⁵¹V(d,α),(pol d,α) 1984Sh20,1984Na24

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	T. W. Burrows ^a	NDS 109, 1879 (2008)	14-Jul-2008					

Target $J^{\pi} = 7/2^{-}$, configuration= $((^{48}Ca \ 0^{+})(\pi \ 1f_{7/2})^{+3}_{7/2})$.

1984Na24: E=79.4 MeV. Measured $\sigma(\theta)$ and vector-analyzing power (VAP); Q2DM spectrometer (position-sensitive α (P),scin). Vector polarization=+0.55 and −0.59; tensor≤0.04. FWHM=50-60 keV. θ (C.M.) \approx 5°−50°. DWBA.

1984Sh20: E=28 MeV. Measured $\sigma(\theta)$; Q3D spectrometer. θ =15°, 25°, and 30°. DWBA. Others: see 1995Bu23.

All data are from 1984Sh20 and J^{π} arguments, from 1984Na24; data from 1984Na24 and 1984Sh20 are In good agreement, except As noted. Both groups also compared their results to (p, π^-) measurements.

				⁴⁹ Ti Levels	
E(level)	$J^{\pi \dagger}$	L‡	E(level)	$\mathrm{J}^{\pi\dagger}$	L‡
0.	7/2 ⁻ to 19/2 ^{-#}	4+6	3755 [@] 5		
1382 [@] 5			3833 [@] 5		
1.543×10 ³ 5	&	4+6	3.967×10 ³ 5	7/2 ⁻ to 19/2 ^{-#}	4+6
1.623×10 ³ 5	7/2 ⁻ to 19/2 ^{-#}	4+6	4086 [@] 5		
1761 [@] 5			4.223×10 ³ 5	7/2 ⁻ to 19/2 ^{-#}	4+6
2.264×10 ³ 5	&	4+6	4.386×10 ³ 5	7/2 ⁻ to 19/2 ⁻	6
2.470×10 ^{3<i>a</i>} 5		4	$4.593 \times 10^3 5$		
2.504×10 ^{3<i>a</i>} 5			5127 [@] 10		
2.664×10 ³ 5			5606 [@] 10		
$2.722 \times 10^3 5$	7/2 ⁻ to 19/2 ^{-#}	4+6	5933 [@] 10		
2.984×10 ³ 5	7/2 ⁻ to 19/2 ^{-#}	4+6	6125 [@] 10		
3.048×10 ³ 5	7/2 ⁻ to 19/2 ^{-#}	4+6	6231 [@] 10		
3.291×10 ³ 5	7/2 ⁻ to 19/2 ^{-#}	4+6	6269 [@] 10		
3.460×10 ³ 5	7/2 ⁻ to 19/2 ^{-#}	4+6	6513 [@] 10		
3617 [@] 5					

[†] Arguments from 1984Na24 are based on the empirical observation that pickup In the $(f_{7/2})^2_{J=7,T=0}$ and $(f_{7/2},p_{3/2})_{J=5,T=0}$ couplings are about one order of magnitude stronger than for other couplings. Therefore, high-spin states belonging to the $((^{51}V)^2)^2_{J=7,T=0}$

 $7/2^{-}$) ($f_{7/2}$)_J⁻² $_{J=7,T=0}$) should Be strongly excited with characteristic L=6 $\sigma(\theta)$ and J=7 VAP shapes. See 1984Sh20 for spin and parity assignments based on DWBA calculations and relative yields.

[‡] From comparison of $\sigma(\theta)$ to empirical curves.

[#] $\sigma(\theta)$ shows predominant L=6 pattern and VAP shows a clear J=7 signature, suggesting significant $((^{48}\text{Ca } 0^+)(\pi \ 1\text{f}7/2)^2(\nu \ 1\text{f}7/2)^{-1}).$

[@] From 1984Sh20; not identified by 1984Na24.

[&] J^{π} mixture of J=7 and J=5 patterns.

^{*a*} VAP bears No resemblance to J=5 pattern, leading 1984Na24 to suggest that more than one member of the 2471, 2504, and 2506 triplet contribute to the observed $\sigma(\theta)$ and VAP.

⁴⁹Ti₂

1