NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of May 10, 2024.

Search: Author = M.M.Botros

Found 11 matches.

Back to query form



2016IS06      Int.J.Mod.Phys. E25, 1650026 (2016)

M.Ismail, W.M.Seif, M.M.Botros

Adiabatic and coupled channels calculations for near barrier fusion of 16O+238U using realistic nucleon-nucleon interaction

NUCLEAR REACTIONS 238U(16O, X)254Fm, E(cm) < 96 MeV; calculated σ, fusion barrier distribution using potentials derived from the DD M3Y-Reid NN force. Comparison with experimental data.

doi: 10.1142/S0218301316500269
Citations: PlumX Metrics


2016IS07      Phys.Rev. C 93, 054618 (2016)

M.Ismail, A.Adel, M.M.Botros

Nuclear spin of odd-odd α emitters based on the behavior of α-particle preformation probability

RADIOACTIVITY 166,167,169,171,172,173,174,175,177Ir, 170,173,177,179,181,183,184,185,186Au, 177,179,180,181Tl, 184,185,186,187,188,189,190,191,192,193,194,195Bi, 191,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216At, 200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221Fr, 206,207,208,209,210,211,212,213,214,215Ac(α); calculated half-lives and preformation probabilities; deduced Jπ values from systematics of preformation probabilities. Wentzel-Kramers-Brillouin (WKB) approximation in combination with Bohr-Sommerfeld quantization condition using a realistic density-dependent CDM3Y1-Paris NN interaction. Comparison with experimental values.

doi: 10.1103/PhysRevC.93.054618
Citations: PlumX Metrics


2015SE14      Phys.Rev. C 92, 044302 (2015)

W.M.Seif, M.M.Botros, A.I.Refaie

Preformation probability inside α emitters having different ground state spin-parity than their daughters

RADIOACTIVITY 149,151Tb, 173,177,181Hg, 180Tl, 179,181,183,185,187,189Pb, 184,186,187,188,189,190,191,192,193,194,195,196,209,211,212,213Bi, 189,203,209,211Po, 194,195,210,212,220At, 193,205,211,213,219,221Rn, 210,212,214,220,221Fr, 207,213,215,219,221,223Ra, 210,214,216,220,223,224,225,226Ac, 209,211,215,217,221,223,225,227,229Th, 224,225,228,229,230Pa, 217,219,223,225,227,231,235U, 227,229,231,235,236,237Np, 229,233,237,239,241Pu, 235,239,240,241,243Am, 239,241,243,245,247Cm, 243,244,245,247,249Bk, 237,247,249,251,253Cf, 245,246,252,254,255Es, 243,245,247,249,251,253,255,257Fm, 247,249,251,255,256,257,258Md, 253,255,257,257No, 255,257,259Lr, 255,257,259,261Rf, 257,259Db, 259,261,265Sg, 261Bh, 263,267Hs, 267,269,271,273,277Ds, 277,281,285Cn(α); calculated preformation probabilities S(α), half-lives for ground state to ground state unfavored α decays. Extended cluster model, with the Wentzel-Kramers-Brillouin penetrability and assault frequency, and Hamiltonian energy density scheme based on the Skyrme SLy4 interaction. Comparison with experimental values.

doi: 10.1103/PhysRevC.92.044302
Citations: PlumX Metrics


2014IS07      Can.J.Phys. 92, 1411 (2014)

M.Ismail, A.Y.Ellithi, M.M.Botros, A.F.Abdel Reheem

Fusion barrier parameters for a spherically deformed pair of nuclei

NUCLEAR REACTIONS 224Ra(48Ca, X)272Hs, 244Pu(48Ca, X)292Fl, E not given; calculated Coulomb barrier parameters, impact of deformations. The double folding model with effective density dependent M3Y-NN force, and the energy density functional method based on Skyrme force, comparison with available data.

doi: 10.1139/cjp-2013-0476
Citations: PlumX Metrics


2012IS08      Phys.Rev. C 86, 044317 (2012)

M.Ismail, A.Y.Ellithi, M.M.Botros, A.Abdurrahman

Penetration factor in deformed potentials: Application to α decay with deformed nuclei

RADIOACTIVITY 210Pb, 212,214,216,218Po, 214,216,218,220,222Rn, 216,218,220,222,224,226Ra, 218,220,222,224,226,228,230,232Th, 220,222,224,226,228,230,232,234,236,238U, 228,230,232,234,236,238,240,242,244Pu, 238,240,242,244,246,248Cm, 240,242,244,246,248,250,252,254Cf, 246,248,250,252,254,256Fm, 252,254,256,258No, 256,258,260Rf, 260,266Sg, 264,266,270Hs, 270,280Ds, 284Cn, 286,288Fl, 290,292Lv, 294118(α); calculated half-lives using deformed density dependent cluster model. Comparison with experimental data.

doi: 10.1103/PhysRevC.86.044317
Citations: PlumX Metrics


2011IS12      Int.J.Mod.Phys. E20, 2407 (2011)

M.Ismail, M.M.Botros, A.A.Wheida

Accuracy of the multipole expansion of density distribution in the presence of octupole deformation

NUCLEAR STRUCTURE 40Ca, 208Pb; calculated multipole expansion, octupole deformation. Zero-range nucleon-nucleon (NN) interaction.

doi: 10.1142/S0218301311020423
Citations: PlumX Metrics


2010IS01      Phys.Rev. C 81, 024602 (2010)

M.Ismail, A.Y.Ellithi, M.M.Botros, A.Adel

Systematics of α-decay half-lives around shell closures

RADIOACTIVITY 178,180,184,186,190,194Pb(α); 188,190,192,194,196,198,200,202,204,206,208,210,212,214,216,218Po(α); 238,240,242,244,246,248Cm(α);240,242,244,246,248,250,252,254Cf(α); 246,248,250,252,254,256Fm(α); 252,254,256No(α); 262,264,266,268,270,272Sg(α); 264,266,268,270,272,274,276Hs(α); 268,270,272,274,276,278Ds(α); 282,284,286,288,290,292,294,296,298,300,302,304Cn(α); 286,288,290,292,294,296,298,300,302,304,306Fl(α); 286,288,290,292,294,296,298,300,302,304,306,308Lv(α);290,292,294,296,298,300,302,304,306,308,310Og(α); 290,292,294,296,298,300,302,304,306,308,310120(α); calculated α-decay half-lives using the preformed α model with the M3Y Paris effective interaction for different values of pre-formation probabilities. Comparison with experimental data.

doi: 10.1103/PhysRevC.81.024602
Citations: PlumX Metrics


2010IS05      Phys.Atomic Nuclei 73, 1660 (2010)

M.Ismail, A.Y.Ellithi, M.M.Botros, A.Adel

Binding energies of even-even superheavy nuclei in a semi-microscopic approach

NUCLEAR STRUCTURE Z=98-120; calculated binding energies, quadrupole, hexadecapole deformations, half-density radii. Skyrme nucleon-nucleon interaction, Thomas-Fermi approach.

doi: 10.1134/S1063778810100042
Citations: PlumX Metrics


2009IS03      Nucl.Phys. A828, 333 (2009)

M.Ismail, W.M.Seif, M.M.Botros

Effect of octupole and higher deformations on Coulomb barrier

NUCLEAR REACTIONS 244Pu(48Ca, X)292114, E≈3-5 MeV/nucleon; calculated Coulomb barrier height/position using a double-folding model including effect of deformation.

doi: 10.1016/j.nuclphysa.2009.07.013
Citations: PlumX Metrics


2007IS07      Phys.Rev. C 75, 064610 (2007)

M.Ismail, A.Y.Ellithi, M.M.Botros, A.E.Mellik

Azimuthal angle dependence of Coulomb and nuclear interactions between two deformed nuclei

NUCLEAR REACTIONS 238U(238U, X), E not given; calculated azimuthal angle variation of the coulomb and nuclear heavy-ion potentials within the framework of the double folding model.

doi: 10.1103/PhysRevC.75.064610
Citations: PlumX Metrics


2003IS11      Yad.Fiz. 66, 1654 (2003); Phys.Atomic Nuclei 66, 1607 (2003)

M.Y.Ismail, A.Y.Ellithi, M.M.Osman, M.M.Botros

The Deformation and Orientation Effect on Reaction Cross Section with Deformed Targets

NUCLEAR REACTIONS 120Sn, 154Sm, 238U(12C, X), (16O, X), (28Si, X), (40Ca, X), (60Ni, X), (90Zr, X), (208Pb, X), E=30, 44, 77 MeV/nucleon; 17N(12C, X), E=0-900 MeV/nucleon; 238U(12C, X), E=40-100 MeV/nucleon; calculated reaction σ vs target deformation and orientation. Glauber-Sitenko theory, optical-limit approximation, comparisons with data.

doi: 10.1134/1.1611565
Citations: PlumX Metrics


Back to query form