), (SF); calculated half-lives for α and SF decays using double-folding model with constant preformation factor, Viola-Seaborg-Sobiczewski (VSS) formula, modified Brown (mB1) formula, and semiempirical formula. Comparison with experimental half-lives. 290,291,292,293,294,295,296,297,298Og, 286,287,288,289,290,291,292,293,294Lv, 282,283,284,285,286,287,288,289,290Fl, 278,279,280,281,282,283,284,285,286Cn, 274,275,276,277,278,279,280,281,282Ds, 270,271,272,273,274,275,276,277,278Hs, 266,267,268,269,270,271,272,273,274Sg, 262,263,264,265,266,267,268,269,270Rf(α), (SF); calculated half-lives for α and SF decays using double-folding model with constant preformation factor, double-folding model with preformation factor extracted from cluster formation model, Viola-Seaborg-Sobiczewski (VSS) formula, modified Brown (mB1) formula, and semiempirical formula, and Q(α) values using WS4+ mass model.

doi: 10.1103/PhysRevC.97.044301
Citations: PlumX Metrics


2018SE17      J.Phys.(London) G45, 115101 (2018)

W.M.Seif, A.M.H.Abdelhady, A.Adel

Improved nucleus-nucleus folding potential with a repulsive core due to the change of intrinsic kinetic energy

RADIOACTIVITY 212Po(α), 232U(24Ne); analyzed available data; deduced folding potential improvements by considering the pivotal repulsive kinetic energy reduced the uncertainty inherent in the decay calculations at small internuclear distances.

doi: 10.1088/1361-6471/aae3d4
Citations: PlumX Metrics


2017AD03      Nucl.Phys. A958, 187 (2017)

A.Adel, T.Alharbi

Cluster decay half-lives of trans-lead nuclei based on a finite-range nucleon-nucleon interaction

RADIOACTIVITY 221Fr, 221,222,223,224,226Ra, 225Ac(14C);228Th(20O);231Pa(23F);230U(22Ne);230Th, 231Pa, 232,233,234U(24Ne);234U(26Ne);234,235U, 236,238Pu(28Mg);238Pu(30Mg), (32Si);242Cm(34Si); calculated T1/2 for zero-range and finite-range spherical nuclei (daughter and ejectile) and for zero-range deformed nuclei. 220Ra(12C), (16O);221,222Ra(18O);224Ra, 225Ac, 226Th, 230U, 234Pu(24Ne);225Ac(18O);224Th(14C), (16O);226Th, 230U, 234Pu(28Mg);230Th(22O);240Cm(30Mg), (32Si);244Cm(34Si);219,220,221,222,223,224,225,226,227,228,229Th(18O);223,224,225,226,227,228,229,230,231,232,234,235,236U(24Ne); calculated T1/2 for zero-range and finite-range spherical nuclei (daughter and ejectile) and for zero-range deformed nuclei. Compared with other calculations. Double-folding model with FR exchange NN interaction and using WKB approximation.

doi: 10.1016/j.nuclphysa.2016.12.002
Citations: PlumX Metrics


2017AD06      Eur.Phys.J. A 53, 1 (2017)

A.Adel, T.Alharbi

Quantitative analysis of the fusion cross sections using different microscopic nucleus-nucleus interactions

NUCLEAR REACTIONS 48Ca(48Ca, x), E(cm)=45-65 MeV;58Ni(16O, x), E(cm)=27-55 MeV;70Ge(16O, x), E(cm)=31-49 MeV;92Zr(16O, x), E(cm)=35-75 MeV;100Mo(28Si, x), E(cm)=65-100 MeV;144Sm(16O, x), E(cm)=55-74 MeV;208Pb(16O, x), E(cm)=69-115 MeV;208Pb(36S, x), E=135-175 MeV; calculated Coulomb barrier, interaction potential (stemming from different NN potentials) for spherical and deformed nuclei including possibility of changing the mutual orientations of nuclei, fusion σ. Potentials calculated for 49 combinations of interacting nuclei. Cross sections compared with data.

doi: 10.1140/epja/i2017-12193-9
Citations: PlumX Metrics


2017IS01      Nucl.Phys. A958, 202 (2017)

M.Ismail, W.M.Seif, A.Adel, A.Abdurrahman

Alpha-decay of deformed superheavy nuclei as a probe of shell closures

RADIOACTIVITY Z=80-103, 111-122(α); calculated α-decay T1/2 (also for daughter nuclei) using density-dependent cluster model based on M3Y-Reid NN interaction; deduced neutron and proton magic numbers. Compared with data.

doi: 10.1016/j.nuclphysa.2016.11.010
Citations: PlumX Metrics


2017IS15      J.Phys.(London) G44, 125106 (2017)

M.Ismail, A.Adel

The isovector nuclear density and improved description of cluster decay half-lives using isospin-dependent NN interaction

RADIOACTIVITY 221Fr, 221,222,223,224,226Ra, 225Ac(14C), 228Th(20O), 231Pa(23F), 230U(20Ne), 230Th, 231Pa, 232,233,234U(24Ne), 234U(26Ne), (28Mg), 235U(28Mg), 236,238Pu(28Mg), 238Pu(30Mg), (32Si), 242Cm(34Si); calculated T1/2. Comparison with experimental data.

doi: 10.1088/1361-6471/aa957f
Citations: PlumX Metrics


2016IS02      J.Phys.(London) G43, 015101 (2016)

M.Ismail, A.Y.Ellithi, A.Adel, H.Anwer

On magic numbers for super- and ultraheavy systems and hypothetical spherical double-magic nuclei

NUCLEAR STRUCTURE Z=72-282; calculated 3D surface of the shell-plus-pairing energy corrections, contour maps of the shell-plus-pairing energy corrections for protons and neutrons, The proton/neutron shell correction energy and residual pairing correction; deduced proton/neutron magic numbers for N=96-540.

doi: 10.1088/0954-3899/43/1/015101
Citations: PlumX Metrics


2016IS04      Nucl.Phys. A947, 64 (2016)

M.Ismail, A.Y.Ellithi, A.Adel, A.R.Abdulghany

Toward a better parameterization of nuclear density for α-decay calculation

NUCLEAR STRUCTURE 208Pb; calculated neutron and proton density distribution, radius using proton and neutron densities given by 3pF (Three Parameter Fermi) distributions with neutron and proton radii and using HFB.

RADIOACTIVITY 186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218Po(α); calculated T1/2 using α-daughter potential, daughter proton and neutron densities given by 3pF (Three Parameter Fermi) distributions with neutron and proton radii and using HF density, α-preformation factor. T1/2 compared to data.

doi: 10.1016/j.nuclphysa.2015.12.008
Citations: PlumX Metrics


2016IS05      Int.J.Mod.Phys. E25, 1650004 (2016)

M.Ismail, A.Y.Ellithi, A.Adel, H.Anwer

Structural properties of heavy and superheavy nuclei in a semi-microscopic approach

NUCLEAR STRUCTURE Z=93-126; calculated 3D Coulomb energy surface of 317No, shell-plus-pairing energy corrections of the deformed isotopes and isotones 254No, 280No, 270Hs, 276Hs, 364126, 378126, 3D plot of the macroscpoic energy of 322Sg, half-density radii, deformation energy, ground state shapes, deformation parameters. Semi-microscopic model in which the Skyrme energy density functional with an empirical two-parameter Fermi density distribution is used to replace the macroscopic part in the MM approach.

doi: 10.1142/S021830131650004X
Citations: PlumX Metrics


2016IS07      Phys.Rev. C 93, 054618 (2016)

M.Ismail, A.Adel, M.M.Botros

Nuclear spin of odd-odd α emitters based on the behavior of α-particle preformation probability

RADIOACTIVITY 166,167,169,171,172,173,174,175,177Ir, 170,173,177,179,181,183,184,185,186Au, 177,179,180,181Tl, 184,185,186,187,188,189,190,191,192,193,194,195Bi, 191,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216At, 200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221Fr, 206,207,208,209,210,211,212,213,214,215Ac(α); calculated half-lives and preformation probabilities; deduced Jπ values from systematics of preformation probabilities. Wentzel-Kramers-Brillouin (WKB) approximation in combination with Bohr-Sommerfeld quantization condition using a realistic density-dependent CDM3Y1-Paris NN interaction. Comparison with experimental values.

doi: 10.1103/PhysRevC.93.054618
Citations: PlumX Metrics


2016IS13      Chin.Phys.C 40, 124102 (2016)

M.Ismail, A.Y.Ellithi, A.Adel, H.Anwer

Islands of stability and quasi-magic numbers for super- and ultra-heavy nuclei

NUCLEAR STRUCTURE Z=72-282, N=96-540; calculated the shell and the residual pairing correction energies for 5569 even-even nuclei; deduced quasi-magic numbers and deformed islands of stability that reside in a range defined by Green's formula and the two-neutrons drip line.

doi: 10.1088/1674-1137/40/12/124102
Citations: PlumX Metrics


2015AD15      Phys.Rev. C 92, 014619 (2015)

A.Adel, T.Alharbi

Fine structure in α decay of even-even nuclei using a finite-range nucleon-nucleon interaction

RADIOACTIVITY 174,176,178Pt, 180,182,184Hg, 186,188,190Pb, 190,192,194,196,198Po, 198,200,202,208,210,212,218,220,222Rn, 222,224,226Ra, 216,226,228,230,232Th, 228,232,234,236U, 230,232,234,236,240Pu, 238,240,242Cm, 244,246,248,250Cf, 248,250,252Fm, 252,256No(α); calculated α-decay half-lives, α branching ratios. Framework of WKB semiclassical approximation in combination with the Bohr-Sommerfeld quantization condition using a realistic M3Y interaction, based on the G-matrix elements of the Paris NN potential. Comparison with values from Geiger-Nuttall law and Viola-Seaborg formula, and with experimental data.

doi: 10.1103/PhysRevC.92.014619
Citations: PlumX Metrics


2015IS04      J.Phys.(London) G42, 075108 (2015)

M.Ismail, A.Y.Ellithi, A.Adel, A.R.Abdulghany

Effect of deformations on the binding energy of centrally depressed nuclei

NUCLEAR STRUCTURE 208Pb, 238U, 252Cf, 280Cn, 285,286,287,288,289,298Fl, 306120, 320126, 339136, 500174; calculated binding energies, proton radii, quadrupole and hexadecapole deformations. Comparison with available data.

doi: 10.1088/0954-3899/42/7/075108
Citations: PlumX Metrics


2014IS03      Phys.Rev. C 89, 034617 (2014)

M.Ismail, A.Adel

Effect of deformation parameters, Q value, and finite-range NN force on α-particle preformation probability

RADIOACTIVITY 210,212,214,216,218,220,222,224,226Th, 222,224,226,228,230,232,234,236,238U, 228,230,232,234,236,238,240,242,244Pu, 238,240,242,244,246,248Cm, 246,248,250,252,254,256Fm(α); calculated preformation probability Sα, α-decay half-lives, β2 and β4 deformation parameters. Double-folding nuclear and Coulomb potentials for deformed nuclei. Deformed density-dependent cluster model and CDM3Y1 NN interaction.

doi: 10.1103/PhysRevC.89.034617
Citations: PlumX Metrics


2014IS09      Phys.Rev. C 90, 064624 (2014)

M.Ismail, A.Adel

Investigation of possible correlation between α-particle preformation probability and energy levels for α emitters with 74 ≤ Z ≤ 83

RADIOACTIVITY 158,159,160,161,162,163,164,165,166,167W, 161,162,163,164,165,166,167,168,169,170,171,172,173,174,186Os, 166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182Pt, 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188Hg, 178,179,180,181,182,183,184,185,186,187,188,189,190,191,192Pb, 185,187,189,191,193,195,197Bi(α); calculated preformation probability of an α cluster, and α-decay half-lives. Realistic density-dependent CDM3Y1-Paris nucleon-nucleon (NN) interaction used to calculate the microscopic α-nucleus potential in the double-folding model. Prediction or confirmation of nuclear spins and parities in this mass region. Comparison with experimental data.

doi: 10.1103/PhysRevC.90.064624
Citations: PlumX Metrics


2013IS06      Nucl.Phys. A912, 18 (2013)

M.Ismail, A.Adel

Effect of energy level sequences and neutron-proton interaction on α-particle preformation probability

RADIOACTIVITY 211,213Bi, 208,210,212,214,216Po, 209,211,213,215,217At, 210,212,214,216,218Rn, 211,213,215,217,219Fr, 212,214,216,218,220Ra, 213,215,217,219,211Ac, 214,216,218,220,222Th, 215,217,219,221,223Pa, 218,224U(α); calculated α preformation probability, T1/2 using realistic density-dependent NN interaction with finite-range exchange part. Compared with data.

doi: 10.1016/j.nuclphysa.2013.05.009
Citations: PlumX Metrics


2013IS13      Phys.Rev. C 88, 054604 (2013)

M.Ismail, A.Adel

Prediction of nuclear spin based on the behavior of α-particle preformation probability

RADIOACTIVITY 189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218Po, 193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222Rn, 202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,226Ra, 208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232Th, 222,223,224,225,226,227,228,229,230,231,232,233,234U, 228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,244Pu, 238,241,242,243,244,245,246,247,248Cm, 240,241,242,243,244,245,246,247,248,249,250,251,252,253,254Cf, 248,249,250,251,252,253,254,255,256,257Fm, 251,252,253,254,255,256,257No(α); calculated preformation probability Sα, half-lives using BDM3Y1-Paris NN interaction within the semiclassical Wentzel-Kramers-Brillouin approximation. 193,195At, 195,197,199Po, 197,199,201Fr, 209,211,213,223,225Th, 215,217Ac, 217,219Pa, 221,223Ra, 251,253No, 249,251Fm, 251,253Es, 253,255Md; predicted J, π or correlated spins of adjacent nuclei. Comparison with experimental data taken from NuDaT2.6.

doi: 10.1103/PhysRevC.88.054604
Citations: PlumX Metrics


2013RA06      Bull.Rus.Acad.Sci.Phys. 77, 411 (2013); Izv.Akad.Nauk RAS, Ser.Fiz 77, 458 (2013)

V.A.Rachkov, A.Adel, A.V.Karpov, A.S.Denikin, V.I.Zagrebaev

Effect of Neutron Transfer Channels in Fusion Reactions with Weakly Bound Nuclei at Subbarrier Energies

NUCLEAR REACTIONS 209Bi(7Li, X), 206,208Pb(9Li, X), (11Li, X), 152Sm(6Li, X), (7Li, X), (9Li, X), (11Li, X), E(cm)<40 MeV; calculated fusion σ. Empirical coupled-channel model, comparison with available data.

doi: 10.3103/S1062873813040199
Citations: PlumX Metrics


2012AD01      Nucl.Phys. A876, 119 (2012)

A.Adel, V.A.Rachkov, A.V.Karpov, A.S.Denikin, M.Ismail, W.M.Seif, A.Y.Ellithi

Effect of neutron rearrangement on subbarrier fusion reactions

NUCLEAR REACTIONS 7Li(54Cr, X), 9Li(52Cr, X), E(cm)=7-14 MeV;11Li(50Cr, X), E(cm)=5-14 MeV;16O(52Cr, X), 18O(50Cr, X), E(cm)=24-30 MeV;16O(116Sn, X), 18O(114Sn, X), E(cm)=45-63 MeV;32S(58Ni, X), (64Ni, X), E(cm)=52-74 MeV;40Ca(48Ca, X), E(cm)=46-58 MeV;40Ca(124Sn, X), E(cm)=106-130 MeV;48Ca(50Cr, X), 44Ca(54Cr, X), E(cm)=56-66 MeV;58Ni(58Ni, X), (64Ni, X), E(cm)=88-114 MeV; calculated fusion σ using empirical channel coupling with neutron transfer.

doi: 10.1016/j.nuclphysa.2012.01.004
Citations: PlumX Metrics


2012IS05      Int.J.Mod.Phys. E21, 1250062 (2012)

M.Ismail, A.Adel

Shell corrections for heavy and superheavy nuclei

NUCLEAR STRUCTURE Z=100-126; calculated total shell-plus-pairing energy corrections, single particle energy levels. Strutinsky method.

doi: 10.1142/S0218301312500620
Citations: PlumX Metrics


2012IS07      Phys.Rev. C 86, 014616 (2012)

M.Ismail, A.Adel

Correlation between α-particle preformation probability and the energy levels of parent nuclei

RADIOACTIVITY 188,190,192,194,196,198,200,202,204,206,208,210,212,214,216,218Po, 196,198,200,202,204,206,208,210,212,214,216,218,220,222Rn, 202,204,206,208,210,212,214,216,218,220,222,224,226Ra, 210,212,214,216,218,220,222,224,226,228,230Th, 218,220,222,224,226,228,230,232,234,236U, 233,236Cm, 237Cf, 249Md, 253Lr, 257Db, 260,265,267Sg, 261,262Bh, 263,265Hs, 281Ds, 285Cn, 285Nh, 288,289Fl, 289Mc, 293,294Ts, 294Og(α); calculated preformation probability Sα, half lives using the realistic density-dependent BDM3Y1-Reid BDM3Y1-Paris nucleon-nucleon interactions. Comparison with experimental data.

doi: 10.1103/PhysRevC.86.014616
Citations: PlumX Metrics


2011IS06      Nucl.Phys. A859, 1 (2011)

M.Ismail, A.Adel

Orientation dependent behavior of the Coulomb barrier parameters for deformed-deformed nuclei

NUCLEAR REACTIONS 238Pu(48Ar, X), 238U, 248Cm(26Mg, X), 238U(22Ne, X), E not given; calculated Coulomb barrier height, radius vs quadrupole deformation at different orientations.

doi: 10.1016/j.nuclphysa.2011.04.005
Citations: PlumX Metrics


2011IS10      Phys.Rev. C 84, 034610 (2011)

M.Ismail, A.Adel

Azimuthal angle dependence of the Coulomb barrier parameters for the interaction between two deformed nuclei

NUCLEAR REACTIONS 28Si(28Si, X), E(cm)=30-65 MeV; 150Nd(150Nd, X), E(cm)=350-600 MeV; 238U(238U, X), E not given; 248Cm(238U, X), E not given; calculated azimuthal angle dependence of the Coulomb barrier parameters using the DFM and the corresponding values from the proximity method, fusion σ(E) for deformed nuclei. Double-folding model with the realistic M3Y nucleon-nucleon interaction.

doi: 10.1103/PhysRevC.84.034610
Citations: PlumX Metrics


2010IS01      Phys.Rev. C 81, 024602 (2010)

M.Ismail, A.Y.Ellithi, M.M.Botros, A.Adel

Systematics of α-decay half-lives around shell closures

RADIOACTIVITY 178,180,184,186,190,194Pb(α); 188,190,192,194,196,198,200,202,204,206,208,210,212,214,216,218Po(α); 238,240,242,244,246,248Cm(α);240,242,244,246,248,250,252,254Cf(α); 246,248,250,252,254,256Fm(α); 252,254,256No(α); 262,264,266,268,270,272Sg(α); 264,266,268,270,272,274,276Hs(α); 268,270,272,274,276,278Ds(α); 282,284,286,288,290,292,294,296,298,300,302,304Cn(α); 286,288,290,292,294,296,298,300,302,304,306Fl(α); 286,288,290,292,294,296,298,300,302,304,306,308Lv(α);290,292,294,296,298,300,302,304,306,308,310Og(α); 290,292,294,296,298,300,302,304,306,308,310120(α); calculated α-decay half-lives using the preformed α model with the M3Y Paris effective interaction for different values of pre-formation probabilities. Comparison with experimental data.

doi: 10.1103/PhysRevC.81.024602
Citations: PlumX Metrics


2010IS05      Phys.Atomic Nuclei 73, 1660 (2010)

M.Ismail, A.Y.Ellithi, M.M.Botros, A.Adel

Binding energies of even-even superheavy nuclei in a semi-microscopic approach

NUCLEAR STRUCTURE Z=98-120; calculated binding energies, quadrupole, hexadecapole deformations, half-density radii. Skyrme nucleon-nucleon interaction, Thomas-Fermi approach.

doi: 10.1134/S1063778810100042
Citations: PlumX Metrics


Back to query form