ADOPTED LEVELS, GAMMAS for 49Ti

Author: T. W. Burrows |  Citation: Nucl. Data Sheets 109, 1879 (2008) |  Cutoff date: 14-Jul-2008 

 Full ENSDF file | Adopted Levels (PDF version) 


Q(β-)=-601.9 keV 9S(n)= 8142.39 keV 3S(p)= 11348 keV 5Q(α)= -10175.6 keV 5
Reference: 2012WA38

References:
  A  49Sc β- decay  B  49V ε decay
  C  9Be(46Ar,6nγ)  D  47Ti(t,p) E=12.0 MeV
  E  48Ca(p,π-),(pol p,π-),  F  48Ca(α,3nγ) E=30-55 MeV
  G  I(γ+ce)(n,n’),(n,n’γ) E=1.0-5.9 MeV  H  48Ti(n,γ),(pol n,γ) E=TH
  I  I(γ+ce)(n,γ) E=0.00057 EV RES  J  48Ti(n,γ) E=11-52 KEV RES
  K  48Ti(d,p),(d,pγ),(pol d,p)  L  49Ti(γ,γ’),(γ,n)
  M  49Ti(p,p’),(p,p’γ) E=6-12 MeV  N  Coulomb Excitation (α,α’γ)
  O  50Ti(p,d),(d,t),(3He,α)  P  50V(t,α) E=12.88 MeV
  Q  51V(d,α),(pol d,α)  R  49Ti(E,E) E=175-325, 500 MeV

General Comments:

Levels: Resonance parameters: see 2006MuZX and I(γ+ce)(n,γ) E=0.00057 eV and 48Ti(n,γ) E=11-52 keV resonance datasets for neutron parameters. See below for isobaric analog resonance data

Levels: See 1978Ha15 for additional discussion, in particular on the correspondence of states observed in different reactions

Levels: Bound-state t’s: from the study of IAS’s in 49V. See 48Ti(p,γ),(3He,pd), 52Cr(p,α) for correspondences between states

Levels: Configurations: σ(θ) shows a predominant L=6 pattern and vector-analyzing power (VAP) has a clear J=7 signature in (d,α),(pol d,α) indicating a significant component of (48Ca 0+)(π,1f7/2)+2(ν,1f7/2)-1.

Gammas: For unplaced γ’s and γ’s with uncertain placement see (n,γ), (γ,γ’), (p,p’γ), and (n,n’γ)

Gammas: B(E|l)(W.u.),B(M|l)(W.u.),RUL: calculations for primary gammas are based on Γγ0 and Iγ/Iγ(8884γ)

Q-value: Note: Current evaluation has used the following Q record -601.9 8 8142.39 3 11352 5 -10171.8 9 2003Au03










E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
      0.0ABCDEFGH JKLMNOPQ  7/2- STABLE      
   1381.773 5       GH JKLMNO Q  3/2- 3.4 ps 4    1381.745 5 
   100
(E2)
      0.0
7/2-
   1542.15 4   C  FG   KLMN PQ  11/2- 1.00 ps 10    1542.5 3 
   100
E2
      0.0
7/2-
   1585.963 6    D  GH  KLMNO    3/2-     1585.942 6 
   100
(E2)
      0.0
7/2-
   1610 10 ?              O    (9/2-)        
   1622.93 5 A  D  GH  KLM  PQ  (5/2)- 37 fs 4    1622.6 6 
   100
D,E2
      0.0
7/2-
   1723.482 6    D  GH  K M      1/2-      137.42 7 
   341.706 4 
     2.18 12 
   100.0 9 
(M1,E2)
M1+E2
   1585.963
   1381.773
3/2-
3/2-
   1762.011 7 A  D  GH  KLM O Q  5/2- 21.0 fs 19    1761.971 8 
   100
(M1+E2)
      0.0
7/2-
   2261.32 7    D  GH  KLM O Q  (5/2)- 59 fs 17     499.2
   638.41 7 
   879.16 17 ?
  2264 3 
    35
   100
 
    73
(M1(+E2))
(M1(+E2))

D,E2
   1762.011
   1622.93
   1381.773
      0.0
5/2-
(5/2)-
3/2-
7/2-
   2471.4 2    D  G   KLM O Q  (5/2)- 52 fs 17     709.1
   848.3
  2474 3 
    45
   100
    68
(M1(+E2))
(M1(+E2))
D,E2
   1762.011
   1622.93
      0.0
5/2-
(5/2)-
7/2-
   2504.36 4       GH  KLM O    1/2+      889.1 5 ?
  1122.69 8 
    18
   100 4 


   1622.93
   1381.773
(5/2)-
3/2-
   2505.5 3   C  F      M  PQ  15/2-      963.3 3 
   100
(E2(+M3))
   1542.15
11/2-
   2513.44 15    D  GH  KL       5/2,7/2,9/2     2513.30 15 
   100

      0.0
7/2-
   2516 4 ?   D  G   KLM      5/2,7/2     1139 3 ?
  2520 3 ?
  >100
   <20
D,Q

   1381.773
      0.0
3/2-
7/2-
   2664.36 4       GH  K M O Q  (3/2)+      902.38 5 
  1282.4?
 
 


   1762.011
   1381.773
5/2-
3/2-
   2720.6 10             M  PQ  (11/2+,13/2,15/2-) 57 fs 27    1178.4
   100
D,E2
   1542.15
11/2-
   2721.30 6        H       PQ      1135.35 6 
   100 5 

   1585.963
3/2-
   2980.5 3             M   Q  (7/2-,9/2-) 0.13 ps 8     260?
  1357.6
   <25
   100

D,E2
   2720.6
   1622.93
(11/2+,13/2,15/2-)
(5/2)-
   3038.68 9        H  K        (LE 5/2-)     1315.6 3 
   100

   1723.482
1/2-
   3042.5 5           K M   Q  7/2-,9/2,11/2- 24 fs 15    1419.5
  1500.2
  3042.5
   100
    62
    88
D,E2
D,E2
D,E2
   1622.93
   1542.15
      0.0
(5/2)-
11/2-
7/2-
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
   3175.292 8    D   H  K M OP   1/2- 54.8 fs 18    1451.79 4 
  1589.348 19 
  1793.478 7 
     9.4 3 
    39.3 12 
   100 3 
(M1)
D,E2
D,E2
   1723.482
   1585.963
   1381.773
1/2-
3/2-
3/2-
   3260.703 7    D   H  K M      3/2- 11.2 fs 5    1498.662 7 
  1674.734 22 
  1878.891 10 
   100.0 27 
     8.12 25 
   ≈10
(M1(+E2))
D,E2
D,E2
   1762.011
   1585.963
   1381.773
5/2-
3/2-
3/2-
   3290.3 5   C EF         PQ  (17/2)- < 0.07 ps    784.8 3 
   100
D+Q
   2505.5
15/2-
   3428.25 3    D   H  KLM O    3/2-     1665.96 17 
  1842.24 4 
  2046.44 5 
    15.5 16 
   100 13 
    84 8 



   1762.011
   1585.963
   1381.773
5/2-
3/2-
3/2-
   3451 7 ?   D        M  PQ  (7/2-,9/2-)        
   3469.02 3        H  K        1/2-     1883.06 4 
   100

   1585.963
3/2-
   3511 5    D      KLM      5/2-        
   3606 3           KLM O Q  (5/2)+        
   3618.48 13    D   H  K M   Q  5/2-      149.56 15 
   100
[E2]
   3469.02
1/2-
   3639 12 ?          K               
   3700.7 22           KLM O    (5/2,7/2,9/2)     3702 3 
 

      0.0
7/2-
   3746 4           KLM O Q  5/2-,7/2-        
   3747 10           KLM  PQ  +        
   3784.7 22    D       LM O    5/2-,7/2-     3786 3 
 

      0.0
7/2-
   3787.67 6    D   H  K        3/2- < 16 fs   2025?
  2201
  2405.76 8 
 
 
 



   1762.011
   1585.963
   1381.773
5/2-
3/2-
3/2-
   3818 10             M  P          
   3854.98 7    D   H  KLM O Q  5/2-     1350.46 14 
  2132.0 3 
  2473.03 22 
    86 8 
    43 21 
   100 14 



   2504.36
   1723.482
   1381.773
1/2+
1/2-
3/2-
   3916 10 ?            M             
   3940.7 22    D       LM      (5/2,7/2,9/2)     3942 3 
 

      0.0
7/2-
   3967 5     E           Q  -        
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
   3990 10 ?   D        M             
   4074.16 22    D   H  KLM O Q  5/2-,7/2-      605.2 3 
   100

   3469.02
1/2-
   4142 4    D      KLM      (5/2-)        
   4195 12           K M O    5/2-,7/2-        
   4221.802 23        H  K M      1/2- < 22 fs    434.09 16 
  2498.24 7 
  2635.5 3 
  2839.88 4 
     5.2 8 
    47.5 27 
    20 3 
   100 4 
(M1(+E2))
(M1)
D,E2
D,E2
   3787.67
   1723.482
   1585.963
   1381.773
3/2-
1/2-
3/2-
3/2-
   4242 4            L  O Q  7/2-        
   4300 15    D          O    -        
   4340 15    D      K   O    -        
   4382.3 7     EF          Q  (19/2)- < 0.12 ps   1092.0 5 
   100
D+Q
   3290.3
(17/2)-
   4433.26 4        H  K        3/2-     2709.63 12 
  2847.39 15 
   100 9 
    83 7 


   1723.482
   1585.963
1/2-
3/2-
   4456 12           K   O    1/2+        
   4489 15    D               -        
   4506.9 10           KL       5/2+     3125
 

   1381.773
3/2-
   4561 10               O    1/2+        
   4584 10                P   +        
   4588.24 4        H  K     Q  3/2-     1327.74 8 ?
  1549.56 8 
  3002.11 9 
  3205.96 17 
   100 4 
    45.3 24 
    94 5 
    33.9 28 




   3260.703
   3038.68
   1585.963
   1381.773
3/2-
(LE 5/2-)
3/2-
3/2-
   4621 20                P          
   4666.666 21        H  K        1/2-     1406.36 16 
  2943.00 3 
  3284.85 13 
     5.8 6 
   100 3 
    11.8 9 



   3260.703
   1723.482
   1381.773
3/2-
1/2-
3/2-
   4725 10                P          
   4770 12           K   O    3/2+,5/2+        
   4811.01 10        H               2307.3 4 
  3224.89 11 
    28 5 
   100 6 


   2504.36
   1585.963
1/2+
3/2-
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
   4836 12           K               
   4897 12           K   O    3/2+,5/2+        
   4910.84 5    D   H  K   O    1/2-     3186.91 10 
  3325.10 25 
   100 7 
    46 5 


   1723.482
   1585.963
1/2-
3/2-
   5063 12    D      K        (5/2-)        
   5115.562 21        H  K        1/2- < 10 fs   1646.46 21 
  1853.7 5 
  1940.14 19 ?
  2600.9 6 
  2611.04 8 
  3529.31 10 ?
  3733.61 3 
     3.5 4 
     5.0 15 
    13.7 23 
     2.1 6 
    19.1 11 
    12.8 6 
   100.0 23 
(M1)
D,E2
(M1)

D,E2
D,E2
D,E2
   3469.02
   3260.703
   3175.292
   2513.44
   2504.36
   1585.963
   1381.773
1/2-
3/2-
1/2-
5/2,7/2,9/2
1/2+
3/2-
3/2-
   5121 10                PQ  11/2+,13/2+        
   5151.11 10        H           (3/2)     1077.0 3 
  1532.79 21 
  2430.9 4 
  3388.0 7 
  3427.7 5 ?
  3564.71 17 
    53 10 
    67 8 
    44 12 
    25 8 
    44 9 
   100 9 






   4074.16
   3618.48
   2721.30
   1762.011
   1723.482
   1585.963
5/2-,7/2-
5/2-

5/2-
1/2-
3/2-
   5173 12    D      K    P   5/2-,7/2-        
   5200 15    D               +        
   5232 15    D      K        3/2-,1/2-        
   5254.5 25           K        1/2+        
   5325.8 13           K        5/2+,3/2+        
   5347 15    D               (5/2-)        
   5375 12 ?          K               
   5412.03 9        H  K        1/2+ 19 fs +12-10    4030.06 16 
   100
(E1(+M2))
   1381.773
3/2-
   5437 12           K        3/2-,1/2-        
   5579 12           K               
   5606 10 ?                Q         
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
   5655 12    D      K        (3/2,1/2)-        
   5693 12           K        5/2+,3/2+        
   5737.9 12           K        3/2-,1/2-        
   5774 15           K        1/2+        
   5795.67 13        H  K        (3/2-,1/2-)     3534.37 17 
  4071.7 4 
   100 12 
    52 8 


   2261.32
   1723.482
(5/2)-
1/2-
   5861 15    D      K        5/2-        
   5910 15    D               -        
   5931 12           K        1/2+        
   5965 12    D      K        (5/2)-        
   6010 12    D      K        5/2-        
   6012 15               O    3/2+,5/2+        
   6078 12           K        1/2+        
   6091 15 ?          K               
   6125 10 ?                Q         
   6145 12           K               
   6168 12           K               
   6231 10 ?                Q         
   6269 10 ?                Q         
   6279 15    D               (5/2-)        
   6513 10                 Q         
   7329 15               O    3/2+,5/2+        
   7626 15               O    3/2+,5/2+        
   8132.605 29         I          1/2+        
   8153.65 3          J         1/2-,3/2-     6772
 

   1381.773
3/2-
   8155.54 3          J         1/2-,3/2-     6774
 

   1381.773
3/2-
   8159.63 4          J         1/2+     6778
 

   1381.773
3/2-
   8163.56 5          J         1/2-,3/2-     6782
 

   1381.773
3/2-
   8178.44 4          J         1/2+     6797
 

   1381.773
3/2-
   8193.23 11          J         1/2+     6812
 

   1381.773
3/2-
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
   8724 6               O    5/2-,7/2-        
   8881.6 9            L       7/2+ 2.29 eV 43 
% IT = 89.1 28
% n = 10.9 28
  4374 3 
  4639 3 
  4739 3 
  4807 3 
  4942 3 
  5034 3 
  5098 3 
  5135 3 
  5182 3 
  5268 3 
  5374 5 
  5444 3 
  6365 3 
  6410 3 
  6620 3 
  7123 3 
  7258 3 
  8884 2 
     4.0 8 
     9.0 18 
     1.0 2 
     3.0 6 
     6.0 12 
     2.0 2 
     8.0 16 
     2
    10.0 20 
     1.0 2 
     1.0 2 
     4.0 8 
     7.0 14 
     3.0 6 
     1.0 2 
    16 3 
     2.0 4 
   100 20 
D,E2
(E1(+M2))

(E1(+M2))
D,E2
(E1(+M2))
(E1(+M2))
(E1(+M2))
D,E2

[E1(+M2)]
[M2]
D
(E1(+M2))
D,Q
(E1(+M2))
D,Q
E1(+M2)
   4506.9
   4242
   4142
   4074.16
   3940.7
   3854.98
   3784.7
   3746
   3700.7
   3618.48
   3511
   3428.25
   2513.44
   2471.4
   2261.32
   1762.011
   1622.93
      0.0
5/2+
7/2-
(5/2-)
5/2-,7/2-
(5/2,7/2,9/2)
5/2-
5/2-,7/2-
5/2-,7/2-
(5/2,7/2,9/2)
5/2-
5/2-
3/2-
5/2,7/2,9/2
(5/2)-
(5/2)-
5/2-
(5/2)-
7/2-
   8890              O    3/2+,5/2+        
   9720?           L              
  10972 15               O    (1/2+)        
  11110 15               O    (3/2+,5/2+)        
  11700              O    (1/2-,3/2-)        

E(level): Except as noted, energies of states connected by Γ’s were calculated using least-squares adjustment procedures; statistical uncertainties are given; systematic uncertainty=3.2×10-4% from (n,γ). Note that primary γ’s were included in the procedure and γ’s with no uncertainties were excluded. Other energies from (d,p), except as noted in comments, footnotes, or the XREF column

Jπ(level): From angular momentum transfer in (d,p), except as noted

T1/2(level): T1/2’s from DSAM in (p,p’γ), except as noted; T1/2<6.9 ns from lack of delayed γ’s in (p,p’γ) coincidences. Γ from (γ,γ’),(γ,n)

Back to top

Back to top

Additional Gamma Data:















E(level)
(keV)
Jπ(level)T1/2(level)E(γ)
(keV)
MultipolarityMixing
Ratio
Conversion
Coefficient
Additional Data
   1381.773 3/2- 3.4 ps 4    1381.745 5 (E2) 0.0001070B(E2)(W.u.)=3.1 4, α=0.0001070 15, α(K)=5.27E-5 8, α(L)=4.71E-6 7, α(M)=6.02E-7 9, α(N)=3.27E-8 5, α(N+)=4.95E-5 7
   1542.15 11/2- 1.00 ps 10    1542.5 3 E2 0.0001510B(E2)(W.u.)=6.1 6, α=0.0001510 22, α(K)=4.20E-5 6, α(L)=3.75E-6 6, α(M)=4.79E-7 7, α(N)=2.61E-8 4, α(N+)=0.0001046 15
   1585.963 3/2-     1585.942 6 (E2) 0.0001660B(E2)(W.u.)>0.697 0.963, α=0.0001660 24, α(K)=3.97E-5 6, α(L)=3.54E-6 5, α(M)=4.53E-7 7, α(N)=2.46E-8 4, α(N+)=0.0001227 18
   1723.482 1/2-      137.42 7 (M1,E2) 0.00848α≥0.00848 0.101, α(K)=0.05 5, α(L)=0.005 4, α(M)=0.0006 5, α(N)=2.9×10-5 25, α(N+)=2.9E-5 25
1/2-      341.706 4 M1+E2+0.1 0.000929B(E2)(W.u.)>0.0160, B(M1)(W.u.)>7.74E-5, α=0.000929 14, α(K)=0.000843 12, α(L)=7.61E-5 11, α(M)=9.73E-6 14, α(N)=5.25E-7 8, α(N+)=5.25E-7 8
   1762.011 5/2- 21.0 fs 19    1761.971 8 (M1+E2) 2.11×10-4α=2.11×10-4 25, α(K)=3.08E-5 16, α(L)=2.75E-6 14, α(M)=3.51E-7 18, α(N)=1.91E-8 10, α(N+)=0.000177 23
   2261.32 (5/2)- 59 fs 17     499.2(M1(+E2))0.26 LT0.00063B(M1)(W.u.)=0.49 15, α=0.00063 25, α(K)=0.00057 22, α(L)=5.1×10-5 20, α(M)=7.E-6 3, α(N)=3.5E-7 14, α(N+)=3.5E-7 14
(5/2)- 59 fs 17     638.41 7 (M1(+E2))0.28 LT0.00032B(M1)(W.u.)=0.55 25, α=0.00032 9, α(K)=0.00029 9, α(L)=2.6×10-5 8, α(M)=3.3E-6 10, α(N)=1.8E-7 5, α(N+)=1.8E-7 5
   2471.4 (5/2)- 52 fs 17     709.1(M1(+E2))0.58 LT0.00024B(M1)(W.u.)=0.21 10, α=0.00024 6, α(K)=0.00022 6, α(L)=2.0×10-5 5, α(M)=2.5E-6 7, α(N)=1.4E-7 4, α(N+)=1.4E-7 4
(5/2)- 52 fs 17     848.3(M1(+E2))0.61 LT0.00016B(M1)(W.u.)=0.27 13, α=0.00016 3, α(K)=0.00014 3, α(L)=1.26×10-5 24, α(M)=1.6E-6 3, α(N)=8.7E-8 16, α(N+)=8.7E-8 16
   2505.5 15/2-      963.3 3 (E2(+M3)) 0.00030B(E2)(W.u.)>0.0093, B(M3)(W.u.)>0.40, α=0.00030 17, α(K)=0.00027 16, α(L)=2.5E-5 14, α(M)=3.2E-6 18, α(N)=1.7E-7 10, α(N+)=1.7E-7 10
   3175.292 1/2- 54.8 fs 18    1451.79 4 (M1) 9.72×10-5B(M1)(W.u.)=0.0083 5, α=9.72×10-5 14, α(K)=4.13E-5 6, α(L)=3.68E-6 6, α(M)=4.71E-7 7, α(N)=2.57E-8 4, α(N+)=5.17E-5 8
   3260.703 3/2- 11.2 fs 5    1498.662 7 (M1(+E2))1.20 LT1.22×10-4B(M1)(W.u.)=0.34 15, α=1.22×10-4 15, α(K)=4.2E-5 3, α(L)=3.7E-6 3, α(M)=4.8E-7 4, α(N)=2.59E-8 18, α(N+)=7.6E-5 12
   3618.48 5/2-      149.56 15 [E2] 0.0712α=0.0712, α(K)=0.0644 10, α(L)=0.00599 9, α(M)=0.000759 11, α(N)=3.85×10-5 6, α(N+)=3.85E-5 6
   4221.802 1/2- < 22 fs    434.09 16 (M1(+E2))0.2618 LT0.0010B(M1)(W.u.)=0.336 12, α=0.0010 5, α(K)=0.0009 4, α(L)=8.E-5 4, α(M)=1.0E-5 5, α(N)=5.3E-7 24, α(N+)=5.3E-7 24
1/2- < 22 fs   2498.24 7 (M1) 0.000481B(M1)(W.u.)>0.018, α=0.000481 7, α(K)=1.635×10-5 23, α(L)=1.455E-6 21, α(M)=1.86E-7 3, α(N)=1.015E-8 15, α(N+)=0.000463 7
   5115.562 1/2- < 10 fs   1646.46 21 (M1) 1.49×10-4B(M1)(W.u.)>0.011, α=1.49×10-4 21, α(K)=3.30E-5 5, α(L)=2.94E-6 5, α(M)=3.76E-7 6, α(N)=2.05E-8 13, α(N+)=0.0001128 16
1/2- < 10 fs   1940.14 19 (M1) 0.000253B(M1)(W.u.)>0.026, α=0.000253 4, α(K)=2.48×10-5 4, α(L)=2.21E-6 3, α(M)=2.83E-7 4, α(N)=1.543E-8 22, α(N+)=0.000225 4
   5412.03 1/2+ 19 fs +12-10    4030.06 16 (E1(+M2))0.10 LE0.0013B(E1)(W.u.)=0.0004 3, α=0.0013 5, α(K)=8.4E-6 25, α(L)=7.5E-7 23, α(M)=1.0E-7 3, α(N)=5.2E-9 16, α(N+)=0.0012 5
   8881.6 7/2+ 2.29 eV 43 
% IT = 89.1 28
% n = 10.9 28
  4639 3 (E1(+M2))0.116 LT0.0014B(E1)(W.u.)=0.00035 11, α=0.0014 5, α(K)=6.8E-6 19, α(L)=6.1E-7 17, α(M)=7.7E-8 21, α(N)=4.2E-9 12, α(N+)=0.0014 5
7/2+ 2.29 eV 43 
% IT = 89.1 28
% n = 10.9 28
  4807 3 (E1(+M2))0.22 LT0.0015B(E1)(W.u.)=0.00010 3, α=0.0015 5, α(K)=6.5E-6 17, α(L)=5.7E-7 15, α(M)=7.4E-8 20, α(N)=4.0E-9 11, α(N+)=0.0015 5
7/2+ 2.29 eV 43 
% IT = 89.1 28
% n = 10.9 28
  5034 3 (E1(+M2))0.31 LT0.0016B(E1)(W.u.)=5.9E-5 15, α=0.0016 5, α(K)=6.1E-6 16, α(L)=5.4E-7 14, α(M)=6.9E-8 18, α(N)=3.8E-9 10, α(N+)=0.0016 5
7/2+ 2.29 eV 43 
% IT = 89.1 28
% n = 10.9 28
  5098 3 (E1(+M2))0.049 LT0.0016B(E1)(W.u.)=0.0024 7, α=0.0016 5, α(K)=5.9E-6 15, α(L)=5.3E-7 14, α(M)=6.8E-8 17, α(N)=3.7E-9 10, α(N+)=0.0016 5
7/2+ 2.29 eV 43 
% IT = 89.1 28
% n = 10.9 28
  5135 3 (E1(+M2))0.33 LT0.0016B(E1)(W.u.)=5.2E-5, α=0.0016 5, α(K)=5.9E-6 15, α(L)=5.2E-7 13, α(M)=6.7E-8 17, α(N)=3.6E-9 9, α(N+)=0.0016 5
7/2+ 2.29 eV 43 
% IT = 89.1 28
% n = 10.9 28
  5374 5 [E1(+M2)]0.58 LT0.0017B(E1)(W.u.)=2.2E-5 9, α=0.0017 5, α(K)=5.5E-6 14, α(L)=4.9E-7 12, α(M)=6.3E-8 15, α(N)=3.4E-9 9, α(N+)=0.0016 5
7/2+ 2.29 eV 43 
% IT = 89.1 28
% n = 10.9 28
  5444 3 [M2] 1.18×10-3α=1.18×10-3 17, α(K)=6.70E-6 10, α(L)=5.95E-7 9, α(M)=7.61E-8 11, α(N)=4.16E-9 6, α(N+)=0.001175 17
7/2+ 2.29 eV 43 
% IT = 89.1 28
% n = 10.9 28
  6410 3 (E1(+M2))0.50 LTB(E1)(W.u.)=4.0E-5 15
7/2+ 2.29 eV 43 
% IT = 89.1 28
% n = 10.9 28
  7123 3 (E1(+M2))0.069 LTB(E1)(W.u.)=0.00017 5
7/2+ 2.29 eV 43 
% IT = 89.1 28
% n = 10.9 28
  8884 2 E1(+M2)0.0318 LTB(E1)(W.u.)=0.00056 5
E(level)
(keV)
Jπ(level)T1/2(level)E(γ)
(keV)
MultipolarityMixing
Ratio
Conversion
Coefficient
Additional Data

Back to top

Additional Level Data and Comments:

E(level)Jπ(level)T1/2(level)Comments
   1542.1511/2- 1.00 ps 10  E(level): From (p,p’),(p,p’γ). Systematic uncertainty=2.6×10-4%. Level energy held fixed in least-squares adjustment. From (α,3nγ).
   1585.9633/2-   T=5/2
Possible doublet. See discussion in (3He,α).
E(level): Possible doublet. See discussion in (3He,α).
Jπ(level): From comparison of VAP to DWBA in (pol d,p).
   1622.93(5/2)- 37 fs 4  CONF=((48CA 0+)(P,1F7/2,+2)(N,1F7/2,-1)), T=5/2
E(level): From (p,p’),(p,p’γ). Systematic uncertainty=2.6×10-4%. Level energy held fixed in least-squares adjustment. From (α,3nγ).
   1723.4821/2-   T=5/2
T1/2>0.35 ps, T1/2<6.9 ns.
Jπ(level): From comparison of VAP to DWBA in (pol d,p).
   1762.0115/2- 21.0 fs 19  T=(5/2)
Jπ(level): L(t,p)=0 or 0+2. Parenthesized values are shown for weak states where the assumption that the two nucleons are transferred in a relative s state may not Be valid.
   2261.32(5/2)- 59 fs 17  T=5/2
E(level): From (p,p’),(p,p’γ). Systematic uncertainty=2.6×10-4%.
   2471.4(5/2)- 52 fs 17  T=5/2
XREF: Q(2504).
E(level): From (p,p’),(p,p’γ). Systematic uncertainty=2.6×10-4%. Level energy held fixed in least-squares adjustment. From (α,3nγ).
   2504.361/2+   T=(5/2)
T1/2>0.28 ps, T1/2<6.9 ns.
   2505.515/2-   T1/2>3.5 ps, T1/2<6.9 ns.
   2513.445/2,7/2,9/2   E(level): 2513, 2517 states: evaluator suggests that these states are a possible doublet based on conflicting γ information in (n,γ) and (p,p’γ). 1135γ’s were observed in both while a 2513γ and a 2517γ were noted in the respective works. Iγ(1135γ)/Iγ(2513γ)≈1 in (n,γ); Iγ(2517γ)/Iγ(1135γ)<20 in (p,p’γ). Further, arguments of 1983Ru08 in (n,γ) appear strong for placement of 1135γ from the 2721 state while pγ-coin in (p,p’γ) associate the 1135γ with a state at ≈2.5 MeV. Jπ=5/2- (empirical J-dependence of L=3 and VAP in (d,p)) may correspond to one or both of these states.
Jπ(level): 2513, 2517 states: evaluator suggests that these states are a possible doublet based on conflicting γ information in (n,γ) and (p,p’γ). 1135γ’s were observed in both while a 2513γ and a 2517γ were noted in the respective works. Iγ(1135γ)/Iγ(2513γ)≈1 in (n,γ); Iγ(2517γ)/Iγ(1135γ)<20 in (p,p’γ). Further, arguments of 1983Ru08 in (n,γ) appear strong for placement of 1135γ from the 2721 state while pγ-coin in (p,p’γ) associate the 1135γ with a state at ≈2.5 MeV. Jπ=5/2- (empirical J-dependence of L=3 and VAP in (d,p)) may correspond to one or both of these states.
   25165/2,7/2   T1/2>0.42 ps, T1/2<6.9 ns.
E(level): 2513, 2517 states: evaluator suggests that these states are a possible doublet based on conflicting γ information in (n,γ) and (p,p’γ). 1135γ’s were observed in both while a 2513γ and a 2517γ were noted in the respective works. Iγ(1135γ)/Iγ(2513γ)≈1 in (n,γ); Iγ(2517γ)/Iγ(1135γ)<20 in (p,p’γ). Further, arguments of 1983Ru08 in (n,γ) appear strong for placement of 1135γ from the 2721 state while pγ-coin in (p,p’γ) associate the 1135γ with a state at ≈2.5 MeV. Jπ=5/2- (empirical J-dependence of L=3 and VAP in (d,p)) may correspond to one or both of these states.
Jπ(level): 2513, 2517 states: evaluator suggests that these states are a possible doublet based on conflicting γ information in (n,γ) and (p,p’γ). 1135γ’s were observed in both while a 2513γ and a 2517γ were noted in the respective works. Iγ(1135γ)/Iγ(2513γ)≈1 in (n,γ); Iγ(2517γ)/Iγ(1135γ)<20 in (p,p’γ). Further, arguments of 1983Ru08 in (n,γ) appear strong for placement of 1135γ from the 2721 state while pγ-coin in (p,p’γ) associate the 1135γ with a state at ≈2.5 MeV. Jπ=5/2- (empirical J-dependence of L=3 and VAP in (d,p)) may correspond to one or both of these states.
   2664.36(3/2)+   T=(5/2)
T1/2>0.22 ps, T1/2<6.9 ns.
   2721.30   2722, L=4, state in (d,α),(pol d,α) and 2724, L=(3), state in (t,α) may correspond to this or the previous state.
   2980.5(7/2-,9/2-) 0.13 ps 8  CONF=((48CA 0+)(P,1F7/2,+2)(N,1F7/2,-1))
E(level): From (p,p’),(p,p’γ). Systematic uncertainty=2.6×10-4%. Level energy held fixed in least-squares adjustment. From (α,3nγ).
   3042.57/2-,9/2,11/2- 24 fs 15  CONF=((48CA 0+)(P,1F7/2,+2)(N,1F7/2,-1))
E(level): From (p,p’),(p,p’γ). Systematic uncertainty=2.6×10-4%. Level energy held fixed in least-squares adjustment. From (α,3nγ).
   3175.2921/2- 54.8 fs 18  T=(5/2)
Jπ(level): From comparison of VAP to DWBA in (pol d,p).
   3260.7033/2- 11.2 fs 5  T=5/2
Jπ(level): From comparison of VAP to DWBA in (pol d,p).
   3469.021/2-   E(level): From (p,p’γ).
Jπ(level): From angular momentum transfer in (d,p) and γ-circular polarization in (pol n,γ).
   35115/2-   E(level): From (t,p).
Jπ(level): L(t,p)=0 or 0+2. Parenthesized values are shown for weak states where the assumption that the two nucleons are transferred in a relative s state may not Be valid.
   3606(5/2)+   E(level): Level energy held fixed in least-squares adjustment. From (α,3nγ). From (γ,γ’),(γ,n). From (γ,γ’),(γ,n).
   3618.485/2-   Jπ(level): L(t,p)=0 or 0+2. Parenthesized values are shown for weak states where the assumption that the two nucleons are transferred in a relative s state may not Be valid.
   3700.7(5/2,7/2,9/2)   E(level): From (γ,γ’),(γ,n). From (γ,γ’),(γ,n).
   3747+   3749 12 in (d,p), 3749 4, 5/2 to 9/2, in (γ,γ’), and 3746.5 6 in (p,p’γ) probably correspond to this or the following state.
   3784.75/2-,7/2-   E(level): From (γ,γ’),(γ,n). From (γ,γ’),(γ,n).
Jπ(level): From angular momentum transfer in neutron pickup reactions.
   3787.673/2- < 16 fs E(level): From (d,pγ).
T1/2(level): From DSAM in (d,pγ).
E(level)Jπ(level)T1/2(level)Comments
   3818   E(level): From (p,p’),(p,p’γ). Systematic uncertainty=2.6×10-4%. Level energy held fixed in least-squares adjustment. From (α,3nγ).
   3854.985/2-   T=5/2
Jπ(level): L(t,p)=0 or 0+2. Parenthesized values are shown for weak states where the assumption that the two nucleons are transferred in a relative s state may not Be valid.
   3940.7(5/2,7/2,9/2)   E(level): From (γ,γ’),(γ,n). From (γ,γ’),(γ,n).
   3990   E(level): From (p,p’),(p,p’γ). Systematic uncertainty=2.6×10-4%.
   4074.165/2-,7/2-   Jπ(level): From angular momentum transfer in neutron pickup reactions.
   4142(5/2-)   E(level): From (γ,γ’),(γ,n). From (γ,γ’),(γ,n).
Jπ(level): L(t,p)=0 or 0+2. Parenthesized values are shown for weak states where the assumption that the two nucleons are transferred in a relative s state may not Be valid.
   41955/2-,7/2-   Jπ(level): From angular momentum transfer in neutron pickup reactions.
   4221.8021/2- < 22 fs E(level): From (d,pγ).
Jπ(level): From comparison of VAP to DWBA in (pol d,p).
T1/2(level): From DSAM in (d,pγ).
   42427/2-   CONF=((48CA 0+)(P,1F7/2,+2)(N,1F7/2,-1))
E(level): From (γ,γ’),(γ,n). From (γ,γ’),(γ,n).
   4340-   See comment on preceding state.
E(level): From (t,p).
   4433.263/2-   Jπ(level): From comparison of VAP to DWBA in (pol d,p).
   4506.95/2+   T=5/2
Jπ(level): From comparison of VAP to DWBA in (pol d,p).
   45611/2+   Jπ(level): From angular momentum transfer in neutron pickup reactions.
   4588.243/2-   E(level): From (p,p’γ).
Jπ(level): From angular momentum transfer in (d,p) and γ-circular polarization in (pol n,γ).
   4666.6661/2-   Jπ(level): From comparison of VAP to DWBA in (pol d,p).
   47703/2+,5/2+   T=(5/2)
Jπ(level): From comparison of VAP to DWBA in (pol d,p).
   4910.841/2-   E(level): From (p,p’γ).
Jπ(level): From angular momentum transfer in (d,p) and γ-circular polarization in (pol n,γ).
   5063(5/2-)   Jπ(level): L(t,p)=0 or 0+2. Parenthesized values are shown for weak states where the assumption that the two nucleons are transferred in a relative s state may not Be valid.
   5115.5621/2- < 10 fs E(level): From (d,pγ).
Jπ(level): From comparison of VAP to DWBA in (pol d,p).
T1/2(level): From DSAM in (d,pγ).
   5347(5/2-)   Jπ(level): L(t,p)=0 or 0+2. Parenthesized values are shown for weak states where the assumption that the two nucleons are transferred in a relative s state may not Be valid.
   5412.031/2+ 19 fs +12-10  E(level): From (d,pγ).
T1/2(level): From DSAM in (d,pγ).
   58615/2-   Jπ(level): L(t,p)=0 or 0+2. Parenthesized values are shown for weak states where the assumption that the two nucleons are transferred in a relative s state may not Be valid.
   60105/2-   Jπ(level): L(t,p)=0 or 0+2. Parenthesized values are shown for weak states where the assumption that the two nucleons are transferred in a relative s state may not Be valid.
   6279(5/2-)   Jπ(level): L(t,p)=0 or 0+2. Parenthesized values are shown for weak states where the assumption that the two nucleons are transferred in a relative s state may not Be valid.
   73293/2+,5/2+   Jπ(level): From angular momentum transfer in neutron pickup reactions.
E(level)Jπ(level)T1/2(level)Comments
   76263/2+,5/2+   Jπ(level): From angular momentum transfer in neutron pickup reactions.
   8153.651/2-,3/2-   E(level): Calibration for high-energy γ’s in (n,γ) were based on the 2H and 15N neutron binding energies; if S(n)(15N)=10833.230 (2003Au03), these energies may need to Be reduced by up to 7 ppm.
Jπ(level): From adopted J and L in 2006MuZX.
   8155.541/2-,3/2-   E(level): Calibration for high-energy γ’s in (n,γ) were based on the 2H and 15N neutron binding energies; if S(n)(15N)=10833.230 (2003Au03), these energies may need to Be reduced by up to 7 ppm.
Jπ(level): From adopted J and L in 2006MuZX.
   8159.631/2+   E(level): Calibration for high-energy γ’s in (n,γ) were based on the 2H and 15N neutron binding energies; if S(n)(15N)=10833.230 (2003Au03), these energies may need to Be reduced by up to 7 ppm.
Jπ(level): From adopted J and L in 2006MuZX.
   8163.561/2-,3/2-   E(level): Calibration for high-energy γ’s in (n,γ) were based on the 2H and 15N neutron binding energies; if S(n)(15N)=10833.230 (2003Au03), these energies may need to Be reduced by up to 7 ppm.
Jπ(level): From adopted J and L in 2006MuZX.
   8178.441/2+   E(level): Calibration for high-energy γ’s in (n,γ) were based on the 2H and 15N neutron binding energies; if S(n)(15N)=10833.230 (2003Au03), these energies may need to Be reduced by up to 7 ppm.
Jπ(level): From adopted J and L in 2006MuZX.
   8193.231/2+   E(level): Calibration for high-energy γ’s in (n,γ) were based on the 2H and 15N neutron binding energies; if S(n)(15N)=10833.230 (2003Au03), these energies may need to Be reduced by up to 7 ppm.
Jπ(level): From adopted J and L in 2006MuZX.
   87245/2-,7/2-   T=7/2
Analog of 49Sc g.s.
E(level): Analog of 49Sc g.s.
Jπ(level): From angular momentum transfer in neutron pickup reactions.
   8881.67/2+ 2.29 eV 43 
% IT = 89.1 28
% n = 10.9 28
Γγ0=0.353 31, Γn=0.25 5
726, L=4, neutron group to 48Ti g.s.
E(level): 726, L=4, neutron group to 48Ti g.s.
   88903/2+,5/2+   Jπ(level): From angular momentum transfer in neutron pickup reactions.
   9720   Weak 582-keV neutron group to 48Ti 983 state observed in (γ,n).
  10972(1/2+)   T=(7/2)
IAS(49Sc 2230).
Jπ(level): From angular momentum transfer in neutron pickup reactions.
  11110(3/2+,5/2+)   T=(7/2)
IAS(49Sc 2380).
Jπ(level): From angular momentum transfer in neutron pickup reactions.
  11700(1/2-,3/2-)   T=(7/2)
IAS?.
Jπ(level): From angular momentum transfer in neutron pickup reactions.

Back to top

Additional Gamma Comments:

E(level)E(gamma)Comments
   1381.773   1381.745E(γ): From (p,p’),(p,p’γ).. Systematic uncertainty=2.6×10-4%
M(γ): d,E2 from comparison to RUL, ΔJπ=2,no from level scheme
   1542.15   1542.5E(γ): Level energy held fixed in least-squares adjustment. From (α,3nγ)
I(γ): From (α,3nγ)
M(γ): ΔJ=2 Q in (α,3nγ). Comparison to RUL excludes M2
   1585.963   1585.942E(γ): From (p,p’),(p,p’γ).. Systematic uncertainty=2.6×10-4%
M(γ): d,E2 from comparison to RUL. ΔJπ=2,no from level scheme
   1622.93   1622.6M(γ): From comparison to RUL
   1723.482    137.42M(γ): d,E2 from comparison to RUL. Δπ=no from level scheme. From comparison to RUL
    341.706E(γ): From (p,p’),(p,p’γ).. Systematic uncertainty=2.6×10-4%
   1762.011   1761.971E(γ): From (p,p’),(p,p’γ).. Systematic uncertainty=2.6×10-4%
   2261.32    499.2E(γ): 2513, 2517 states: evaluator suggests that these states are a possible doublet based on conflicting γ information in (n,γ) and (p,p’γ). 1135γ’s were observed in both while a 2513γ and a 2517γ were noted in the respective works. Iγ(1135γ)/Iγ(2513γ)≈1 in (n,γ); Iγ(2517γ)/Iγ(1135γ)<20 in (p,p’γ). Further, arguments of 1983Ru08 in (n,γ) appear strong for placement of 1135γ from the 2721 state while pγ-coin in (p,p’γ) associate the 1135γ with a state at ≈2.5 MeV. Jπ=5/2- (empirical J-dependence of L=3 and VAP in (d,p)) may correspond to one or both of these states.. From (p,p’γ). From (t,p)
I(γ): From (p,p’γ)
M(γ): d from comparison to RUL. Δπ=no from level scheme
    638.41E(γ): 2513, 2517 states: evaluator suggests that these states are a possible doublet based on conflicting γ information in (n,γ) and (p,p’γ). 1135γ’s were observed in both while a 2513γ and a 2517γ were noted in the respective works. Iγ(1135γ)/Iγ(2513γ)≈1 in (n,γ); Iγ(2517γ)/Iγ(1135γ)<20 in (p,p’γ). Further, arguments of 1983Ru08 in (n,γ) appear strong for placement of 1135γ from the 2721 state while pγ-coin in (p,p’γ) associate the 1135γ with a state at ≈2.5 MeV. Jπ=5/2- (empirical J-dependence of L=3 and VAP in (d,p)) may correspond to one or both of these states.. From (t,p)
I(γ): From (p,p’γ)
M(γ): d from comparison to RUL. Δπ=no from level scheme
    879.16I(γ): weak
   2264E(γ): From (γ,γ’),(γ,n). From (γ,γ’),(γ,n)
M(γ): From comparison to RUL
   2471.4    709.1E(γ): 2513, 2517 states: evaluator suggests that these states are a possible doublet based on conflicting γ information in (n,γ) and (p,p’γ). 1135γ’s were observed in both while a 2513γ and a 2517γ were noted in the respective works. Iγ(1135γ)/Iγ(2513γ)≈1 in (n,γ); Iγ(2517γ)/Iγ(1135γ)<20 in (p,p’γ). Further, arguments of 1983Ru08 in (n,γ) appear strong for placement of 1135γ from the 2721 state while pγ-coin in (p,p’γ) associate the 1135γ with a state at ≈2.5 MeV. Jπ=5/2- (empirical J-dependence of L=3 and VAP in (d,p)) may correspond to one or both of these states.. From (p,p’γ). From (t,p)
I(γ): From (p,p’γ)
M(γ): d from comparison to RUL. Δπ=no from level scheme
    848.3E(γ): 2513, 2517 states: evaluator suggests that these states are a possible doublet based on conflicting γ information in (n,γ) and (p,p’γ). 1135γ’s were observed in both while a 2513γ and a 2517γ were noted in the respective works. Iγ(1135γ)/Iγ(2513γ)≈1 in (n,γ); Iγ(2517γ)/Iγ(1135γ)<20 in (p,p’γ). Further, arguments of 1983Ru08 in (n,γ) appear strong for placement of 1135γ from the 2721 state while pγ-coin in (p,p’γ) associate the 1135γ with a state at ≈2.5 MeV. Jπ=5/2- (empirical J-dependence of L=3 and VAP in (d,p)) may correspond to one or both of these states.. From (p,p’γ). From (t,p)
I(γ): From (p,p’γ)
M(γ): d from comparison to RUL. Δπ=no from level scheme
   2474E(γ): From (t,p). From (γ,γ’),(γ,n). From (γ,γ’),(γ,n)
I(γ): From (p,p’γ)
M(γ): From comparison to RUL
   2505.5    963.3E(γ): Level energy held fixed in least-squares adjustment. From (α,3nγ)
I(γ): From (α,3nγ)
M(γ): Q from γ(θ) in (α,3nγ). Δπ=no from level scheme
   2516   1139E(γ): From (t,p). From (γ,γ’),(γ,n). From (γ,γ’),(γ,n)
I(γ): From (p,p’γ)
M(γ): From comparison to RUL
   2520E(γ): From (t,p). From (γ,γ’),(γ,n). From (γ,γ’),(γ,n)
I(γ): From (p,p’γ)
   2664.36   1282.4E(γ): From (p,p’γ)
   2720.6   1178.4E(γ): From (p,p’γ). From (t,p)
I(γ): From (p,p’γ)
M(γ): From comparison to RUL
   2980.5    260E(γ): From (p,p’γ). From (t,p)
I(γ): From (p,p’γ)
   1357.6E(γ): From (p,p’γ). From (t,p)
I(γ): From (p,p’γ)
M(γ): From comparison to RUL
   3042.5   1419.5E(γ): From (p,p’γ). From (t,p)
I(γ): From (p,p’γ)
M(γ): From comparison to RUL
   1500.2E(γ): From (p,p’γ). From (t,p)
I(γ): From (p,p’γ)
M(γ): From comparison to RUL
   3042.5E(γ): From (p,p’γ). From (t,p)
I(γ): From (p,p’γ)
M(γ): From comparison to RUL
   3175.292   1451.79M(γ): d,E2 from comparison to RUL. Ne E2 since 1/2-|)1/2- transition; Δπ=no from level scheme
   1589.348E(γ): From (p,p’),(p,p’γ).. Systematic uncertainty=2.6×10-4%
M(γ): From comparison to RUL
   1793.478E(γ): From (p,p’),(p,p’γ).. Systematic uncertainty=2.6×10-4%
M(γ): From comparison to RUL
E(level)E(gamma)Comments
   3260.703   1498.662E(γ): From (p,p’),(p,p’γ).. Systematic uncertainty=2.6×10-4%. 2513, 2517 states: evaluator suggests that these states are a possible doublet based on conflicting γ information in (n,γ) and (p,p’γ). 1135γ’s were observed in both while a 2513γ and a 2517γ were noted in the respective works. Iγ(1135γ)/Iγ(2513γ)≈1 in (n,γ); Iγ(2517γ)/Iγ(1135γ)<20 in (p,p’γ). Further, arguments of 1983Ru08 in (n,γ) appear strong for placement of 1135γ from the 2721 state while pγ-coin in (p,p’γ) associate the 1135γ with a state at ≈2.5 MeV. Jπ=5/2- (empirical J-dependence of L=3 and VAP in (d,p)) may correspond to one or both of these states.
M(γ): d from comparison to RUL. Δπ=no from level scheme
   1674.734E(γ): From (p,p’),(p,p’γ).. Systematic uncertainty=2.6×10-4%
M(γ): From comparison to RUL
   1878.891M(γ): From comparison to RUL
   3290.3    784.8E(γ): Level energy held fixed in least-squares adjustment. From (α,3nγ)
I(γ): From (α,3nγ)
   3700.7   3702E(γ): From (γ,γ’),(γ,n). From (γ,γ’),(γ,n)
   3784.7   3786E(γ): From (γ,γ’),(γ,n). From (γ,γ’),(γ,n)
   3787.67   2025E(γ): From (d,pγ)
   2201E(γ): From (d,pγ)
   3940.7   3942E(γ): From (γ,γ’),(γ,n). From (γ,γ’),(γ,n)
   4221.802    434.09E(γ): 2513, 2517 states: evaluator suggests that these states are a possible doublet based on conflicting γ information in (n,γ) and (p,p’γ). 1135γ’s were observed in both while a 2513γ and a 2517γ were noted in the respective works. Iγ(1135γ)/Iγ(2513γ)≈1 in (n,γ); Iγ(2517γ)/Iγ(1135γ)<20 in (p,p’γ). Further, arguments of 1983Ru08 in (n,γ) appear strong for placement of 1135γ from the 2721 state while pγ-coin in (p,p’γ) associate the 1135γ with a state at ≈2.5 MeV. Jπ=5/2- (empirical J-dependence of L=3 and VAP in (d,p)) may correspond to one or both of these states.
M(γ): d from comparison to RUL. Δπ=no from level scheme
   2498.24E(γ): Calibration for high-energy γ’s in (n,γ) were based on the 2H and 15N neutron binding energies; if S(n)(15N)=10833.230 (2003Au03), these energies may need to Be reduced by up to 7 ppm
M(γ): d,E2 from comparison to RUL. Ne E2 since 1/2-|)1/2- transition; Δπ=no from level scheme
   2635.5M(γ): From comparison to RUL
   2839.88E(γ): Calibration for high-energy γ’s in (n,γ) were based on the 2H and 15N neutron binding energies; if S(n)(15N)=10833.230 (2003Au03), these energies may need to Be reduced by up to 7 ppm
M(γ): From comparison to RUL
   4382.3   1092.0E(γ): Level energy held fixed in least-squares adjustment. From (α,3nγ)
I(γ): From (α,3nγ)
   4506.9   3125E(γ): From (d,pγ)
   4588.24   3002.11E(γ): Calibration for high-energy γ’s in (n,γ) were based on the 2H and 15N neutron binding energies; if S(n)(15N)=10833.230 (2003Au03), these energies may need to Be reduced by up to 7 ppm
   4910.84   3186.91E(γ): Eγ differs from calculated value by 3 to 4 σ
   5115.562   1646.46M(γ): d,E2 from comparison to RUL. Ne E2 since 1/2-|)1/2- transition; Δπ=no from level scheme
   1853.7M(γ): From comparison to RUL
   1940.14M(γ): d,E2 from comparison to RUL. Ne E2 since 1/2-|)1/2- transition; Δπ=no from level scheme
   2611.04M(γ): From comparison to RUL
   3529.31M(γ): From comparison to RUL
   3733.61E(γ): Calibration for high-energy γ’s in (n,γ) were based on the 2H and 15N neutron binding energies; if S(n)(15N)=10833.230 (2003Au03), these energies may need to Be reduced by up to 7 ppm
M(γ): From comparison to RUL
   5412.03   4030.06E(γ): 2513, 2517 states: evaluator suggests that these states are a possible doublet based on conflicting γ information in (n,γ) and (p,p’γ). 1135γ’s were observed in both while a 2513γ and a 2517γ were noted in the respective works. Iγ(1135γ)/Iγ(2513γ)≈1 in (n,γ); Iγ(2517γ)/Iγ(1135γ)<20 in (p,p’γ). Further, arguments of 1983Ru08 in (n,γ) appear strong for placement of 1135γ from the 2721 state while pγ-coin in (p,p’γ) associate the 1135γ with a state at ≈2.5 MeV. Jπ=5/2- (empirical J-dependence of L=3 and VAP in (d,p)) may correspond to one or both of these states.
M(γ): d,E2 from comparison to RUL. Δπ=yes from level scheme
   8153.65   6772E(γ): Nominal energies calculated from level energy differences
E(level)E(gamma)Comments
   8155.54   6774E(γ): Nominal energies calculated from level energy differences
   8159.63   6778E(γ): Nominal energies calculated from level energy differences
   8163.56   6782E(γ): Nominal energies calculated from level energy differences
   8178.44   6797E(γ): Nominal energies calculated from level energy differences
   8193.23   6812E(γ): Nominal energies calculated from level energy differences
   8881.6   4374E(γ): From (γ,γ’),(γ,n). From (γ,γ’),(γ,n)
I(γ): From (γ,γ’),(γ,n)
M(γ): From comparison to RUL
   4639E(γ): 2513, 2517 states: evaluator suggests that these states are a possible doublet based on conflicting γ information in (n,γ) and (p,p’γ). 1135γ’s were observed in both while a 2513γ and a 2517γ were noted in the respective works. Iγ(1135γ)/Iγ(2513γ)≈1 in (n,γ); Iγ(2517γ)/Iγ(1135γ)<20 in (p,p’γ). Further, arguments of 1983Ru08 in (n,γ) appear strong for placement of 1135γ from the 2721 state while pγ-coin in (p,p’γ) associate the 1135γ with a state at ≈2.5 MeV. Jπ=5/2- (empirical J-dependence of L=3 and VAP in (d,p)) may correspond to one or both of these states.. From (γ,γ’),(γ,n). From (γ,γ’),(γ,n)
I(γ): From (γ,γ’),(γ,n)
M(γ): d from γ(θ) in (γ,γ’). Δπ=yes from level scheme
   4739E(γ): From (γ,γ’),(γ,n). From (γ,γ’),(γ,n)
I(γ): From (γ,γ’),(γ,n)
   4807E(γ): 2513, 2517 states: evaluator suggests that these states are a possible doublet based on conflicting γ information in (n,γ) and (p,p’γ). 1135γ’s were observed in both while a 2513γ and a 2517γ were noted in the respective works. Iγ(1135γ)/Iγ(2513γ)≈1 in (n,γ); Iγ(2517γ)/Iγ(1135γ)<20 in (p,p’γ). Further, arguments of 1983Ru08 in (n,γ) appear strong for placement of 1135γ from the 2721 state while pγ-coin in (p,p’γ) associate the 1135γ with a state at ≈2.5 MeV. Jπ=5/2- (empirical J-dependence of L=3 and VAP in (d,p)) may correspond to one or both of these states.. From (γ,γ’),(γ,n). From (γ,γ’),(γ,n)
I(γ): From (γ,γ’),(γ,n)
M(γ): d,E2 from comparison to RUL. Δπ=yes from level scheme
   4942E(γ): From (γ,γ’),(γ,n). From (γ,γ’),(γ,n)
I(γ): From (γ,γ’),(γ,n)
M(γ): From comparison to RUL
   5034E(γ): 2513, 2517 states: evaluator suggests that these states are a possible doublet based on conflicting γ information in (n,γ) and (p,p’γ). 1135γ’s were observed in both while a 2513γ and a 2517γ were noted in the respective works. Iγ(1135γ)/Iγ(2513γ)≈1 in (n,γ); Iγ(2517γ)/Iγ(1135γ)<20 in (p,p’γ). Further, arguments of 1983Ru08 in (n,γ) appear strong for placement of 1135γ from the 2721 state while pγ-coin in (p,p’γ) associate the 1135γ with a state at ≈2.5 MeV. Jπ=5/2- (empirical J-dependence of L=3 and VAP in (d,p)) may correspond to one or both of these states.. From (γ,γ’),(γ,n). From (γ,γ’),(γ,n)
I(γ): From (γ,γ’),(γ,n)
M(γ): d,E2 from comparison to RUL. Δπ=yes from level scheme
   5098E(γ): 2513, 2517 states: evaluator suggests that these states are a possible doublet based on conflicting γ information in (n,γ) and (p,p’γ). 1135γ’s were observed in both while a 2513γ and a 2517γ were noted in the respective works. Iγ(1135γ)/Iγ(2513γ)≈1 in (n,γ); Iγ(2517γ)/Iγ(1135γ)<20 in (p,p’γ). Further, arguments of 1983Ru08 in (n,γ) appear strong for placement of 1135γ from the 2721 state while pγ-coin in (p,p’γ) associate the 1135γ with a state at ≈2.5 MeV. Jπ=5/2- (empirical J-dependence of L=3 and VAP in (d,p)) may correspond to one or both of these states.. From (γ,γ’),(γ,n). From (γ,γ’),(γ,n)
I(γ): From (γ,γ’),(γ,n)
M(γ): d,E2 from comparison to RUL. Δπ=yes from level scheme
   5135E(γ): 2513, 2517 states: evaluator suggests that these states are a possible doublet based on conflicting γ information in (n,γ) and (p,p’γ). 1135γ’s were observed in both while a 2513γ and a 2517γ were noted in the respective works. Iγ(1135γ)/Iγ(2513γ)≈1 in (n,γ); Iγ(2517γ)/Iγ(1135γ)<20 in (p,p’γ). Further, arguments of 1983Ru08 in (n,γ) appear strong for placement of 1135γ from the 2721 state while pγ-coin in (p,p’γ) associate the 1135γ with a state at ≈2.5 MeV. Jπ=5/2- (empirical J-dependence of L=3 and VAP in (d,p)) may correspond to one or both of these states.. From (γ,γ’),(γ,n). From (γ,γ’),(γ,n)
I(γ): From (γ,γ’),(γ,n)
M(γ): d,E2 from comparison to RUL. Δπ=yes from level scheme
   5182E(γ): From (γ,γ’),(γ,n). From (γ,γ’),(γ,n)
I(γ): From (γ,γ’),(γ,n)
M(γ): From comparison to RUL
   5268E(γ): From (γ,γ’),(γ,n). From (γ,γ’),(γ,n)
I(γ): From (γ,γ’),(γ,n)
   5374E(γ): 2513, 2517 states: evaluator suggests that these states are a possible doublet based on conflicting γ information in (n,γ) and (p,p’γ). 1135γ’s were observed in both while a 2513γ and a 2517γ were noted in the respective works. Iγ(1135γ)/Iγ(2513γ)≈1 in (n,γ); Iγ(2517γ)/Iγ(1135γ)<20 in (p,p’γ). Further, arguments of 1983Ru08 in (n,γ) appear strong for placement of 1135γ from the 2721 state while pγ-coin in (p,p’γ) associate the 1135γ with a state at ≈2.5 MeV. Jπ=5/2- (empirical J-dependence of L=3 and VAP in (d,p)) may correspond to one or both of these states.. From (γ,γ’),(γ,n). From (γ,γ’),(γ,n)
I(γ): From (γ,γ’),(γ,n)
   5444E(γ): From (γ,γ’),(γ,n). From (γ,γ’),(γ,n)
I(γ): From (γ,γ’),(γ,n)
   6365E(γ): From (γ,γ’),(γ,n). From (γ,γ’),(γ,n)
I(γ): From (γ,γ’),(γ,n)
M(γ): from γ(θ) in (γ,γ’)
   6410E(γ): 2513, 2517 states: evaluator suggests that these states are a possible doublet based on conflicting γ information in (n,γ) and (p,p’γ). 1135γ’s were observed in both while a 2513γ and a 2517γ were noted in the respective works. Iγ(1135γ)/Iγ(2513γ)≈1 in (n,γ); Iγ(2517γ)/Iγ(1135γ)<20 in (p,p’γ). Further, arguments of 1983Ru08 in (n,γ) appear strong for placement of 1135γ from the 2721 state while pγ-coin in (p,p’γ) associate the 1135γ with a state at ≈2.5 MeV. Jπ=5/2- (empirical J-dependence of L=3 and VAP in (d,p)) may correspond to one or both of these states.. From (γ,γ’),(γ,n). From (γ,γ’),(γ,n)
I(γ): From (γ,γ’),(γ,n)
M(γ): d,E2 from comparison to RUL. Δπ=yes from level scheme
   6620E(γ): From (γ,γ’),(γ,n). From (γ,γ’),(γ,n)
I(γ): From (γ,γ’),(γ,n)
M(γ): From comparison to RUL
   7123E(γ): 2513, 2517 states: evaluator suggests that these states are a possible doublet based on conflicting γ information in (n,γ) and (p,p’γ). 1135γ’s were observed in both while a 2513γ and a 2517γ were noted in the respective works. Iγ(1135γ)/Iγ(2513γ)≈1 in (n,γ); Iγ(2517γ)/Iγ(1135γ)<20 in (p,p’γ). Further, arguments of 1983Ru08 in (n,γ) appear strong for placement of 1135γ from the 2721 state while pγ-coin in (p,p’γ) associate the 1135γ with a state at ≈2.5 MeV. Jπ=5/2- (empirical J-dependence of L=3 and VAP in (d,p)) may correspond to one or both of these states.. From (γ,γ’),(γ,n). From (γ,γ’),(γ,n)
I(γ): From (γ,γ’),(γ,n)
M(γ): d from γ(θ) in (γ,γ’). Δπ=yes from level scheme
   7258E(γ): From (γ,γ’),(γ,n). From (γ,γ’),(γ,n)
I(γ): From (γ,γ’),(γ,n)
M(γ): From comparison to RUL
   8884E(γ): 2513, 2517 states: evaluator suggests that these states are a possible doublet based on conflicting γ information in (n,γ) and (p,p’γ). 1135γ’s were observed in both while a 2513γ and a 2517γ were noted in the respective works. Iγ(1135γ)/Iγ(2513γ)≈1 in (n,γ); Iγ(2517γ)/Iγ(1135γ)<20 in (p,p’γ). Further, arguments of 1983Ru08 in (n,γ) appear strong for placement of 1135γ from the 2721 state while pγ-coin in (p,p’γ) associate the 1135γ with a state at ≈2.5 MeV. Jπ=5/2- (empirical J-dependence of L=3 and VAP in (d,p)) may correspond to one or both of these states.. From (γ,γ’),(γ,n). From (γ,γ’),(γ,n)
I(γ): From (γ,γ’),(γ,n)
M(γ): from γ(θ) and linear polarization in (γ,γ)

Back to top