ADOPTED LEVELS, GAMMAS for 47Ti

Author: T. W. Burrows |  Citation: Nucl. Data Sheets 108, 923 (2007) |  Cutoff date: 20-Feb-2007 

 Full ENSDF file | Adopted Levels (PDF version) 


Q(β-)=-2930.60 keV 15S(n)= 8880.72 keV 15S(p)= 10464.9 keV 7Q(α)= -8952.5 keV 5
Reference: 2012WA38

References:
  A  47Sc β- decay  B  47V β+ decay
  C  10B(40Ca,3PG), 36S(14C,3nγ),  D  44Ca(α,nγ),47Ti(p,p’),(p,p’γ),
  E  45Sc(3He,p),(3He,pγ)  F  45Sc(α,NPG),(α,d)
  G  46Ti(n,γ),(pol n,γ) E=THERMAL  H  46Ti(d,pγ)
  I  46Ti(d,p)  J  46Ti(d,p),(pol d,p)
  K  47Ti(γ,γ),(γ,γ’)  L  I(γ+ce)(n,n’),(n,n’γ)
  M  Coulomb Excitation  N  48Ti(p,d)
  O  48Ti(d,t)  P  48Ti(3He,α)
  Q  48Ti(α,2P3NG),(16O,12C2P3NG)  R  50V(p,α)
  S  muonic atom 

General Comments:

Levels: Resonance parameters: see 2006MuZX

Levels: See (d,p) for possible states not confirmed by other work

Gammas: See (n,γ), (γ,γ’), (n,n’γ), and (p,p’γ) for unplaced gammas or gammas whose placement was considered uncertain. See also (3He,pγ) for additional gammas whose placement was considered uncertain

Q-value: Note: Current evaluation has used the following Q record -2930.34 308880.2929 10462.2 7 -8948.7 8 2003Au03










E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
     0.0ABCDEFGHIJKLMNOP R  5/2- STABLE      
   159.371 12 ABCDEFGHIJKLMNOP R  7/2- 210 ps 6     159.373 12 
  100
M1+E2
     0.0
5/2-
  1250.7 10       G I           (1/2-,3/2-)        
  1252.09 4   CDEF     LMNO QR  9/2- 140 fs 13    1092.71 5 
  1252.0?
  100 2 
    6 2 
M1+E2
E2
   159.371
     0.0
7/2-
5/2-
  1444.25 4   C EF  IJKLM  P    11/2- 0.90 ps 14     192.150 10 
  1284.86 4 
    6.2
  100
M1+E2
E2
  1252.09
   159.371
9/2-
7/2-
  1549.65 9  B DEFGHIJ L NOP R  3/2- 1.5 ps 4    1390.33 10 
  1549.9 4 
  100.0 29 
   83.9 25 
E2
M1+E2
   159.371
     0.0
7/2-
5/2-
  1670 80            L     R         
  1793.80 16  B DEFG IJ    O  R  1/2- 1.7 ps +17-6     244.27 16 
  1793.9 4 
   49.1 23 
  100
M1+E2
(E2)
  1549.65
     0.0
3/2-
5/2-
  1825.0 1    D FG I    NOP R  3/2+,5/2+ 2.1 ps +19-7    1825
  100
(E1+M2)
     0.0
5/2-
  2163.2 2  B DE   IJK  NOP    3/2- 25.1 fs 43    2003.1 10 
  2163.0 5 
    5.4 6 
  100.0 23 
(E2)
(M1(+E2))
   159.371
     0.0
7/2-
5/2-
  2166.7 2  B D F           R  5/2 19 fs 5    2007.3 10 
  100
D(+Q)
   159.371
7/2-
  2259.5 2    D    IJ   NO  R  5/2+ 0.54 ps 12    2101
  2259.7
   22 4 
  100 4 
(E1(+M2))
(E1(+M2))
   159.371
     0.0
7/2-
5/2-
  2297.1 2    D F  I KL     R  5/2-,7/2- < 10 fs   2137
  2297
   28 4 
  100 4 
(M1+E2)
(M1,E2)
   159.371
     0.0
7/2-
5/2-
  2344?        I                  
  2364.9 2    D    I    NOP R  1/2+ > 1.53 ps    540.0
  100

  1825.0
3/2+,5/2+
  2406.2 2    D  G I  L        (9/2-) 23 fs 7     962
  1154
  2247
  2406?
   14 5 
   30 5 
  100 3 
   14 5 
D,E2
D,E2
D,E2
(E2)
  1444.25
  1252.09
   159.371
     0.0
11/2-
9/2-
7/2-
5/2-
  2416.3 2    D FG I  L     R  1/2- TO 7/2- 1.0 ps +6-3     591
   866
  2416
  100 7 
   53 7 
   79 7 
D,E2
D,E2
D,E2
  1825.0
  1549.65
     0.0
3/2+,5/2+
3/2-
5/2-
  2499.4 19 ?      G             1/2(-),3/2,5/2+     2500 5 ?
 

     0.0
5/2-
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
  2520?        I     O     1/2+        
  2525.8 2  B D    I           3/2-,5/2- 94 fs 19    2366.3 5 
  2525.6 5 
   96 7 
  100 4 
D,E2
D,E2
   159.371
     0.0
7/2-
5/2-
  2548.2 2    D FG IJK   O  R  3/2- 6.2 fs 7    2548.7 5 
  100
(M1(+E2))
     0.0
5/2-
  2572.9 2    D    I    N      1/2+ 0.53 ps +22-14     748
  1023
   37 6 
  100 6 
D,E2
(E1(+M2))
  1825.0
  1549.65
3/2+,5/2+
3/2-
  2599.6 2    D  G I    NO     3/2-,5/2,7/2 1.3 ps +5-3     775
  2441
  2600
   27 6 
   81 6 
  100 6 
D,E2
D,E2
D,E2
  1825.0
   159.371
     0.0
3/2+,5/2+
7/2-
5/2-
  2619.4 2    DEFG IJ L NOP R  7/2- 29 fs 8     452
  1367
  2460
  2619
    2.7 14 
   10 3 
  100 4 
   25 4 
D,E2
D,E2
D,E2
D,E2
  2166.7
  1252.09
   159.371
     0.0
5/2
9/2-
7/2-
5/2-
  2668.0 2   CD F  I        R  9/2,13/2 21 fs 16    1224
  100
D+Q
  1444.25
11/2-
  2682.30 5   CD F          QR  11/2(-) > 2.10 ps    276
  1238 2 
  1430.22 4 
    1.4
   43
  100

D,Q
D(+Q)
  2406.2
  1444.25
  1252.09
(9/2-)
11/2-
9/2-
  2695?        I                  
  2748.87 6   CD F          QR  15/2- 1.11 ps 21    1304.61 4 
  100
E2
  1444.25
11/2-
  2757.6 2    D    I        R  7/2- TO 13/2- 17 fs 11    1314
  1506
  100 4 
   35 4 
D,E2
D,E2
  1444.25
  1252.09
11/2-
9/2-
  2785.1 5    D                3/2 TO 9/2     2785
  100

     0.0
5/2-
  2793.2 5  B D  G IJ          1/2-     1243.5 5 
  2793.3 10 
  100 23 
   26 5 


  1549.65
     0.0
3/2-
5/2-
  2800.2 10    D         NOP R  0.35 ps +26-16    2800
  100
D,E2
     0.0
5/2-
  2809.5 4    D         NOP R  5/2-,7/2,9/2- 49 fs 23    1558
  2810
   32 5 
  100 5 
D,E2
D,E2
  1252.09
     0.0
9/2-
5/2-
  2828.5 2    D    IJ   NOP R  1/2- TO 7/2 0.16 ps 5     412
  1003
  2828
   97 11 
   81 11 
  100 11 
D
D,E2
D,E2
  2416.3
  1825.0
     0.0
1/2- TO 7/2-
3/2+,5/2+
5/2-
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
  2838.9 5    D F  IJ   N      3/2- TO 9/2- < 33 fs   2680
  2839
  100 5 
   20 5 
D,E2
D,E2
   159.371
     0.0
7/2-
5/2-
  2846.3 3    D F  IJ L     R  5/2- TO 11/2- < 19 fs   1594
  2687
   72 7 
  100 7 
D,E2
D,E2
  1252.09
   159.371
9/2-
7/2-
  2855 5 ?     FG    L     R  1/2(-),3/2,5/2+     2855 5 ?
 

     0.0
5/2-
  2868?     F  I  L               
  3033.1 2    D    I  L     R  5/2-,7/2 0.41 ps 9     773
  1781
  2874
  3033
   28 5 
   25 5 
  100 7 
   23 5 
D,E2
D,E2
D,E2
D,E2
  2259.5
  1252.09
   159.371
     0.0
5/2+
9/2-
7/2-
5/2-
  3051.5 2    D    I  L     R  5/2- TO 11/2- 0.43 ps +12-9     267
  1800
  2893
   15 6 
  100 9 
   98 9 
D
D,E2
D,E2
  2785.1
  1252.09
   159.371
3/2 TO 9/2
9/2-
7/2-
  3176.0 3    D  G I     O  R  3/2-,5/2+ 0.23 ps +10-7     760
   811
  1013
  1351
  3017
  3176
   42 12 
   46 12 
   38 12 
   62 12 
  100 15 
   96 19 
D,E2
D,E2
D,E2
D,E2
D,E2
D,E2
  2416.3
  2364.9
  2163.2
  1825.0
   159.371
     0.0
1/2- TO 7/2-
1/2+
3/2-
3/2+,5/2+
7/2-
5/2-
  3211 8     E   I    NOP R  5/2-,7/2-        
  3225.8 3    D F  I           7/2- 7 fs +7-6    1974
  3067
  3226
  100 6 
   46 6 
   13 5 



  1252.09
   159.371
     0.0
9/2-
7/2-
5/2-
  3251.6 3    DEF  I           7/2- 29 fs 9     955
  1808
  3093
  3252
   27 7 
   64 7 
  100 9 
   31 7 
D,E2
(E2)
D,E2
D,E2
  2297.1
  1444.25
   159.371
     0.0
5/2-,7/2-
11/2-
7/2-
5/2-
  3277.7 3    D    IJ       R  3/2- 42 fs 22    1113
  1728
  100 10 
   72 10 
D,E2
D,E2
  2166.7
  1549.65
5/2
3/2-
  3287.73 6   CD F          QR  13/2- 0.51 ps +16-10     605.47 5 
  1843.36 6 
  2037
   44
  100
   11
(M1(+E2))
(M1(+E2))
(E2)
  2682.30
  1444.25
  1252.09
11/2(-)
11/2-
9/2-
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
  3368.9 4    D    I        R  7/2-,9/2,11/2- 0.19 ps 6    1925
  3210
   64 10 
  100 10 
D,E2
D,E2
  1444.25
   159.371
11/2-
7/2-
  3400.5 2    D    I        R  7/2- TO 13/2 1.4 ps +10-4     348
   718
  1956
   86 14 
   52 10 
  100 12 
D
D,E2
D,E2
  3051.5
  2682.30
  1444.25
5/2- TO 11/2-
11/2(-)
11/2-
  3434.6 4    D    I           1/2- TO 7/2 65 fs 22    1610
  3435
   79 9 
  100 9 
D,E2
D,E2
  1825.0
     0.0
3/2+,5/2+
5/2-
  3484.5 5    D F  I    NO  R  (3/2-) 30 fs 10    3325
  100
(E2)
   159.371
7/2-
  3515.5 5    D F  I     O  R  1/2+ 40 fs 12    1151
  1691
  3516?
   80 13 
  100 13 
   37 11 
D,E2
D,E2
D,E2
  2364.9
  1825.0
     0.0
1/2+
3/2+,5/2+
5/2-
  3544.8 4    D  G IJ   N      3/2-,5/2+ < 35 fs   1180
  1720
  3386
  3545
   19 6 
   48 8 
  100 10 
   42 8 
D,E2
D,E2
D,E2
D,E2
  2364.9
  1825.0
   159.371
     0.0
1/2+
3/2+,5/2+
7/2-
5/2-
  3553.6 10    D  G IJ   N P    3/2- TO 11/2- 35 fs +38-33    3395
  100
D,E2
   159.371
7/2-
  3567.97 8   CD F         P    17/2- 69 fs 21     819.09 5 
  100
M1+E2
  2748.87
15/2-
  3582.7 4    D F  I           (3/2-) < 15 fs   3424
  100
D,E2
   159.371
7/2-
  3622.5 6    D F  I           5/2- TO 13/2- 20 fs 19    2370
  100
D,E2
  1252.09
9/2-
  3654     F  I     O            
  3676.1 9    D FG IJ          3/2- < 40 fs   3676
  100
D,E2
     0.0
5/2-
  3701.8 5    D F  I           7/2,9/2,11/2,13/2- 24 fs +24-22    1034
  2450
   92 19 
  100 19 
D
D,E2
  2668.0
  1252.09
9/2,13/2
9/2-
  3724 16      F  I                  
  3727.1 6   C                 (13/2-)     1321
  2475
  100
    7.5
D,Q

  2406.2
  1252.09
(9/2-)
9/2-
  3780.0 10    D    I           3/2(-) TO 9/2- 44 fs 19    3621
  3780
   56 12 
  100 12 
D,(E2)
D,E2
   159.371
     0.0
7/2-
5/2-
  3827.1 5    DE   I           7/2- 17 fs 9    2383
  100
(E2)
  1444.25
11/2-
  3839 11      F  I                  
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
  3889        I                  
  3923 4     EFG IJK   O     3/2-     3925 5 
  100
D,Q
     0.0
5/2-
  3961 16      F  I                  
  3993.94 8   CD F          Q   15/2- 0.10 ps +8-5     267
   706.21 5 
  2550
    1.2
  100
   12
(M1(+E2))
(M1(+E2))
(E2)
  3727.1
  3287.73
  1444.25
(13/2-)
13/2-
11/2-
  4040 16         I                  
  4095 16         I           1/2-,3/2-        
  4112 16         I    N             
  4132 16 ?        I    N             
  4164        I    N             
  4180        I                  
  4217 16         I                  
  4243 16     E   I                  
  4264 16     E   I                  
  4277        I                  
  4281        I                  
  4303 16         I                  
  4336 16         I           3/2+,5/2+        
  4359 16         I                  
  4380 16         I           3/2+,5/2+        
  4466 16         I                  
  4492 16         I                  
  4494.11 10   CD F              19/2- 0.111 ps 28     926.12 6 
  1745
  100
   10
(M1+E2)
(E2)
  3567.97
  2748.87
17/2-
15/2-
  4518 16         I                  
  4541 16         I                  
  4553 16         I                  
  4588 16         I           7/2+,9/2+        
  4605 16         I                  
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
  4637 16         IJ          1/2-        
  4670 16         I                  
  4672.90 11   C                 17/2- 0.12 ps 6     678.95 8 
  1385
  1924
  100
   33
   17
(M1(+E2))
(E2)
D,E2
  3993.94
  3287.73
  2748.87
15/2-
13/2-
15/2-
  4686 16         I           3/2+,5/2+        
  4708 11     EF              -        
  4743 16         I                  
  4758 11     EF                     
  4793 16         I                  
  4811 16         I                  
  4829 16         I                  
  4847 16         I                  
  4876 16         I                  
  4898 16         I                  
  4924 16         I           1/2-,3/2-        
  4957 16         I           1/2+        
  4982 16         I           3/2+,5/2+        
  5013 16         I           1/2-,3/2-        
  5043 16         I                  
  5070 16         I                  
  5102 16         I                  
  5125 16         I                  
  5148 16         I                  
  5195 16         I                  
  5197.44 11   C  F              21/2- 49 fs 35     703.32 5 
  1629.83 40 
   86
  100
(M1(+E2))
(E2)
  4494.11
  3567.97
19/2-
17/2-
  5265 16         I           1/2+        
  5301 16         I                  
  5313 16         I           1/2-,3/2-        
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
  5355 16       G IJ          1/2-     5365 10 ?
 

     0.0
5/2-
  5372 15     E                   2807?
 

  2572.9
1/2+
  5407 16         I           1/2+        
  5433 16         I           1/2-,3/2-        
  5451        I                  
  5478 16         I                  
  5540 16         I           1/2-,3/2-        
  5580 16         IJ          1/2-        
  5615 16         I           1/2-,3/2-        
  5635 16         I                  
  5670 16         I                  
  5702 16         I                  
  5746 4 ?      G                 3145 5 ?
  3189 5 ?
  3335 5 ?
  3335 5 ?
 
 
 
 




  2599.6
  2548.2
  2416.3
  2406.2
3/2-,5/2,7/2
3/2-
1/2- TO 7/2-
(9/2-)
  5755 16 ?        I                  
  5774 16         I                  
  5810 16         IJ          1/2-        
  5836 16         I                  
  5872 16         I                  
  5937 16         I                  
  5976 16         I           1/2+        
  6013        I                  
  6039        I           3/2+,5/2+        
  6067        I           (1/2-,3/2-)        
  6088.60 23   C                 23/2- 35 fs 21     891.13 20 
  1595
  100
   14
(M1+E2)
(E2)
  5197.44
  4494.11
21/2-
19/2-
  6095        I                  
  6129        I                  
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
  6158        I           1/2+        
  6169        I           1/2+        
  6195        I                  
  6209        I                  
  6234        I                  
  6265        I                  
  6304        I                  
  6333        I           1/2-,3/2-        
  6364        I                  
  6366.4 6   C                 (21/2-) < 28 fs   1693.2 9 
  1873
  2798
  100
   60
   20
D,E2
D,E2
D,E2
  4672.90
  4494.11
  3567.97
17/2-
19/2-
17/2-
  6387        I                  
  6402        I                  
  6430        I           1/2+        
  6449        I                  
  6474        I                  
  6494        I           1/2+        
  6514        I                  
  6530 15     E   I           -        
  6554        I                  
  6565        I                  
  6585        I                  
  6607        I           (1/2+)        
  6624        I                  
  6645        I                  
  6662        I                  
  6673        I                  
  6692        I                  
  6709        I                  
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
  6727        I                  
  6749        I                  
  6771        I           (1/2+)        
  6787        I                  
  6823        I                  
  6838        I                  
  6854    E   I                  
  6882    E   I                  
  6903        I                  
  6917        I                  
  6936        I                  
  6957        I                  
  6980        I                  
  7002        I                  
  7018        I                  
  7038        I                  
  7067        I                  
  7076        I                  
  7095        I                  
  7123        I                  
  7141        I                  
  7166        I           3/2+,5/2+        
  7187        I           3/2+,5/2+        
  7205        I                  
  7225        I                  
  7349.0 7     E        N P    7/2-     4123
  7189
   67
  100


  3225.8
   159.371
7/2-
7/2-
  7480.6 10     E               -     7480
 

     0.0
5/2-
  8005.1 3   C                 27/2- 0.49 ps 11    1916.45 20 
  100
(E2(+M3))
  6088.60
23/2-
     8.16E+3 2              N P    (3/2)+        
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
     8.79E+3 2              N P    1/2+        

E(level): From least-squares fit to Eγ’s, including primary γ’s from (n,γ), except as noted in footnotes, comments, or cross reference column. ΔEγ=1 keV assumed where not given. Capture-state energy held fixed

Jπ(level): From angular momentum transfer in (d,p), except as noted. See these data for Jπ’s based on empirical J-dependence of L=1 and L=3 transfers. Angular momenta deduced from other stripping and pickup reaction data are consistent, except as noted

T1/2(level): From DSAM in (p,p’γ), (α,nγ), and (3He,αγ), except as noted.

Back to top

Band Transitions:

E(level)
(keV)
Jπ(level) T1/2(level)E(γ)I(γ)M(γ)Final Levels
Band 1 - yrast band
     0.0 5/2- STABLE      
   159.371 12  7/2- 210 ps 6     159.373 12 
  100
M1+E2
     0.0
5/2-
  1252.09 4  9/2- 140 fs 13       
  1444.25 4  11/2- 0.90 ps 14     192.150 10 
  1284.86 4 
    6.2
  100
M1+E2
E2
  1252.09
   159.371
9/2-
7/2-
  2748.87 6  15/2- 1.11 ps 21    1304.61 4 
  100
E2
  1444.25
11/2-
  3567.97 8  17/2- 69 fs 21     819.09 5 
  100
M1+E2
  2748.87
15/2-
  4494.11 10  19/2- 0.111 ps 28       
  5197.44 11  21/2- 49 fs 35     703.32 5 
  1629.83 40 
   86
  100
(M1(+E2))
(E2)
  4494.11
  3567.97
19/2-
17/2-
  6088.60 23  23/2- 35 fs 21     891.13 20 
  1595
  100
   14
(M1+E2)
(E2)
  5197.44
  4494.11
21/2-
19/2-
  8005.1 3  27/2- 0.49 ps 11    1916.45 20 
  100
(E2(+M3))
  6088.60
23/2-

Back to top

Additional Gamma Data:















E(level)
(keV)
Jπ(level)T1/2(level)E(γ)
(keV)
MultipolarityMixing
Ratio
Conversion
Coefficient
Additional Data
   159.371 7/2- 210 ps 6     159.373 12 M1+E2-0.099 90.0045B(E2)(W.u.)=25 5, B(M1)(W.u.)=0.0255 8, α=0.0045 3
  1252.09 9/2- 140 fs 13    1092.71 5 M1+E2-0.29 37.89×10-5B(E2)(W.u.)=19 4, B(M1)(W.u.)=0.105 11, α=7.89E-5 12, α(K)=7.16E-5 11, α(L)=6.40E-6 10, α(M)=8.18E-7 12, α(N)=4.45E-8 7, α(N+)=4.45E-8 7
9/2- 140 fs 13    1252.0E2 9.03×10-5B(E2)(W.u.)=7 3, α=9.03E-5 13, α(K)=6.52E-5 10, α(L)=5.83E-6 9, α(M)=7.46E-7 11, α(N)=4.05E-8 6, α(N+)=1.85E-5 3
  1444.25 11/2- 0.90 ps 14     192.150 10 M1+E2+0.05 20.00364B(E2)(W.u.)=3.×101 3, B(M1)(W.u.)=0.20 4, α=0.00364 8, α(K)=0.00330 7, α(L)=0.000300 7, α(M)=3.84E-5 8, α(N)=2.06E-6 5, α(N+)=2.06E-6 5
11/2- 0.90 ps 14    1284.86 4 E2 9.33×10-5B(E2)(W.u.)=17 3, α=9.33E-5 13, α(K)=6.16E-5 9, α(L)=5.51E-6 8, α(M)=7.04E-7 10, α(N)=3.82E-8 6, α(N+)=2.55E-5 4
  1549.65 3/2- 1.5 ps 4    1390.33 10 E2 0.0001090B(E2)(W.u.)=3.9 11, α=0.0001090 16, α(K)=5.20E-5 8, α(L)=4.65E-6 7, α(M)=5.94E-7 9, α(N)=3.23E-8 5, α(N+)=5.18E-5 8
3/2- 1.5 ps 4    1549.9 4 M1+E2+0.46 101.26×10-4B(E2)(W.u.)=0.33 15, B(M1)(W.u.)=0.0015 5, α=1.26E-4 3, α(K)=3.76E-5 7, α(L)=3.35E-6 6, α(M)=4.29E-7 7, α(N)=2.34E-8 4, α(N+)=8.50E-5 22
  1793.80 1/2- 1.7 ps +17-6     244.27 16 M1+E2-0.30 60.0027B(E2)(W.u.)=1.0×103 +6-10, B(M1)(W.u.)=0.27 +10-27, α=0.0027 3, α(K)=0.0025 3, α(L)=0.000225 24, α(M)=2.9E-5 3, α(N)=1.53E-6 16, α(N+)=1.53E-6 16
1/2- 1.7 ps +17-6    1793.9 4 (E2) 0.000249B(E2)(W.u.)=1.2 +5-12, α=0.000249 4, α(K)=3.12E-5 5, α(L)=2.78E-6 4, α(M)=3.56E-7 5, α(N)=1.94E-8 3, α(N+)=0.000215 3
  1825.0 3/2+,5/2+ 2.1 ps +19-7    1825(E1+M2)-0.25 +7-25.09×10-4B(E1)(W.u.)=3.8E-5 +13-35, B(M2)(W.u.)=3.3 +21-4, α=5.09E-4 13, α(K)=1.90E-5 9, α(L)=1.69E-6 8, α(M)=2.16E-7 11, α(N)=1.18E-8 6, α(N+)=0.000488 14
  2163.2 3/2- 25.1 fs 43    2003.1 10 (E2) 0.000343B(E2)(W.u.)=3.6 8, α=0.000343 5, α(K)=2.54E-5 4, α(L)=2.27E-6 4, α(M)=2.90E-7 4, α(N)=1.578E-8 23, α(N+)=0.000315 5
3/2- 25.1 fs 43    2163.0 5 (M1(+E2))0.0 10.000342B(M1)(W.u.)=0.082 15, α=0.000342 5, α(K)=2.07×10-5 3, α(L)=1.84E-6 3, α(M)=2.36E-7 4, α(N)=1.285E-8 18, α(N+)=0.000319 5
  2166.7 5/2 19 fs 5    2007.3 10 D(+Q)0.00 17 
  2259.5 5/2+ 0.54 ps 12    2101(E1(+M2))0.24 LE7.07×10-4B(E1)(W.u.)=1.9E-5 6, α=7.07E-4 22, α(K)=1.48E-5 9, α(L)=1.31E-6 8, α(M)=1.68E-7 10, α(N)=9.1E-9 6, α(N+)=0.000690 22
5/2+ 0.54 ps 12    2259.7(E1(+M2))0.129 LE8.24×10-4B(E1)(W.u.)=6.8E-5 16, α=8.24E-4 13, α(K)=1.28E-5 3, α(L)=1.135E-6 24, α(M)=1.45E-7 3, α(N)=7.91E-9 17, α(N+)=0.000810 13
  2297.1 5/2-,7/2- < 10 fs   2137(M1+E2) 0.00037α=0.00037 4, α(K)=2.19×10-5 9, α(L)=1.95E-6 8, α(M)=2.49E-7 10, α(N)=1.36E-8 5, α(N+)=0.00034 4
5/2-,7/2- < 10 fs   2297(M1,E2) 0.00044α=0.00044 5, α(K)=1.93×10-5 7, α(L)=1.72E-6 6, α(M)=2.20E-7 8, α(N)=1.20E-8 4, α(N+)=0.00042 5
  2406.2 (9/2-) 23 fs 7    2406(E2) 0.000532B(E2)(W.u.)=2.7 13, α=0.000532 8, α(K)=1.84E-5 3, α(L)=1.638E-6 23, α(M)=2.10E-7 3, α(N)=1.142E-8 16, α(N+)=0.000512 8
  2548.2 3/2- 6.2 fs 7    2548.7 5 (M1(+E2))0.5 LT5.12×10-4B(M1)(W.u.)>0.15 0.24, α=5.12×10-4 12, α(K)=1.593E-5 24, α(L)=1.417E-6 22, α(M)=1.81E-7 3, α(N)=9.89E-9 15, α(N+)=0.000494 12
  2572.9 1/2+ 0.53 ps +22-14    1023(E1(+M2))0.019 LE5.05×10-5B(E1)(W.u.)=6.7E-4 +19-28, α=5.05E-5 7, α(K)=4.59E-5 7, α(L)=4.09E-6 6, α(M)=5.23E-7 8, α(N)=2.84E-8 4, α(N+)=2.84E-8 4
  2668.0 9/2,13/2 21 fs 16    1224D+Q-0.14 2 
  2682.30 11/2(-) > 2.10 ps   1430.22 4 D(+Q)0.00 2 
  2748.87 15/2- 1.11 ps 21    1304.61 4 E2 9.56×10-5B(E2)(W.u.)=13 3, α=9.56E-5 14, α(K)=5.96E-5 9, α(L)=5.33E-6 8, α(M)=6.81E-7 10, α(N)=3.70E-8 6, α(N+)=3.00E-5 5
  3251.6 7/2- 29 fs 9    1808(E2) 0.000255B(E2)(W.u.)=29 10, α=0.000255 4, α(K)=3.08E-5 5, α(L)=2.74E-6 4, α(M)=3.51E-7 5, α(N)=1.91E-8 3, α(N+)=0.000222 4
  3287.73 13/2- 0.51 ps +16-10     605.47 5 (M1(+E2))-0.00 40.000255B(M1)(W.u.)=0.055 +11-18, α=0.000255 4, α(K)=0.000231 4, α(L)=2.08×10-5 3, α(M)=2.65E-6 4, α(N)=1.440E-7 21, α(N+)=1.440E-7 21
13/2- 0.51 ps +16-10    1843.36 6 (M1(+E2))-0.00 60.000216B(M1)(W.u.)=0.044 +9-14, α=0.000216 4, α(K)=2.71×10-5 4, α(L)=2.41E-6 4, α(M)=3.09E-7 5, α(N)=1.684E-8 24, α(N+)=0.000186 3
13/2- 0.51 ps +16-10    2037(E2) 0.000359B(E2)(W.u.)=0.22 +5-7, α=0.000359 6, α(K)=2.47E-5 4, α(L)=2.20E-6 3, α(M)=2.81E-7 4, α(N)=1.531E-8 22, α(N+)=0.000332 5
E(level)
(keV)
Jπ(level)T1/2(level)E(γ)
(keV)
MultipolarityMixing
Ratio
Conversion
Coefficient
Additional Data
  3484.5 (3/2-) 30 fs 10    3325(E2) 0.000931B(E2)(W.u.)=4.6 16, α=0.000931 14, α(K)=1.087E-5 16, α(L)=9.66E-7 14, α(M)=1.236E-7 18, α(N)=6.74E-9 10, α(N+)=0.000919 13
  3567.97 17/2- 69 fs 21     819.09 5 M1+E2-0.16 91.38×10-4B(E2)(W.u.)=60 +70-60, B(M1)(W.u.)=0.57 18, α=1.38E-4 3, α(K)=0.000125 3, α(L)=1.120E-5 24, α(M)=1.43E-6 3, α(N)=7.79E-8 17, α(N+)=7.79E-8 17
  3827.1 7/2- 17 fs 9    2383(E2) 0.000521B(E2)(W.u.)=43 23, α=0.000521 8, α(K)=1.87E-5 3, α(L)=1.665E-6 24, α(M)=2.13E-7 3, α(N)=1.161E-8 17, α(N+)=0.000500 7
  3993.94 15/2- 0.10 ps +8-5     267(M1(+E2))0.015 LE0.001620B(M1)(W.u.)=0.12 +12-5, α=0.001620 23, α(K)=0.001466 21, α(L)=0.0001327 19, α(M)=1.697×10-5 24, α(N)=9.14E-7 13, α(N+)=9.14E-7 13
15/2- 0.10 ps +8-5     706.21 5 (M1(+E2)) 0.00024B(M1)(W.u.)=0.6 +3-5, α=0.00024 6, α(K)=0.00022 6, α(L)=2.0×10-5 5, α(M)=2.5E-6 7, α(N)=1.4E-7 4, α(N+)=1.4E-7 4
15/2- 0.10 ps +8-5    2550(E2) 0.000599B(E2)(W.u.)=0.6 +3-5, α=0.000599 9, α(K)=1.667E-5 24, α(L)=1.484E-6 21, α(M)=1.90E-7 3, α(N)=1.034E-8 15, α(N+)=0.000580 9
  4494.11 19/2- 0.111 ps 28     926.12 6 (M1+E2)-0.05 41.07×10-4B(E2)(W.u.)=1.70 +272-17, B(M1)(W.u.)=0.23 6, α=1.07E-4 2, α(K)=9.69E-5 14, α(L)=8.66E-6 13, α(M)=1.108E-6 16, α(N)=6.03E-8 9, α(N+)=6.03E-8 9
19/2- 0.111 ps 28    1745(E2) 0.000229B(E2)(W.u.)=2.8 8, α=0.000229 4, α(K)=3.29E-5 5, α(L)=2.94E-6 5, α(M)=3.76E-7 6, α(N)=2.04E-8 3, α(N+)=0.000193 3
  4672.90 17/2- 0.12 ps 6     678.95 8 (M1(+E2))0.021 LE0.000200BM1=0.39 20, α=0.000200 3, α(K)=0.000182 3, α(L)=1.629×10-5 23, α(M)=2.08E-6 3, α(N)=1.132E-7 16, α(N+)=1.132E-7 16
17/2- 0.12 ps 6    1385(E2) 1.08×10-4B(E2)(W.u.)=20 11, α=1.08E-4, α(K)=5.25E-5 8, α(L)=4.68E-6 7, α(M)=5.99E-7 9, α(N)=3.25E-8 5, α(N+)=5.03E-5 7
  5197.44 21/2- 49 fs 35     703.32 5 (M1(+E2)) 0.00022B(M1)(W.u.)=0.6 5, α=0.00022 9, α(K)=0.00020 8, α(L)=0.000018, α(M)=2.25×10-6 10, α(N)=1.22E-7 5, α(N+)=1.22E-7 5
21/2- 49 fs 35    1629.83 40 (E2) 0.000183B(E2)(W.u.)=5.×101 4, α=0.000183 3, α(K)=3.76E-5 6, α(L)=3.36E-6 5, α(M)=4.29E-7 6, α(N)=2.33E-8 4, α(N+)=0.0001416 20
  6088.60 23/2- 35 fs 21     891.13 20 (M1+E2)-0.09 81.15×10-4B(E2)(W.u.)=20.1 +375-20, B(M1)(W.u.)=0.8 5, α=1.15E-4 2, α(K)=0.0001048 17, α(L)=9.37E-6 16, α(M)=1.199E-6 20, α(N)=6.52E-8 11, α(N+)=6.52E-8 11
23/2- 35 fs 21    1595(E2) 0.0001700B(E2)(W.u.)=19 12, α=0.0001700 24, α(K)=3.93E-5 6, α(L)=3.50E-6 5, α(M)=4.48E-7 7, α(N)=2.44E-8 4, α(N+)=0.0001266 18
  8005.1 27/2- 0.49 ps 11    1916.45 20 (E2(+M3))-0.0 33.03×10-4B(E2)(W.u.)=4.4 10, α=3.03E-4 15, α(K)=2.8E-5 4, α(L)=2.5E-6 4, α(M)=3.1E-7 4, α(N)=1.71E-8 23, α(N+)=0.000273 18

Back to top

Additional Level Data and Comments:

E(level)Jπ(level)T1/2(level)Comments
     0.05/2- STABLE μ=-0.78848 1 (2005St24,1965Dr03,1953Je16), Q=+0.30 2 (2005St24,1990Ay01), T=3/2
E(level): From (40Ca,3pγ). yrast band.
   159.3717/2- 210 ps 6  μ=-1.9 6 (2005St24,1977Bu10), T=3/2
E(level): From (40Ca,3pγ). yrast band.
Jπ(level): From J-dependence of vector analyzing power and angular momentum transfer in (d,p) and (pol d,p).
  1252.099/2- 140 fs 13  E(level): From (40Ca,3pγ). yrast band.
  1444.2511/2- 0.90 ps 14  E(level): From (40Ca,3pγ). yrast band. From (14C,3nγ).
Jπ(level): From γ(θ) and RUL of deexciting γ.
T1/2(level): From (14C,3nγ). T1/2 by DSAM.
  1549.653/2- 1.5 ps 4  E(level): From (p,p’γ). Held fixed in least-squares fit to Eγ’s.
Jπ(level): From J-dependence of vector analyzing power and angular momentum transfer in (d,p) and (pol d,p).
  1793.801/2- 1.7 ps +17-6  E(level): From (p,p’γ). Held fixed in least-squares fit to Eγ’s.
Jπ(level): From J-dependence of vector analyzing power and angular momentum transfer in (d,p) and (pol d,p).
  1825.03/2+,5/2+ 2.1 ps +19-7  E(level): From (p,p’γ). Held fixed in least-squares fit to Eγ’s. The g.s. transition is observed only in a (p,p’γ) and (3He,αγ) study, a (p,p’γ) and (α,nγ), a (40Ca,3pγ), and a Coulomb excitation study and the branching ratios derived from Coulomb excitation are discrepant with the others. There are several possible causes for these disagreements: 1. The 1253γ intensity may be too low to observe in the other measurements. 2. The geometry in the (p,p’γ) studies may be such that the observed transition is a sum of the 1093 and 159 γ’s. 3. The assumption of no contamination from the 1444 to 160 transition in Coulomb excitation may not be valid. 4. There may be contamination from deexcitation of the 1250 (3/2-,1/2-), state which would be dependent both on the reaction mechanism and on the incident energy. Held fixed in least-squares adjustment.
Jπ(level): See (p,p’γ) and (α,nγ) for proposed assignment (not adopted by evaluator).
  2163.23/2- 25.1 fs 43  E(level): From (p,p’γ). Held fixed in least-squares fit to Eγ’s. Held fixed in least-squares adjustment.
Jπ(level): From J-dependence of vector analyzing power and angular momentum transfer in (d,p) and (pol d,p).
  2166.75/2 19 fs 5  E(level): From (p,p’γ). Held fixed in least-squares fit to Eγ’s. Held fixed in least-squares adjustment.
  2259.55/2+ 0.54 ps 12  E(level): From (p,p’γ). Held fixed in least-squares fit to Eγ’s. Held fixed in least-squares adjustment.
  2297.15/2-,7/2- < 10 fs E(level): From (p,p’γ). Held fixed in least-squares fit to Eγ’s. The g.s. transition is observed only in a (p,p’γ) and (3He,αγ) study, a (p,p’γ) and (α,nγ), a (40Ca,3pγ), and a Coulomb excitation study and the branching ratios derived from Coulomb excitation are discrepant with the others. There are several possible causes for these disagreements: 1. The 1253γ intensity may be too low to observe in the other measurements. 2. The geometry in the (p,p’γ) studies may be such that the observed transition is a sum of the 1093 and 159 γ’s. 3. The assumption of no contamination from the 1444 to 160 transition in Coulomb excitation may not be valid. 4. There may be contamination from deexcitation of the 1250 (3/2-,1/2-), state which would be dependent both on the reaction mechanism and on the incident energy. Held fixed in least-squares adjustment.
Jπ(level): See (p,p’γ) and (α,nγ) for proposed assignment (not adopted by evaluator).
  2364.91/2+ > 1.53 ps E(level): From (p,p’γ). Held fixed in least-squares fit to Eγ’s. Held fixed in least-squares adjustment.
  2406.2(9/2-) 23 fs 7  E(level): From (p,p’γ). Held fixed in least-squares fit to Eγ’s. The g.s. transition is observed only in a (p,p’γ) and (3He,αγ) study, a (p,p’γ) and (α,nγ), a (40Ca,3pγ), and a Coulomb excitation study and the branching ratios derived from Coulomb excitation are discrepant with the others. There are several possible causes for these disagreements: 1. The 1253γ intensity may be too low to observe in the other measurements. 2. The geometry in the (p,p’γ) studies may be such that the observed transition is a sum of the 1093 and 159 γ’s. 3. The assumption of no contamination from the 1444 to 160 transition in Coulomb excitation may not be valid. 4. There may be contamination from deexcitation of the 1250 (3/2-,1/2-), state which would be dependent both on the reaction mechanism and on the incident energy. Held fixed in least-squares adjustment.
Jπ(level): See (p,p’γ) and (α,nγ) for proposed assignment (not adopted by evaluator). Connected by a J|)J or J|)J-2, presumably stretched E2; 3727 decays weakly to yrast 9/2-.
  2416.31/2- TO 7/2- 1.0 ps +6-3  E(level): From (p,p’γ). Held fixed in least-squares fit to Eγ’s. The g.s. transition is observed only in a (p,p’γ) and (3He,αγ) study, a (p,p’γ) and (α,nγ), a (40Ca,3pγ), and a Coulomb excitation study and the branching ratios derived from Coulomb excitation are discrepant with the others. There are several possible causes for these disagreements: 1. The 1253γ intensity may be too low to observe in the other measurements. 2. The geometry in the (p,p’γ) studies may be such that the observed transition is a sum of the 1093 and 159 γ’s. 3. The assumption of no contamination from the 1444 to 160 transition in Coulomb excitation may not be valid. 4. There may be contamination from deexcitation of the 1250 (3/2-,1/2-), state which would be dependent both on the reaction mechanism and on the incident energy. Held fixed in least-squares adjustment.
Jπ(level): See (p,p’γ) and (α,nγ) for proposed assignment (not adopted by evaluator).
  2525.83/2-,5/2- 94 fs 19  E(level): From (p,p’γ). Held fixed in least-squares fit to Eγ’s. Held fixed in least-squares adjustment.
  2548.23/2- 6.2 fs 7  XREF: γ(2554).
E(level): From (p,p’γ). Held fixed in least-squares fit to Eγ’s. Held fixed in least-squares adjustment.
Jπ(level): From J-dependence of vector analyzing power and angular momentum transfer in (d,p) and (pol d,p).
  2572.91/2+ 0.53 ps +22-14  E(level): From (p,p’γ). Held fixed in least-squares fit to Eγ’s. Held fixed in least-squares adjustment.
  2599.63/2-,5/2,7/2 1.3 ps +5-3  E(level): From (p,p’γ). Held fixed in least-squares fit to Eγ’s. The g.s. transition is observed only in a (p,p’γ) and (3He,αγ) study, a (p,p’γ) and (α,nγ), a (40Ca,3pγ), and a Coulomb excitation study and the branching ratios derived from Coulomb excitation are discrepant with the others. There are several possible causes for these disagreements: 1. The 1253γ intensity may be too low to observe in the other measurements. 2. The geometry in the (p,p’γ) studies may be such that the observed transition is a sum of the 1093 and 159 γ’s. 3. The assumption of no contamination from the 1444 to 160 transition in Coulomb excitation may not be valid. 4. There may be contamination from deexcitation of the 1250 (3/2-,1/2-), state which would be dependent both on the reaction mechanism and on the incident energy. Held fixed in least-squares adjustment.
Jπ(level): See (p,p’γ) and (α,nγ) for proposed assignment (not adopted by evaluator). L(d,p)=3 for multiplet.
  2619.47/2- 29 fs 8  E(level): Held fixed in least-squares adjustment.
Jπ(level): From J-dependence of vector analyzing power and angular momentum transfer in (d,p) and (pol d,p). L(d,p)=3 for multiplet.
  2668.09/2,13/2 21 fs 16  E(level): The g.s. transition is observed only in a (p,p’γ) and (3He,αγ) study, a (p,p’γ) and (α,nγ), a (40Ca,3pγ), and a Coulomb excitation study and the branching ratios derived from Coulomb excitation are discrepant with the others. There are several possible causes for these disagreements: 1. The 1253γ intensity may be too low to observe in the other measurements. 2. The geometry in the (p,p’γ) studies may be such that the observed transition is a sum of the 1093 and 159 γ’s. 3. The assumption of no contamination from the 1444 to 160 transition in Coulomb excitation may not be valid. 4. There may be contamination from deexcitation of the 1250 (3/2-,1/2-), state which would be dependent both on the reaction mechanism and on the incident energy. Held fixed in least-squares adjustment.
Jπ(level): See (p,p’γ) and (α,nγ) for proposed assignment (not adopted by evaluator).
  2682.3011/2(-) > 2.10 ps E(level): The g.s. transition is observed only in a (p,p’γ) and (3He,αγ) study, a (p,p’γ) and (α,nγ), a (40Ca,3pγ), and a Coulomb excitation study and the branching ratios derived from Coulomb excitation are discrepant with the others. There are several possible causes for these disagreements: 1. The 1253γ intensity may be too low to observe in the other measurements. 2. The geometry in the (p,p’γ) studies may be such that the observed transition is a sum of the 1093 and 159 γ’s. 3. The assumption of no contamination from the 1444 to 160 transition in Coulomb excitation may not be valid. 4. There may be contamination from deexcitation of the 1250 (3/2-,1/2-), state which would be dependent both on the reaction mechanism and on the incident energy. NEGATIVE-PARITY SIDE band.
Jπ(level): See (p,p’γ) and (α,nγ) for proposed assignment (not adopted by evaluator). NEGATIVE-PARITY SIDE band.
  2748.8715/2- 1.11 ps 21  E(level): From (40Ca,3pγ). yrast band. From (14C,3nγ).
Jπ(level): From γ(θ) and RUL of deexciting γ.
T1/2(level): From (14C,3nγ). T1/2 by DSAM.
  2757.67/2- TO 13/2- 17 fs 11  E(level): From (p,p’γ). Held fixed in least-squares fit to Eγ’s. The g.s. transition is observed only in a (p,p’γ) and (3He,αγ) study, a (p,p’γ) and (α,nγ), a (40Ca,3pγ), and a Coulomb excitation study and the branching ratios derived from Coulomb excitation are discrepant with the others. There are several possible causes for these disagreements: 1. The 1253γ intensity may be too low to observe in the other measurements. 2. The geometry in the (p,p’γ) studies may be such that the observed transition is a sum of the 1093 and 159 γ’s. 3. The assumption of no contamination from the 1444 to 160 transition in Coulomb excitation may not be valid. 4. There may be contamination from deexcitation of the 1250 (3/2-,1/2-), state which would be dependent both on the reaction mechanism and on the incident energy. Held fixed in least-squares adjustment.
Jπ(level): See (p,p’γ) and (α,nγ) for proposed assignment (not adopted by evaluator).
  2785.13/2 TO 9/2   E(level): From (p,p’γ). Held fixed in least-squares fit to Eγ’s. The g.s. transition is observed only in a (p,p’γ) and (3He,αγ) study, a (p,p’γ) and (α,nγ), a (40Ca,3pγ), and a Coulomb excitation study and the branching ratios derived from Coulomb excitation are discrepant with the others. There are several possible causes for these disagreements: 1. The 1253γ intensity may be too low to observe in the other measurements. 2. The geometry in the (p,p’γ) studies may be such that the observed transition is a sum of the 1093 and 159 γ’s. 3. The assumption of no contamination from the 1444 to 160 transition in Coulomb excitation may not be valid. 4. There may be contamination from deexcitation of the 1250 (3/2-,1/2-), state which would be dependent both on the reaction mechanism and on the incident energy. Held fixed in least-squares adjustment.
Jπ(level): See (p,p’γ) and (α,nγ) for proposed assignment (not adopted by evaluator).
  2793.21/2-   Jπ(level): From J-dependence of vector analyzing power and angular momentum transfer in (d,p) and (pol d,p).
E(level)Jπ(level)T1/2(level)Comments
  2800.2 0.35 ps +26-16  E(level): From (p,p’γ). Held fixed in least-squares fit to Eγ’s. The g.s. transition is observed only in a (p,p’γ) and (3He,αγ) study, a (p,p’γ) and (α,nγ), a (40Ca,3pγ), and a Coulomb excitation study and the branching ratios derived from Coulomb excitation are discrepant with the others. There are several possible causes for these disagreements: 1. The 1253γ intensity may be too low to observe in the other measurements. 2. The geometry in the (p,p’γ) studies may be such that the observed transition is a sum of the 1093 and 159 γ’s. 3. The assumption of no contamination from the 1444 to 160 transition in Coulomb excitation may not be valid. 4. There may be contamination from deexcitation of the 1250 (3/2-,1/2-), state which would be dependent both on the reaction mechanism and on the incident energy. Held fixed in least-squares adjustment.
Jπ(level): See (p,p’γ) and (α,nγ) for proposed assignment (not adopted by evaluator). L(3He,α)=3 for multiplet. L(p,d)=3 for multiplet.
  2809.55/2-,7/2,9/2- 49 fs 23  E(level): From (p,p’γ). Held fixed in least-squares fit to Eγ’s. Held fixed in least-squares adjustment.
Jπ(level): L(3He,α)=3 for multiplet. L(p,d)=3 for multiplet.
  2828.51/2- TO 7/2 0.16 ps 5  E(level): From (p,p’γ). Held fixed in least-squares fit to Eγ’s. The g.s. transition is observed only in a (p,p’γ) and (3He,αγ) study, a (p,p’γ) and (α,nγ), a (40Ca,3pγ), and a Coulomb excitation study and the branching ratios derived from Coulomb excitation are discrepant with the others. There are several possible causes for these disagreements: 1. The 1253γ intensity may be too low to observe in the other measurements. 2. The geometry in the (p,p’γ) studies may be such that the observed transition is a sum of the 1093 and 159 γ’s. 3. The assumption of no contamination from the 1444 to 160 transition in Coulomb excitation may not be valid. 4. There may be contamination from deexcitation of the 1250 (3/2-,1/2-), state which would be dependent both on the reaction mechanism and on the incident energy. Held fixed in least-squares adjustment.
Jπ(level): See (p,p’γ) and (α,nγ) for proposed assignment (not adopted by evaluator). L(d,p)=3 for multiplet. L(3He,α)=3 for multiplet. L(p,d)=3 for multiplet.
  2838.93/2- TO 9/2- < 33 fs E(level): From (p,p’γ). Held fixed in least-squares fit to Eγ’s. The g.s. transition is observed only in a (p,p’γ) and (3He,αγ) study, a (p,p’γ) and (α,nγ), a (40Ca,3pγ), and a Coulomb excitation study and the branching ratios derived from Coulomb excitation are discrepant with the others. There are several possible causes for these disagreements: 1. The 1253γ intensity may be too low to observe in the other measurements. 2. The geometry in the (p,p’γ) studies may be such that the observed transition is a sum of the 1093 and 159 γ’s. 3. The assumption of no contamination from the 1444 to 160 transition in Coulomb excitation may not be valid. 4. There may be contamination from deexcitation of the 1250 (3/2-,1/2-), state which would be dependent both on the reaction mechanism and on the incident energy. Held fixed in least-squares adjustment.
Jπ(level): See (p,p’γ) and (α,nγ) for proposed assignment (not adopted by evaluator). L(d,p)=3 for multiplet.
  2846.35/2- TO 11/2- < 19 fs E(level): From (p,p’γ). Held fixed in least-squares fit to Eγ’s. The g.s. transition is observed only in a (p,p’γ) and (3He,αγ) study, a (p,p’γ) and (α,nγ), a (40Ca,3pγ), and a Coulomb excitation study and the branching ratios derived from Coulomb excitation are discrepant with the others. There are several possible causes for these disagreements: 1. The 1253γ intensity may be too low to observe in the other measurements. 2. The geometry in the (p,p’γ) studies may be such that the observed transition is a sum of the 1093 and 159 γ’s. 3. The assumption of no contamination from the 1444 to 160 transition in Coulomb excitation may not be valid. 4. There may be contamination from deexcitation of the 1250 (3/2-,1/2-), state which would be dependent both on the reaction mechanism and on the incident energy. Held fixed in least-squares adjustment.
Jπ(level): See (p,p’γ) and (α,nγ) for proposed assignment (not adopted by evaluator). L(d,p)=3 for multiplet.
  3033.15/2-,7/2 0.41 ps 9  E(level): From (p,p’γ). Held fixed in least-squares fit to Eγ’s. Held fixed in least-squares adjustment.
  3051.55/2- TO 11/2- 0.43 ps +12-9  E(level): From (p,p’γ). Held fixed in least-squares fit to Eγ’s. Held fixed in least-squares adjustment.
  3176.03/2-,5/2+ 0.23 ps +10-7  Possible doublet.
E(level): From (p,p’γ). Held fixed in least-squares fit to Eγ’s. The g.s. transition is observed only in a (p,p’γ) and (3He,αγ) study, a (p,p’γ) and (α,nγ), a (40Ca,3pγ), and a Coulomb excitation study and the branching ratios derived from Coulomb excitation are discrepant with the others. There are several possible causes for these disagreements: 1. The 1253γ intensity may be too low to observe in the other measurements. 2. The geometry in the (p,p’γ) studies may be such that the observed transition is a sum of the 1093 and 159 γ’s. 3. The assumption of no contamination from the 1444 to 160 transition in Coulomb excitation may not be valid. 4. There may be contamination from deexcitation of the 1250 (3/2-,1/2-), state which would be dependent both on the reaction mechanism and on the incident energy. Held fixed in least-squares adjustment.
Jπ(level): See (p,p’γ) and (α,nγ) for proposed assignment (not adopted by evaluator).
  3225.87/2- 7 fs +7-6  T=3/2
Antianalog state.
E(level): Antianalog state. From (p,p’γ). Held fixed in least-squares fit to Eγ’s. Held fixed in least-squares adjustment.
Jπ(level): L(3He,p)=0 or 0+2.
  3251.67/2- 29 fs 9  E(level): From (p,p’γ). Held fixed in least-squares fit to Eγ’s. Held fixed in least-squares adjustment.
  3277.73/2- 42 fs 22  E(level): From (p,p’γ). Held fixed in least-squares fit to Eγ’s. Held fixed in least-squares adjustment.
Jπ(level): From J-dependence of vector analyzing power and angular momentum transfer in (d,p) and (pol d,p).
  3287.7313/2- 0.51 ps +16-10  E(level): The g.s. transition is observed only in a (p,p’γ) and (3He,αγ) study, a (p,p’γ) and (α,nγ), a (40Ca,3pγ), and a Coulomb excitation study and the branching ratios derived from Coulomb excitation are discrepant with the others. There are several possible causes for these disagreements: 1. The 1253γ intensity may be too low to observe in the other measurements. 2. The geometry in the (p,p’γ) studies may be such that the observed transition is a sum of the 1093 and 159 γ’s. 3. The assumption of no contamination from the 1444 to 160 transition in Coulomb excitation may not be valid. 4. There may be contamination from deexcitation of the 1250 (3/2-,1/2-), state which would be dependent both on the reaction mechanism and on the incident energy. NEGATIVE-PARITY SIDE band.
Jπ(level): See (p,p’γ) and (α,nγ) for proposed assignment (not adopted by evaluator). NEGATIVE-PARITY SIDE band. d or d,E2 γ to Ji-1 state; high selection of yrast states in fusion-evaporation and restrictions on γ(θ) (Cf. 1985Wa09). π=- from d,E2 γ to Ji-2,π=-.
  3368.97/2-,9/2,11/2- 0.19 ps 6  E(level): From (p,p’γ). Held fixed in least-squares fit to Eγ’s. Held fixed in least-squares adjustment.
  3400.57/2- TO 13/2 1.4 ps +10-4  E(level): From (p,p’γ). Held fixed in least-squares fit to Eγ’s. The g.s. transition is observed only in a (p,p’γ) and (3He,αγ) study, a (p,p’γ) and (α,nγ), a (40Ca,3pγ), and a Coulomb excitation study and the branching ratios derived from Coulomb excitation are discrepant with the others. There are several possible causes for these disagreements: 1. The 1253γ intensity may be too low to observe in the other measurements. 2. The geometry in the (p,p’γ) studies may be such that the observed transition is a sum of the 1093 and 159 γ’s. 3. The assumption of no contamination from the 1444 to 160 transition in Coulomb excitation may not be valid. 4. There may be contamination from deexcitation of the 1250 (3/2-,1/2-), state which would be dependent both on the reaction mechanism and on the incident energy. Held fixed in least-squares adjustment.
Jπ(level): See (p,p’γ) and (α,nγ) for proposed assignment (not adopted by evaluator).
  3434.61/2- TO 7/2 65 fs 22  E(level): From (p,p’γ). Held fixed in least-squares fit to Eγ’s. The g.s. transition is observed only in a (p,p’γ) and (3He,αγ) study, a (p,p’γ) and (α,nγ), a (40Ca,3pγ), and a Coulomb excitation study and the branching ratios derived from Coulomb excitation are discrepant with the others. There are several possible causes for these disagreements: 1. The 1253γ intensity may be too low to observe in the other measurements. 2. The geometry in the (p,p’γ) studies may be such that the observed transition is a sum of the 1093 and 159 γ’s. 3. The assumption of no contamination from the 1444 to 160 transition in Coulomb excitation may not be valid. 4. There may be contamination from deexcitation of the 1250 (3/2-,1/2-), state which would be dependent both on the reaction mechanism and on the incident energy. Held fixed in least-squares adjustment.
Jπ(level): See (p,p’γ) and (α,nγ) for proposed assignment (not adopted by evaluator).
  3484.5(3/2-) 30 fs 10  E(level): From (p,p’γ). Held fixed in least-squares fit to Eγ’s. Held fixed in least-squares adjustment.
  3515.51/2+ 40 fs 12  Possibly a doublet since d,E2 γ? to 5/2- is not consistent with L(d,p)=0.
E(level): From (p,p’γ). Held fixed in least-squares fit to Eγ’s. The g.s. transition is observed only in a (p,p’γ) and (3He,αγ) study, a (p,p’γ) and (α,nγ), a (40Ca,3pγ), and a Coulomb excitation study and the branching ratios derived from Coulomb excitation are discrepant with the others. There are several possible causes for these disagreements: 1. The 1253γ intensity may be too low to observe in the other measurements. 2. The geometry in the (p,p’γ) studies may be such that the observed transition is a sum of the 1093 and 159 γ’s. 3. The assumption of no contamination from the 1444 to 160 transition in Coulomb excitation may not be valid. 4. There may be contamination from deexcitation of the 1250 (3/2-,1/2-), state which would be dependent both on the reaction mechanism and on the incident energy. Held fixed in least-squares adjustment.
Jπ(level): See (p,p’γ) and (α,nγ) for proposed assignment (not adopted by evaluator).
  3544.83/2-,5/2+ < 35 fs Possible doublet.
E(level): From (p,p’γ). Held fixed in least-squares fit to Eγ’s. Held fixed in least-squares adjustment.
Jπ(level): L(d,p)=1 for multiplet.
  3553.63/2- TO 11/2- 35 fs +38-33  E(level): From (p,p’γ). Held fixed in least-squares fit to Eγ’s. Held fixed in least-squares adjustment.
Jπ(level): L(d,p)=1 for multiplet.
  3567.9717/2- 69 fs 21  E(level): From (40Ca,3pγ). yrast band. From (14C,3nγ).
Jπ(level): From γ(θ) and RUL of deexciting γ.
T1/2(level): From (14C,3nγ). T1/2 by DSAM.
  3582.7(3/2-) < 15 fs E(level): From (p,p’γ). Held fixed in least-squares fit to Eγ’s. Held fixed in least-squares adjustment.
  3622.55/2- TO 13/2- 20 fs 19  E(level): From (p,p’γ). Held fixed in least-squares fit to Eγ’s. Held fixed in least-squares adjustment.
  3676.13/2- < 40 fs E(level): From (p,p’γ). Held fixed in least-squares fit to Eγ’s. Held fixed in least-squares adjustment.
Jπ(level): From J-dependence of vector analyzing power and angular momentum transfer in (d,p) and (pol d,p).
  3701.87/2,9/2,11/2,13/2- 24 fs +24-22  E(level): From (p,p’γ). Held fixed in least-squares fit to Eγ’s. The g.s. transition is observed only in a (p,p’γ) and (3He,αγ) study, a (p,p’γ) and (α,nγ), a (40Ca,3pγ), and a Coulomb excitation study and the branching ratios derived from Coulomb excitation are discrepant with the others. There are several possible causes for these disagreements: 1. The 1253γ intensity may be too low to observe in the other measurements. 2. The geometry in the (p,p’γ) studies may be such that the observed transition is a sum of the 1093 and 159 γ’s. 3. The assumption of no contamination from the 1444 to 160 transition in Coulomb excitation may not be valid. 4. There may be contamination from deexcitation of the 1250 (3/2-,1/2-), state which would be dependent both on the reaction mechanism and on the incident energy. Held fixed in least-squares adjustment.
Jπ(level): See (p,p’γ) and (α,nγ) for proposed assignment (not adopted by evaluator).
  3724   E(level): From β+ decay. From (d,p).
E(level)Jπ(level)T1/2(level)Comments
  3727.1(13/2-)   Jπ(level): Connected by a J|)J or J|)J-2, presumably stretched E2; 3727 decays weakly to yrast 9/2-.
  3780.03/2(-) TO 9/2- 44 fs 19  E(level): From (p,p’γ). Held fixed in least-squares fit to Eγ’s. The g.s. transition is observed only in a (p,p’γ) and (3He,αγ) study, a (p,p’γ) and (α,nγ), a (40Ca,3pγ), and a Coulomb excitation study and the branching ratios derived from Coulomb excitation are discrepant with the others. There are several possible causes for these disagreements: 1. The 1253γ intensity may be too low to observe in the other measurements. 2. The geometry in the (p,p’γ) studies may be such that the observed transition is a sum of the 1093 and 159 γ’s. 3. The assumption of no contamination from the 1444 to 160 transition in Coulomb excitation may not be valid. 4. There may be contamination from deexcitation of the 1250 (3/2-,1/2-), state which would be dependent both on the reaction mechanism and on the incident energy. Held fixed in least-squares adjustment.
Jπ(level): See (p,p’γ) and (α,nγ) for proposed assignment (not adopted by evaluator).
  3827.17/2- 17 fs 9  E(level): From (p,p’γ). Held fixed in least-squares fit to Eγ’s. Held fixed in least-squares adjustment.
  39233/2-   Jπ(level): From J-dependence of vector analyzing power and angular momentum transfer in (d,p) and (pol d,p).
  3993.9415/2- 0.10 ps +8-5  E(level): The g.s. transition is observed only in a (p,p’γ) and (3He,αγ) study, a (p,p’γ) and (α,nγ), a (40Ca,3pγ), and a Coulomb excitation study and the branching ratios derived from Coulomb excitation are discrepant with the others. There are several possible causes for these disagreements: 1. The 1253γ intensity may be too low to observe in the other measurements. 2. The geometry in the (p,p’γ) studies may be such that the observed transition is a sum of the 1093 and 159 γ’s. 3. The assumption of no contamination from the 1444 to 160 transition in Coulomb excitation may not be valid. 4. There may be contamination from deexcitation of the 1250 (3/2-,1/2-), state which would be dependent both on the reaction mechanism and on the incident energy. NEGATIVE-PARITY SIDE band.
Jπ(level): See (p,p’γ) and (α,nγ) for proposed assignment (not adopted by evaluator). NEGATIVE-PARITY SIDE band. d or d,E2 γ to Ji-1 state; high selection of yrast states in fusion-evaporation and restrictions on γ(θ) (Cf. 1985Wa09). π=- from d,E2 γ to Ji-2,π=-.
T1/2(level): From (14C,3nγ). T1/2 by DSAM.
  4243   Jπ(level): L(3He,p)=0+2, 4252, state may correspond to this or the following state.
  4264   Jπ(level): L(3He,p)=0+2, 4252, state may correspond to this or the following state.
  4494.1119/2- 0.111 ps 28  E(level): From (40Ca,3pγ). yrast band.
T1/2(level): From (14C,3nγ). T1/2 by DSAM.
  46371/2-   E(level): From β+ decay. From (d,p).
Jπ(level): From J-dependence of vector analyzing power and angular momentum transfer in (d,p) and (pol d,p).
  4672.9017/2- 0.12 ps 6  E(level): NEGATIVE-PARITY SIDE band.
Jπ(level): NEGATIVE-PARITY SIDE band. d or d,E2 γ to Ji-1 state; high selection of yrast states in fusion-evaporation and restrictions on γ(θ) (Cf. 1985Wa09). π=- from d,E2 γ to Ji-2,π=-.
T1/2(level): From (14C,3nγ). T1/2 by DSAM.
  4708-   Jπ(level): L(3He,p)=0 or 0+2.
  5197.4421/2- 49 fs 35  E(level): From (40Ca,3pγ). yrast band.
T1/2(level): From (14C,3nγ). T1/2 by DSAM.
  53551/2-   E(level): From β+ decay. From (d,p).
Jπ(level): From J-dependence of vector analyzing power and angular momentum transfer in (d,p) and (pol d,p).
  5372   E(level): From (3He,p) and (3He,pγ).
  55801/2-   E(level): From β+ decay. From (d,p).
Jπ(level): From J-dependence of vector analyzing power and angular momentum transfer in (d,p) and (pol d,p).
  58101/2-   E(level): From β+ decay. From (d,p).
Jπ(level): From J-dependence of vector analyzing power and angular momentum transfer in (d,p) and (pol d,p).
  6088.6023/2- 35 fs 21  E(level): From (40Ca,3pγ). yrast band.
T1/2(level): From (14C,3nγ). T1/2 by DSAM.
  6366.4(21/2-) < 28 fs E(level): NEGATIVE-PARITY SIDE band.
Jπ(level): NEGATIVE-PARITY SIDE band.
T1/2(level): From (14C,3nγ). T1/2 by DSAM.
  6530-   E(level): From (3He,p) and (3He,pγ).
Jπ(level): L(3He,p)=0 or 0+2.
  7349.07/2-   T=5/2
Analog of 47Sc g.s., 7/2-.
E(level): From (3He,p) and (3He,pγ).
Jπ(level): L(3He,p)=0 or 0+2.
  7480.6-   E(level): From (3He,p) and (3He,pγ).
Jπ(level): L(3He,p)=0 or 0+2.
  8005.127/2- 0.49 ps 11  E(level): From (40Ca,3pγ). yrast band.
T1/2(level): From (14C,3nγ). T1/2 by DSAM.
     8.16E+3(3/2)+   T=5/2
E(level): E(level) is weighted average from (p,d) and (3He,α). Analog states of 47Sc 767, (3/2)+, and 1391, 1/2+, respectively.
Jπ(level): E(level) is weighted average from (p,d) and (3He,α). Analog states of 47Sc 767, (3/2)+, and 1391, 1/2+, respectively.
     8.79E+31/2+   T=5/2
E(level): E(level) is weighted average from (p,d) and (3He,α). Analog states of 47Sc 767, (3/2)+, and 1391, 1/2+, respectively.
Jπ(level): E(level) is weighted average from (p,d) and (3He,α). Analog states of 47Sc 767, (3/2)+, and 1391, 1/2+, respectively.

Back to top

Additional Gamma Comments:

E(level)E(gamma)Comments
   159.371   159.373E(γ): weighted av of 159.381 15 from β- decay, 159.369 20 from from (12C,3nγ) and 159.27 4 from (n,γ). Arithmetic mean of 159.370 12 (NRM) and 159.375 12 (RT) adopted.
I(γ): From (40Ca,3pγ)
  1252.09  1092.71E(γ): From (14C,3nγ).. From (p,p’γ). Held fixed in least-squares fit to Eγ’s. The g.s. transition is observed only in a (p,p’γ) and (3He,αγ) study, a (p,p’γ) and (α,nγ), a (40Ca,3pγ), and a Coulomb excitation study and the branching ratios derived from Coulomb excitation are discrepant with the others. There are several possible causes for these disagreements: 1. The 1253γ intensity may be too low to observe in the other measurements. 2. The geometry in the (p,p’γ) studies may be such that the observed transition is a sum of the 1093 and 159 γ’s. 3. The assumption of no contamination from the 1444 to 160 transition in Coulomb excitation may not be valid. 4. There may be contamination from deexcitation of the 1250 (3/2-,1/2-), state which would be dependent both on the reaction mechanism and on the incident energy.
I(γ): The g.s. transition is observed only in a (p,p’γ) and (3He,αγ) study, a (p,p’γ) and (α,nγ), a (40Ca,3pγ), and a Coulomb excitation study and the branching ratios derived from Coulomb excitation are discrepant with the others. There are several possible causes for these disagreements: 1. The 1253γ intensity may be too low to observe in the other measurements. 2. The geometry in the (p,p’γ) studies may be such that the observed transition is a sum of the 1093 and 159 γ’s. 3. The assumption of no contamination from the 1444 to 160 transition in Coulomb excitation may not be valid. 4. There may be contamination from deexcitation of the 1250 (3/2-,1/2-), state which would be dependent both on the reaction mechanism and on the incident energy.
M(γ): Stretched dipole from angular anisotropy in (40Ca,3pγ)
  1252.0E(γ): The g.s. transition is observed only in a (p,p’γ) and (3He,αγ) study, a (p,p’γ) and (α,nγ), a (40Ca,3pγ), and a Coulomb excitation study and the branching ratios derived from Coulomb excitation are discrepant with the others. There are several possible causes for these disagreements: 1. The 1253γ intensity may be too low to observe in the other measurements. 2. The geometry in the (p,p’γ) studies may be such that the observed transition is a sum of the 1093 and 159 γ’s. 3. The assumption of no contamination from the 1444 to 160 transition in Coulomb excitation may not be valid. 4. There may be contamination from deexcitation of the 1250 (3/2-,1/2-), state which would be dependent both on the reaction mechanism and on the incident energy.
I(γ): The g.s. transition is observed only in a (p,p’γ) and (3He,αγ) study, a (p,p’γ) and (α,nγ), a (40Ca,3pγ), and a Coulomb excitation study and the branching ratios derived from Coulomb excitation are discrepant with the others. There are several possible causes for these disagreements: 1. The 1253γ intensity may be too low to observe in the other measurements. 2. The geometry in the (p,p’γ) studies may be such that the observed transition is a sum of the 1093 and 159 γ’s. 3. The assumption of no contamination from the 1444 to 160 transition in Coulomb excitation may not be valid. 4. There may be contamination from deexcitation of the 1250 (3/2-,1/2-), state which would be dependent both on the reaction mechanism and on the incident energy.
M(γ): From γ(θ) in (3He,αγ) and comparison to RUL
  1444.25   192.150E(γ): From (14C,3nγ).. From (p,p’γ). Held fixed in least-squares fit to Eγ’s
I(γ): From (40Ca,3pγ). Iγ(192γ)/Iγ(1285γ)=0.129 3 and Iγ(703γ)/Iγ(1630γ)=3.1 9 in (14C,3nγ) discrepant
M(γ): Stretched dipole from angular anisotropy in (40Ca,3pγ)
  1284.86E(γ): From (14C,3nγ).
I(γ): From (40Ca,3pγ). Iγ(192γ)/Iγ(1285γ)=0.129 3 and Iγ(703γ)/Iγ(1630γ)=3.1 9 in (14C,3nγ) discrepant
M(γ): J|)J or J|)J-2 from angular anisotropy in (40Ca,3pγ). Ne M2 from comparison to RUL
  1549.65  1390.33E(γ): from (n,γ),(pol n,γ) E=thermal
I(γ): From β+ decay
  1549.9E(γ): From β+ decay. From (d,p)
I(γ): From β+ decay
M(γ): From γ(θ) in (3He,αγ) and comparison to RUL
  1793.80   244.27E(γ): From (n,γ)
I(γ): From β+ decay
  1793.9E(γ): From β+ decay. From (d,p)
I(γ): From β+ decay
M(γ): d,E2 from comparison to RUL. ΔJπ=2,no from level scheme
  1825.0  1825M(γ): D+Q from γ(θ) in (3He,αγ). Δπ=yes from level scheme
  2163.2  2003.1E(γ): From β+ decay. From (d,p)
I(γ): From β+ decay
M(γ): d,E2 from comparison to RUL. ΔJπ=2,no from level scheme
  2163.0E(γ): From β+ decay. From (d,p)
I(γ): From β+ decay
M(γ): d(+Q) from γ(θ) in (3He,αγ). Δπ=no from level scheme
  2166.7  2007.3E(γ): From β+ decay. From (d,p)
I(γ): From β+ decay
  2259.5  2101E(γ): From (3He,p) and (3He,pγ)
M(γ): d,E2 from comparison to RUL. Δπ=yes from level scheme
  2259.7E(γ): From (3He,p) and (3He,pγ)
M(γ): d,E2 from comparison to RUL. Δπ=yes from level scheme
  2297.1  2297M(γ): d,E2 from σ(96|’)/σ(126|’) in (γ,γ’) and comparison to RUL. Δπ=no from level scheme
  2406.2   962E(γ): E(level) is weighted average from (p,d) and (3He,α). Analog states of 47Sc 767, (3/2)+, and 1391, 1/2+, respectively
I(γ): Iγ(962γ):Iγ(1154γ):Iγ(2247γ)=0.3:3:1 from (40Ca,3pγ) discrepant
M(γ): From comparison to RUL
  1154E(γ): E(level) is weighted average from (p,d) and (3He,α). Analog states of 47Sc 767, (3/2)+, and 1391, 1/2+, respectively
I(γ): Iγ(962γ):Iγ(1154γ):Iγ(2247γ)=0.3:3:1 from (40Ca,3pγ) discrepant
M(γ): From comparison to RUL
  2247E(γ): E(level) is weighted average from (p,d) and (3He,α). Analog states of 47Sc 767, (3/2)+, and 1391, 1/2+, respectively
I(γ): Iγ(962γ):Iγ(1154γ):Iγ(2247γ)=0.3:3:1 from (40Ca,3pγ) discrepant
M(γ): From comparison to RUL
  2406M(γ): d,E2 from comparison to RUL. ΔJπ=2,no from level scheme
  2416.3   591E(γ): E(level) is weighted average from (p,d) and (3He,α). Analog states of 47Sc 767, (3/2)+, and 1391, 1/2+, respectively
M(γ): From comparison to RUL
   866E(γ): E(level) is weighted average from (p,d) and (3He,α). Analog states of 47Sc 767, (3/2)+, and 1391, 1/2+, respectively
M(γ): From comparison to RUL
  2416E(γ): E(level) is weighted average from (p,d) and (3He,α). Analog states of 47Sc 767, (3/2)+, and 1391, 1/2+, respectively
M(γ): From comparison to RUL
  2525.8  2366.3E(γ): From β+ decay. From (d,p). E(level) is weighted average from (p,d) and (3He,α). Analog states of 47Sc 767, (3/2)+, and 1391, 1/2+, respectively
I(γ): From β+ decay
M(γ): From comparison to RUL
  2525.6E(γ): From β+ decay. From (d,p). E(level) is weighted average from (p,d) and (3He,α). Analog states of 47Sc 767, (3/2)+, and 1391, 1/2+, respectively
I(γ): From β+ decay
M(γ): From comparison to RUL
E(level)E(gamma)Comments
  2548.2  2548.7E(γ): From β+ decay. From (d,p)
I(γ): From β+ decay
M(γ): d(+Q) from σ(96|’)/σ(126|’) in (γ,γ’). Δπ=no from level scheme
  2572.9   748E(γ): E(level) is weighted average from (p,d) and (3He,α). Analog states of 47Sc 767, (3/2)+, and 1391, 1/2+, respectively
M(γ): From comparison to RUL
  1023E(γ): From (3He,p) and (3He,pγ)
M(γ): d,E2 from comparison to RUL. Δπ=yes from level scheme
  2599.6   775E(γ): E(level) is weighted average from (p,d) and (3He,α). Analog states of 47Sc 767, (3/2)+, and 1391, 1/2+, respectively
M(γ): From comparison to RUL
  2441E(γ): E(level) is weighted average from (p,d) and (3He,α). Analog states of 47Sc 767, (3/2)+, and 1391, 1/2+, respectively
M(γ): From comparison to RUL
  2600E(γ): E(level) is weighted average from (p,d) and (3He,α). Analog states of 47Sc 767, (3/2)+, and 1391, 1/2+, respectively
M(γ): From comparison to RUL
  2619.4   452E(γ): E(level) is weighted average from (p,d) and (3He,α). Analog states of 47Sc 767, (3/2)+, and 1391, 1/2+, respectively
M(γ): From comparison to RUL
  1367E(γ): E(level) is weighted average from (p,d) and (3He,α). Analog states of 47Sc 767, (3/2)+, and 1391, 1/2+, respectively
M(γ): From comparison to RUL
  2460E(γ): E(level) is weighted average from (p,d) and (3He,α). Analog states of 47Sc 767, (3/2)+, and 1391, 1/2+, respectively
M(γ): From comparison to RUL
  2619E(γ): E(level) is weighted average from (p,d) and (3He,α). Analog states of 47Sc 767, (3/2)+, and 1391, 1/2+, respectively
M(γ): From comparison to RUL
  2682.30   276E(γ): From (40Ca,3pγ)
I(γ): From (40Ca,3pγ)
  1238E(γ): From (14C,3nγ).
I(γ): From (40Ca,3pγ)
M(γ): J|)J or J|)J-2 from angular anisotropy in (40Ca,3pγ)
  1430.22E(γ): From (14C,3nγ).. From (p,p’γ). Held fixed in least-squares fit to Eγ’s
I(γ): From (40Ca,3pγ)
M(γ): Stretched dipole from angular anisotropy in (40Ca,3pγ)
  2748.87  1304.61E(γ): From (14C,3nγ).
I(γ): From (40Ca,3pγ)
M(γ): J|)J or J|)J-2 from angular anisotropy in (40Ca,3pγ). Ne M2 from comparison to RUL
  2757.6  1314E(γ): E(level) is weighted average from (p,d) and (3He,α). Analog states of 47Sc 767, (3/2)+, and 1391, 1/2+, respectively
M(γ): From comparison to RUL
  1506E(γ): E(level) is weighted average from (p,d) and (3He,α). Analog states of 47Sc 767, (3/2)+, and 1391, 1/2+, respectively
M(γ): From comparison to RUL
  2793.2  1243.5E(γ): From β+ decay. From (d,p)
I(γ): From β+ decay
  2793.3E(γ): From β+ decay. From (d,p)
I(γ): From β+ decay
  2800.2  2800E(γ): E(level) is weighted average from (p,d) and (3He,α). Analog states of 47Sc 767, (3/2)+, and 1391, 1/2+, respectively
M(γ): From comparison to RUL
  2809.5  1558E(γ): E(level) is weighted average from (p,d) and (3He,α). Analog states of 47Sc 767, (3/2)+, and 1391, 1/2+, respectively
M(γ): From comparison to RUL
  2810E(γ): E(level) is weighted average from (p,d) and (3He,α). Analog states of 47Sc 767, (3/2)+, and 1391, 1/2+, respectively
M(γ): From comparison to RUL
  2828.5   412E(γ): E(level) is weighted average from (p,d) and (3He,α). Analog states of 47Sc 767, (3/2)+, and 1391, 1/2+, respectively
M(γ): From comparison to RUL
  1003E(γ): E(level) is weighted average from (p,d) and (3He,α). Analog states of 47Sc 767, (3/2)+, and 1391, 1/2+, respectively
M(γ): From comparison to RUL
  2828E(γ): E(level) is weighted average from (p,d) and (3He,α). Analog states of 47Sc 767, (3/2)+, and 1391, 1/2+, respectively
M(γ): From comparison to RUL
  2838.9  2680E(γ): E(level) is weighted average from (p,d) and (3He,α). Analog states of 47Sc 767, (3/2)+, and 1391, 1/2+, respectively
M(γ): From comparison to RUL
  2839E(γ): E(level) is weighted average from (p,d) and (3He,α). Analog states of 47Sc 767, (3/2)+, and 1391, 1/2+, respectively
M(γ): From comparison to RUL
E(level)E(gamma)Comments
  2846.3  1594E(γ): E(level) is weighted average from (p,d) and (3He,α). Analog states of 47Sc 767, (3/2)+, and 1391, 1/2+, respectively
M(γ): From comparison to RUL
  2687E(γ): E(level) is weighted average from (p,d) and (3He,α). Analog states of 47Sc 767, (3/2)+, and 1391, 1/2+, respectively
M(γ): From comparison to RUL
  2855  2855E(γ): From (n,γ)
  3033.1   773E(γ): E(level) is weighted average from (p,d) and (3He,α). Analog states of 47Sc 767, (3/2)+, and 1391, 1/2+, respectively
M(γ): From comparison to RUL
  1781E(γ): E(level) is weighted average from (p,d) and (3He,α). Analog states of 47Sc 767, (3/2)+, and 1391, 1/2+, respectively
M(γ): From comparison to RUL
  2874E(γ): E(level) is weighted average from (p,d) and (3He,α). Analog states of 47Sc 767, (3/2)+, and 1391, 1/2+, respectively
M(γ): From comparison to RUL
  3033E(γ): E(level) is weighted average from (p,d) and (3He,α). Analog states of 47Sc 767, (3/2)+, and 1391, 1/2+, respectively
M(γ): From comparison to RUL
  3051.5   267E(γ): E(level) is weighted average from (p,d) and (3He,α). Analog states of 47Sc 767, (3/2)+, and 1391, 1/2+, respectively
M(γ): From comparison to RUL
  1800E(γ): E(level) is weighted average from (p,d) and (3He,α). Analog states of 47Sc 767, (3/2)+, and 1391, 1/2+, respectively
M(γ): From comparison to RUL
  3176.0   760E(γ): E(level) is weighted average from (p,d) and (3He,α). Analog states of 47Sc 767, (3/2)+, and 1391, 1/2+, respectively
M(γ): From comparison to RUL
   811E(γ): E(level) is weighted average from (p,d) and (3He,α). Analog states of 47Sc 767, (3/2)+, and 1391, 1/2+, respectively
M(γ): From comparison to RUL
  1013E(γ): E(level) is weighted average from (p,d) and (3He,α). Analog states of 47Sc 767, (3/2)+, and 1391, 1/2+, respectively
M(γ): From comparison to RUL
  1351E(γ): E(level) is weighted average from (p,d) and (3He,α). Analog states of 47Sc 767, (3/2)+, and 1391, 1/2+, respectively
M(γ): From comparison to RUL
  3017E(γ): E(level) is weighted average from (p,d) and (3He,α). Analog states of 47Sc 767, (3/2)+, and 1391, 1/2+, respectively
M(γ): From comparison to RUL
  3176E(γ): E(level) is weighted average from (p,d) and (3He,α). Analog states of 47Sc 767, (3/2)+, and 1391, 1/2+, respectively
M(γ): From comparison to RUL
  3251.6   955E(γ): E(level) is weighted average from (p,d) and (3He,α). Analog states of 47Sc 767, (3/2)+, and 1391, 1/2+, respectively
M(γ): From comparison to RUL
  1808M(γ): d,E2 from comparison to RUL. ΔJπ=2,no from level scheme
  3093E(γ): E(level) is weighted average from (p,d) and (3He,α). Analog states of 47Sc 767, (3/2)+, and 1391, 1/2+, respectively
M(γ): From comparison to RUL
  3252E(γ): E(level) is weighted average from (p,d) and (3He,α). Analog states of 47Sc 767, (3/2)+, and 1391, 1/2+, respectively
M(γ): From comparison to RUL
  3277.7  1113E(γ): E(level) is weighted average from (p,d) and (3He,α). Analog states of 47Sc 767, (3/2)+, and 1391, 1/2+, respectively
M(γ): From comparison to RUL
  1728E(γ): E(level) is weighted average from (p,d) and (3He,α). Analog states of 47Sc 767, (3/2)+, and 1391, 1/2+, respectively
M(γ): From comparison to RUL
  3287.73   605.47E(γ): From (14C,3nγ).. From (p,p’γ). Held fixed in least-squares fit to Eγ’s
I(γ): From (40Ca,3pγ)
M(γ): d(+Q) from γ(θ) in (α,nγ). Δπ=no from level scheme. Stretched dipole from angular anisotropy in (40Ca,3pγ)
  1843.36E(γ): From (14C,3nγ).. From (p,p’γ). Held fixed in least-squares fit to Eγ’s
I(γ): From (40Ca,3pγ)
M(γ): Stretched dipole from angular anisotropy in (40Ca,3pγ). d(+Q) from γ(θ) in (14C,3nγ). Δπ=no from level scheme
  2037E(γ): From (40Ca,3pγ)
I(γ): From (40Ca,3pγ)
M(γ): d,E2 from comparison to RUL. ΔJπ=2,no from level scheme
  3368.9  1925E(γ): E(level) is weighted average from (p,d) and (3He,α). Analog states of 47Sc 767, (3/2)+, and 1391, 1/2+, respectively
M(γ): From comparison to RUL
  3210E(γ): E(level) is weighted average from (p,d) and (3He,α). Analog states of 47Sc 767, (3/2)+, and 1391, 1/2+, respectively
M(γ): From comparison to RUL
E(level)E(gamma)Comments
  3400.5   348E(γ): E(level) is weighted average from (p,d) and (3He,α). Analog states of 47Sc 767, (3/2)+, and 1391, 1/2+, respectively
M(γ): From comparison to RUL
   718E(γ): E(level) is weighted average from (p,d) and (3He,α). Analog states of 47Sc 767, (3/2)+, and 1391, 1/2+, respectively
M(γ): From comparison to RUL
  1956E(γ): E(level) is weighted average from (p,d) and (3He,α). Analog states of 47Sc 767, (3/2)+, and 1391, 1/2+, respectively
M(γ): From comparison to RUL
  3434.6  1610E(γ): E(level) is weighted average from (p,d) and (3He,α). Analog states of 47Sc 767, (3/2)+, and 1391, 1/2+, respectively
M(γ): From comparison to RUL
  3435E(γ): E(level) is weighted average from (p,d) and (3He,α). Analog states of 47Sc 767, (3/2)+, and 1391, 1/2+, respectively
M(γ): From comparison to RUL
  3484.5  3325M(γ): d,E2 from comparison to RUL. ΔJπ=2,no from level scheme
  3515.5  1151E(γ): E(level) is weighted average from (p,d) and (3He,α). Analog states of 47Sc 767, (3/2)+, and 1391, 1/2+, respectively
M(γ): From comparison to RUL
  1691E(γ): E(level) is weighted average from (p,d) and (3He,α). Analog states of 47Sc 767, (3/2)+, and 1391, 1/2+, respectively
M(γ): From comparison to RUL
  3516E(γ): E(level) is weighted average from (p,d) and (3He,α). Analog states of 47Sc 767, (3/2)+, and 1391, 1/2+, respectively
M(γ): d,E2 from comparison to RUL. Discrepant with ΔJπ=2,yes from level scheme. From comparison to RUL
  3544.8  1180E(γ): E(level) is weighted average from (p,d) and (3He,α). Analog states of 47Sc 767, (3/2)+, and 1391, 1/2+, respectively
M(γ): From comparison to RUL
  1720E(γ): E(level) is weighted average from (p,d) and (3He,α). Analog states of 47Sc 767, (3/2)+, and 1391, 1/2+, respectively
M(γ): From comparison to RUL
  3386E(γ): E(level) is weighted average from (p,d) and (3He,α). Analog states of 47Sc 767, (3/2)+, and 1391, 1/2+, respectively
M(γ): From comparison to RUL
  3545E(γ): E(level) is weighted average from (p,d) and (3He,α). Analog states of 47Sc 767, (3/2)+, and 1391, 1/2+, respectively
M(γ): From comparison to RUL
  3553.6  3395E(γ): E(level) is weighted average from (p,d) and (3He,α). Analog states of 47Sc 767, (3/2)+, and 1391, 1/2+, respectively
M(γ): From comparison to RUL
  3567.97   819.09E(γ): From (14C,3nγ).. From (p,p’γ). Held fixed in least-squares fit to Eγ’s
I(γ): From (40Ca,3pγ)
M(γ): Stretched dipole from angular anisotropy in (40Ca,3pγ). From γ(θ) in (14C,3nγ). δ given for adopted J’s
  3582.7  3424E(γ): E(level) is weighted average from (p,d) and (3He,α). Analog states of 47Sc 767, (3/2)+, and 1391, 1/2+, respectively
M(γ): From comparison to RUL
  3622.5  2370E(γ): E(level) is weighted average from (p,d) and (3He,α). Analog states of 47Sc 767, (3/2)+, and 1391, 1/2+, respectively
M(γ): From comparison to RUL
  3676.1  3676E(γ): E(level) is weighted average from (p,d) and (3He,α). Analog states of 47Sc 767, (3/2)+, and 1391, 1/2+, respectively
M(γ): From comparison to RUL
  3701.8  1034E(γ): E(level) is weighted average from (p,d) and (3He,α). Analog states of 47Sc 767, (3/2)+, and 1391, 1/2+, respectively
M(γ): From comparison to RUL
  2450E(γ): E(level) is weighted average from (p,d) and (3He,α). Analog states of 47Sc 767, (3/2)+, and 1391, 1/2+, respectively
M(γ): From comparison to RUL
  3727.1  1321E(γ): From (40Ca,3pγ)
I(γ): From (40Ca,3pγ)
M(γ): J|)J or J|)J-2 from angular anisotropy in (40Ca,3pγ)
  2475E(γ): From (40Ca,3pγ)
I(γ): From (40Ca,3pγ)
  3780.0  3621E(γ): E(level) is weighted average from (p,d) and (3He,α). Analog states of 47Sc 767, (3/2)+, and 1391, 1/2+, respectively
M(γ): From comparison to RUL
  3780E(γ): E(level) is weighted average from (p,d) and (3He,α). Analog states of 47Sc 767, (3/2)+, and 1391, 1/2+, respectively
M(γ): From comparison to RUL
  3827.1  2383M(γ): d,E2 from comparison to RUL. ΔJπ=2,no from level scheme
E(level)E(gamma)Comments
  3923  3925E(γ): From (n,γ). Held fixed in least-squares adjustment
I(γ): From (n,γ)
M(γ): from γγ(θ) in (n,γ)
  3993.94   267E(γ): From (40Ca,3pγ)
I(γ): From (40Ca,3pγ)
M(γ): d from comparison to RUL. Δπ=no from level scheme
   706.21E(γ): From (14C,3nγ).. From (p,p’γ). Held fixed in least-squares fit to Eγ’s
I(γ): From (40Ca,3pγ)
M(γ): Stretched dipole from angular anisotropy in (40Ca,3pγ). d(+Q) from γ(θ) in (14C,3nγ). Δπ=no from level scheme
  2550E(γ): From (40Ca,3pγ)
I(γ): From (40Ca,3pγ)
M(γ): d,E2 from comparison to RUL. ΔJπ=2,no from level scheme
  4494.11   926.12E(γ): From (14C,3nγ).. From (p,p’γ). Held fixed in least-squares fit to Eγ’s
I(γ): From (40Ca,3pγ)
M(γ): D+Q from γ(θ) in (12C,3nγ). Δπ=no from level scheme. Stretched dipole from angular anisotropy in (40Ca,3pγ)
  1745E(γ): From (40Ca,3pγ)
I(γ): From (40Ca,3pγ)
M(γ): J|)J or J|)J-2 from angular anisotropy in (40Ca,3pγ). Ne M2 from comparison to RUL. ΔJπ=2,no from level scheme
  4672.90   678.95E(γ): From (14C,3nγ).. From (p,p’γ). Held fixed in least-squares fit to Eγ’s
I(γ): From (40Ca,3pγ)
M(γ): Stretched dipole from angular anisotropy in (40Ca,3pγ). d(+Q) from γ(θ) in (14C,3nγ). Δπ=no from level scheme
  1385E(γ): From (40Ca,3pγ)
I(γ): From (40Ca,3pγ)
M(γ): J|)J or J|)J-2 from angular anisotropy in (40Ca,3pγ). Ne M2 from comparison to RUL. ΔJπ=2,no from level scheme
  1924E(γ): From (40Ca,3pγ). E(level) is weighted average from (p,d) and (3He,α). Analog states of 47Sc 767, (3/2)+, and 1391, 1/2+, respectively
I(γ): From (40Ca,3pγ)
M(γ): From comparison to RUL
  5197.44   703.32E(γ): From (14C,3nγ).. From (p,p’γ). Held fixed in least-squares fit to Eγ’s
I(γ): From (40Ca,3pγ). Iγ(192γ)/Iγ(1285γ)=0.129 3 and Iγ(703γ)/Iγ(1630γ)=3.1 9 in (14C,3nγ) discrepant
M(γ): d(+Q) from γ(θ) in (14C,3nγ). Δπ=yes from level scheme. Stretched dipole from angular anisotropy in (40Ca,3pγ). Stretched dipole from γ(θ) in (14C,3nγ)
  1629.83E(γ): From (14C,3nγ).
I(γ): From (40Ca,3pγ). Iγ(192γ)/Iγ(1285γ)=0.129 3 and Iγ(703γ)/Iγ(1630γ)=3.1 9 in (14C,3nγ) discrepant
M(γ): J|)J or J|)J-2 from angular anisotropy in (40Ca,3pγ). Ne M2 from comparison to RUL. ΔJπ=2,no from level scheme
  5355  5365E(γ): From (n,γ)
  5372  2807E(γ): From (3He,pγ). ≈50% of the decay from the 7346-keV state has not been observed
  5746  3145E(γ): From (n,γ)
  3189E(γ): From (n,γ)
  3335E(γ): Multiply placed. From (n,γ)
  3335E(γ): Multiply placed. From (n,γ)
  6088.60   891.13E(γ): From (14C,3nγ).. From (p,p’γ). Held fixed in least-squares fit to Eγ’s
I(γ): From (40Ca,3pγ)
M(γ): D+Q from γ(θ) in (14C,3nγ). Δπ=yes from level scheme. Stretched dipole from angular anisotropy in (40Ca,3pγ). Stretched dipole from γ(θ) in (14C,3nγ)
  1595E(γ): From (40Ca,3pγ)
I(γ): From (40Ca,3pγ)
M(γ): d,E2 from comparison to RUL. ΔJπ=2,no from level scheme
  6366.4  1693.2E(γ): From (14C,3nγ).
I(γ): From (40Ca,3pγ)
M(γ): J|)J or J|)J-2 from angular anisotropy in (40Ca,3pγ). Ne M2 from comparison to RUL
  1873E(γ): From (40Ca,3pγ). E(level) is weighted average from (p,d) and (3He,α). Analog states of 47Sc 767, (3/2)+, and 1391, 1/2+, respectively
I(γ): From (40Ca,3pγ)
M(γ): From comparison to RUL
  2798E(γ): From (40Ca,3pγ). E(level) is weighted average from (p,d) and (3He,α). Analog states of 47Sc 767, (3/2)+, and 1391, 1/2+, respectively
I(γ): From (40Ca,3pγ)
M(γ): From comparison to RUL
  7349.0  4123E(γ): From (3He,pγ). ≈50% of the decay from the 7346-keV state has not been observed
I(γ): From (3He,pγ). ≈50% of the decay from the 7346-keV state has not been observed
  7189E(γ): From (3He,pγ). ≈50% of the decay from the 7346-keV state has not been observed
I(γ): From (3He,pγ). ≈50% of the decay from the 7346-keV state has not been observed
  7480.6  7480E(γ): From (3He,pγ). ≈50% of the decay from the 7346-keV state has not been observed
E(level)E(gamma)Comments
  8005.1  1916.45E(γ): From (14C,3nγ).
I(γ): From (40Ca,3pγ)

Back to top